
S3 Appendix – A trade-off between power flow into the body and

force on the centre of mass

The neural model we have constructed in this paper was motivated by the requirement for power flow
from the musculature to the body, and by the requirement that a small number of segments should move
in the direction of centre of mass motion at any given time. There is in fact an inherent trade-off between
the need to transfer power into the body and the need to move only a small number of segments, as we will
now show by extending the modal analysis of the previous appendix to the dissipative axial mechanics. The
Hamiltonian and Rayleigh dissipation function in this case reduce to
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where we have again assumed that all segments have identical parameters and we have neglected sliding
friction for simplicity, and we have defined the axial damping ratio ζa = ηa/2
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We now move to the axial modal basis X, pX defined in the previous appendix by x = ΦaX, px = ΦapX ,
and introduce modal control variables U defined by u = ΦaU, finding
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where we have used the fact that the matrix D1 is circulant and is therefore diagonalised by the eigenvector
matrix Φa of D2, since all circulant matrices have the same eigenvectors. We write the diagonal eigenvalue
matrix of D1 as Σ, with the i’th eigenvalue being Σi,i = σi. The dissipative Hamilton’s equations for the
i’th axial mode are then
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Where we have used the first equation to tell us that dpX

dẊ
= 1 in the second equation. We now convert

this system of first-order equations to a single second order equation by using the first equation to write
Ẋi = pX,i and Ẍi = ṗX,i in the second, finding

Ẍi + 2ζaωaλa,iẊi + ω2
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Finally, if we introduce the modal frequencies as ωa,i = ωa

√
λa,i, the modal damping ratios as ζa,i =

ζa
√
λa,i, and the modal gain factors as bi = bσi, we obtain the equation of motion for a damped, driven,

harmonic oscillator in standard form
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The ratio of energy stored to energy dissipated per cycle of oscillation for a damped harmonic oscillator is
given by the Q-factor, defined as Q = 1/2ζ. The lower frequency modes, corresponding to small eigenvalues
λa,i, will have lower damping ratios ζa,i and therefore higher Q-factors. In other words, energy is more
efficiently transferred into the low-frequency modes. However, solely driving the lowest frequency modes
would fail to produce any force on the centre of mass, because the resulting peristaltic wave would involve
equal numbers of segments moving forward and backward, and the resulting frictive forces would cancel out.
This necessitates some involvement of higher-frequency modes in order to localise segmental motion and
allow overall acceleration of the body. Thus, there is a trade-off between efficiently transferring power into
low-frequency modes and producing large forces on the centre of mass.
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