
S4 Appendix – Modelling and analysis of head motion

In this appendix we will consider bending and compression/expansion of the head segment, as viewed
from a coordinate frame fixed at the posterior end of the head segment and aligned with the local body
axis (the head frame). To simplify our notation we will drop indices, denoting the head’s bending angle as
φ = φN−1 and the head’s stretch as q = qN−1. The potential energy of the head segment in this frame of
reference is then simply
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Meanwhile, the kinetic energy takes the form
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where Wx,Wy give the translational acceleration, and Ω the angular velocity, of the head frame relative
to the lab frame. The first two terms in this expression can be seen as the kinetic energy obtained by treating
the head frame as an inertial reference frame, while the second two terms involving Wx, Wy, and Ω are a
correction accounting for non-inertial effects (i.e. fictitious forces) arising in the head frame. Aiming to
simplify our analysis as far as possible, we choose to neglect the non-inertial effects, so that the Hamiltonian
of the system becomes
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We can simplify this expression further by choosing to measure length, mass, and time in convenient
units, such that m = 1, l = 1, and ωa =

√
ka/m = 1. In this case, the Hamiltonian becomes
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where λ = ωt/ωa is the ratio of transverse to axial frequencies. We can also introduce an explicit amplitude
scale by multiplying all dynamical variables by a parameter ε. The head Hamiltonian then becomes
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or, dividing through by ε2,
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We can see immediately that for the case of small oscillations, i.e. ε→ 0, the head Hamiltonian reduces
to the simpler expression
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which is clearly separable into an axial and a transverse Hamiltonian. By our investigation of separable
Hamiltonians (S2 Appendix) theorems we know that these are both conserved quantities, and that they are
in involution with one another. Furthermore, this tells us that the motion of the head has a closed-form
solution and must be (quasi)periodic. Indeed, the Hamilton’s equations in this case tell us
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which are harmonic oscillator equations in first order form. As before (S2 Appendix), we can recover the
familiar second-order harmonic oscillator equation by differentiating the first equations with respect to time,
finding ṗq = q̈, ṗφ = φ̈, before substituting this result into the second equations to find

q̈ + q = 0, φ̈+ λ2φ = 0 (10)

The solution to the harmonic oscillator problem is well known [1], and in this case tells us

q(t) = Aqcos(t+ θq), φ(t) = Aφcos(λt+ θφ) (11)

where the A’s are constant amplitudes and the θ’s are constant phase shifts. It should be clear from
this solution that if λ is rational, the head motion will be periodic while for irrational λ the motion will be
quasiperiodic.

To gain insight into the more general case of large amplitude head motion, we attempt to apply the
Kolmogorov-Arnold-Moser (KAM) theorem, a key result in classical mechanics [2]. The KAM theorem tells
us that for sufficiently small conservative perturbations of an integrable Hamiltonian the motion remains
quasiperiodic for a majority of initial conditions, while the region of phase space occupied by chaotic behaviour
increases in size with the magnitude of perturbation. The KAM theorem first requires that we write the head
Hamiltonian as a sum of an integrable unperturbed Hamiltonian H0 and a small conservative perturbation
εH1, i.e.
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There are in principle several ways of accomplishing this. We proceed by taking a Taylor series expansion
in ε,
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where we have identified H0 with the zero’th order term in the expansion, which is simply the small
oscillation head Hamiltonian H0 = H∗

h(ε = 0) = H∗
h,SO, which we know to be integrable. Unfortunately, this

means that the unperturbed system is governed by a harmonic oscillator Hamiltonian (see above), which fails
to meet the isoenergetic nondegeneracy condition of the KAM theorem [2]. We therefore cannot formally
apply the KAM theorem to the problem of head motion. Nevertheless, numerical experiments do suggest
that quasiperiodic behaviour persists for small perturbations, while larger perturbations imply that a greater
region of phase space will be occupied by chaos (see main text).
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