
S6 Appendix – Computer algebra and numerical methods

In preparing this paper we have made use of the SymPy computer algebra package for Python. In particular,
we used SymPy to convert our mathematical expressions for kinetic and potential energies, power losses,
and friction forces into a consistent cartesian coordinate system (the lab frame), before combining them to
form expressions for the Hamiltonian and Rayleigh dissipation function (see S1 Appendix for definitions of
these quantitites). We then used SymPy to derive our mechanical equations of motion using the dissipative
Hamiltons equations (see S1 Appendix for definitions of these equations).

We carried out our modal analysis using a combination of manual methods and SymPy, and used the
NumPy function numpy.linalg.eig to numerically estimate the eigenvalues and eigenvectors of D4.

We also formulated our neuromuscular model in SymPy. In order to avoid algebraic inconsistencies
associated with the mutual inhibitory connections in our model, we used a fast switching dynamics. We
replaced the algrebaic binary activation function (Eq 4, main text) with the first-order dynamics

V̇i =

{
r − rVi

∑
j wjVj > θi

−rVi otherwise
(1)

where r is a switching rate constant. We set r = 1 ms−1, so that neural state changes occured on a far
faster timescale than the evolution of the mechanics.

Having assembled the dynamical equations for our model in SymPy, we then used the sympy.fcode function
to generate equivalent FORTRAN source code, and called the odespy package to compile this source code and
numerically integrate our model equations via the LSODES solver. We chose timesteps and absolute/relative
tolerances for LSODES by requiring that integration of our conservative equations lead to a change in total
energy of less than 0.1%. Following simulation, we scaled the time axis so that the fundamental frequency
of tail segment length oscillations was 1 Hz, to roughly match observations of the real larva. Note that
this is equivalent to scaling the axial and transverse natural frequencies of our model, via stiffness or mass
parameters (see S2 Appendix). After scaling, we downsampled to a 30 Hz sampling rate to match typical
video recording apparatus.

Given the time series of a quantity x obtained from a simulation run of duration T with timestep ∆t, we
computed the power spectral density of x as

S [x] (ω) =
∆t2

T
|F [x] (ω)|2 (2)

where ω is frequency and F is the fast Fourier transform of x, obtained via the scipy.fftpack.fft

function in SciPy. We computed the autocorrelation of x as

A [x] (t) = x(t) ∗ x(−t) (3)

where the star denotes convolution, which we achieved via the scipy.fftpack.fftconvolve function. At
several points in the paper we were required to fit data by known distributions or curves. We performed linear
least-squares fitting of mean-squared displacement (Fig 10, S5 Fig) and log angular speed (S4 Fig) using
the sympy.stats.linregress function. We computed maximum-likelihood von Mises and wrapped Cauchy
fits to the body bend distribution (Fig 10) using sp.stats.vonmises.fit and sp.stats.wrapcauchy.fit,
respectively. We compared exponential and power law fits to the run length distribution (Fig 10) using the
powerlaw Python package.

To examine the putative chaotic behaviour of our model we calculated the maximal Lyapunov characteristic
exponent (MLCE). The MLCE is defined as
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λ = lim
t→∞

1

t
ln
‖δx(t)‖
‖δx(0)‖

(4)

where δx(0) is some initial separation distance between two mechanical trajectories of the system and
δx(t) is the separation distance at a time t in the future. Technically, limit sets of an N -dimensional system
will have a spectrum of N Lyapunov exponents, but the dynamics on the set will be dominated by the largest
(maximal) exponent.

We estimated the MLCE using a standard “pullback” algorithm in which two trajectories of the system
are numerically integrated in parallel while periodically resetting one to be a distance d0 away from the other.
This procedure can be described as follows :

1. choose some initial conditions for the model and numerically integrate until transient behaviour has
diminished; call the final state x0

2. pick a random vector y0 which is a distance δx(0) from x0

3. numerically integrate the model dynamics starting from x0 and y0 over some time t until reaching
states x1 and y1

4. calculate the distance between x1 and y1 using any vector norm (we use the standard Euclidean norm);
denote this distance δx(t)

5. compute and store a finite time estimate of the MLCE by substituting into the definition above

6. reset x0 → x1 and y0 → x1 + δx(0) (y1−x1)
‖y1−x1‖ ; i.e. “pull back” y1 along the vector from x1 to y1 until a

distance δx(0) from x1

7. repeat steps 3–6 for some fixed number of iterations

8. average over the stored finite time estimates of the MLCE to obtain a single MLCE estimate; some
of the initial stored estimates may be discarded first to ensure the y trajectory has aligned along the
direction with the largest Lyapunov exponent
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