Chakraborty et al B Cell FcyRIIb and Atherosclerosis Supplemental Material

Supplemental Figure I

Pre-gated on FSc/SSc and Live/Dead staining

Supplemental Figure I. Gating strategies used in flow cytometry. In some experiments, GC B cells were gated as B220⁺ IgM⁺ CD95⁺ GL7⁺. B1 cells are additionally CD19⁺ IgM⁺ B220^{lo}.

Supplemental Figure II. A-D. Analysis of *Ldlr^{/-}* chimeric mice transplanted with WT control or B^{tg} bone marrow after 6 weeks western diet. **A.** Proportion of B cells expressing high levels of Fas (CD95^{hi} GL7⁻). **B.** Serum total cholesterol. **C.** Body weight. **D.** Blood monocyte subsets (CD11b⁺ Ly6G⁻ CD115⁺ and Ly6C lo, int or hi) and neutrophils (CD11b⁺ Ly6G⁺). **E-H**. Analysis of *Ldlr^{/-}* chimeric mice transplanted with WT control or FcγRIIb-macrophage transgenic (M^{tg}) bone marrow after 6 weeks western diet. **E.** Mean flurorescent intensity for FcγRIIb on B cells and CD11b⁺ cells. **F.** Atherosclerotic plaque area. **G.** Macrophage (MOMA2)-positive area of plaque. **H**. Serum total cholesterol.

Supplemental Figure III. A-D. Analysis of *Apoe*^{-/-} or B^{tg} *Apoe*^{-/-} mice after 6 or 12 weeks western diet. **A**. Atherosclerosis quantified using Oil Red O-stained aortic root cryosections. **B**. Serum total cholesterol. **C**. Body weight. **D**. Blood monocyte subsets (CD11b⁺ Ly6G⁻ CD115⁺ and Ly6C lo, int or hi) and neutrophils (CD11b⁺ Ly6G⁺). **E**. Total cell numbers in spleens from each B^{tg} cohort. **F**. Bone marrow cell numbers in *Apoe*^{-/-} or B^{tg} *Apoe*^{-/-} mice after 6 or 12 weeks western diet. **G-J**. Analysis of atherosclerotic plaques for proportions of positive staining for MOMA2 (G), α-SMA (H), necrotic core (I) or collagen (J) in aortic roots from *Apoe*^{-/-} or B^{tg} *Apoe*^{-/-} mice after 12 weeks western diet.

Supplemental Figure IV. A+B. Levels of plaque CD3⁺ T cells in aortic roots from *Ldlr^{/-}* chimeric mice transplanted with WT control or B^{tg} bone marrow after 6 weeks western diet (A) *or Apoe^{-/-}* or B^{tg} *Apoe^{-/-}* mice after 12 weeks western diet (B). **C-D**. Proportion of spleen effector memory CD4⁺ T cells (CD3⁺ CD4⁺ CD62L⁻ CD44^{hi}) in *Ldlr^{/-}* chimeric mice transplanted with WT control or B^{tg} bone marrow after 6 weeks western diet (C) *or Apoe^{-/-}* or B^{tg} *Apoe^{-/-}* mice after 12 weeks western diet (C) *or Apoe^{-/-}* or B^{tg} *Apoe^{-/-}* mice after 12 weeks western diet (D). **E**. Serum BAFF levels in *Ldlr^{/-}* chimeric mice transplanted with WT control or B^{tg} bone marrow after 6 weeks western diet. **F-J**. Serum antibody titres in *Ldlr^{/-}* chimeric mice transplanted with WT control or B^{tg} bone marrow after 6 weeks western diet.

Supplemental Figure V. A-F. Analysis of male $Fc\gamma RIIb^{BL6} Apoe^{-/-}$ (BL6) or $Fc\gamma RIIb^{\Delta AP-1}$ Apoe^{-/-} ($\Delta AP-1$) mice after 6 weeks western diet. Proportions of spleen B cell subsets (see figure S1). **B**. Follicular helper T cells (CD3⁺ CD4⁺ PD-1^{hi} CXCR5^{hi}). **C**. Body weights. **D**. Serum total cholesterol. **E**. Blood monocytes subsets (CD11b⁺ Ly6G⁻ CD115⁺ and Ly6C lo, int or hi) and neutrophils (CD11b⁺ Ly6G⁺). **F**. Plaque CD3+ Cells. *p<0.05.

Supplemental Figure VI. A. B1 cells purified from peritoneum of *Apoe^{-/-}* or B^{tg} *Apoe^{-/-}* mice were cultured for 16h with or without anti-FcγRIIB (2.4G2 antibody) then stained with annexin V and propidium iodide. Absolute numbers of remaining live cells (AnnV⁻ PI⁻) was quantified by flow cytometry using beads for normalization. **B**. Necrotic core area in aortic root plaques from female *Apoe^{-/-}* or B^{tg} *Apoe^{-/-}* mice after 6 weeks western diet. **C.** FcγRIIb levels on Spleen B1 cells in male and female *Apoe^{-/-}* or B^{tg} *Apoe^{-/-}* mice. **D**. IgM clearance rates determined after transfer of IgM^a serum (from Balb/c mice) into male or female *Apoe^{-/-}* mice (each gender received gender matched serum). **E.** Mean spot size of IgM-secreting spleen cells from male and female *Apoe^{-/-}* mice analysed by Elispot. Representative experiment of more than 5.

Supplemental Figure VII. A-E. Analysis of *Apoe^{-/-}* or $Fc\gamma RIIb^{\Delta AP-1} Apoe^{-/-}$ female mice after 6 weeks western diet. **A.** Mean fluorescence intensity (MFI) of anti-Fc γ RIIb staining on follicular (FO) or germinal center (GC) B cells from *Apoe^{-/-}* or $Fc\gamma RIIb^{\Delta AP-1} Apoe^{-/-}$ female mice. **B.** Spleen GC B cell levels. **C.** Total serum IgG2c. **D.** Total IgM levels. **E.** Atherosclerotic plaque area. N=6/group. *p<0.05. F-H. Comparison of male and female *Apoe^{-/-}* mice. **F.** Follicular helper T cells. **G.** Anti-dsDNA IgG antiboides. **H.** Total IgG2c.

Supplemental Table I

Target	Clone	Company	
Ly6C	7/4	AbD Serotec	
Ly-6G	1A8	BD	
CD95 (Fas)	Jo2	BD	
CD11b	M1/70	Biolegend	
CD11c	N418	Biolegend	
CD16.2	9E9	Biolegend	
CD43	Ly48 gp115	Biolegend	
CD44	1M7	Biolegend	
CD62L	MEL-14	Biolegend	
CD138	281-2	Biolegend	
CD3	145-2C11	Biolegend	
CD19	6D5	Biolegend	
CXCR5	L138D7	Biolegend	
PD-1	4B12	Biolegend	
CD23	B3B4	Biolegend	
CD16/32	93	Biolegend	
MHCII	M5/114.15.2	Biolegend	
B220	RA3-6B2	Life Tech.	
CD4	RM4-5	Life Tech.	
IgM	II/41	Life Tech.	
GL7	GL7	Life Tech.	
CD21	4E3	Life Tech.	
CD115	AFS98	Life Tech.	
Ki67	SolA15	Life Tech.	
CD64	REA286 Miltenyi		

Supplemental Table II - Summary of effects of B cell FcyRIIB models on major parameters

FcyRllb	FcγRIIB ^{Btg}			FcγRIIB ^{ΔAP-1}	
mutation	(increased FcγRIIB on B cells)		(decreased FcγRIIb on GC B Cells)		
Model	Ldlr/-	Apoe ^{-/-}		Apoe-/-	
Gender	Male	Male	Female	Male	Female
Parameter:					
Plasma Cells	n.d.	\downarrow	↓*	\leftrightarrow	\leftrightarrow^*
GC B Cells	n.d.	\downarrow	↓*	1	\leftrightarrow
B1 Cells	\leftrightarrow^*	\leftrightarrow	\downarrow	\leftrightarrow	\leftrightarrow^{*}
lgG2c	\downarrow	\downarrow	↓*	1	\leftrightarrow
lgG1	\downarrow	\downarrow	↓*	\leftrightarrow	\leftrightarrow^{*}
IgM	\leftrightarrow	\leftrightarrow	\downarrow	1	\leftrightarrow^{*}
Teff	\downarrow	\downarrow	↓*	\leftrightarrow	\leftrightarrow^{*}
Atherosclerosis	↓	\downarrow	\uparrow	\uparrow	\leftrightarrow
*Data not shown.					