Supplementary Data

Redkmer Modules

1. Quality filtering and control (1_redkmer_QC_mito_ bowtie2.bash)

As a first step, Redkmer eliminates reads from the longread library that are shorter than the minimum length, as defined in the settings of redkmer.cfg pac_length = in bp. We recommend a minimum length of 500 bp. Redkmer then maps the two short-read libraries to the mitochondrial genome using bowtie2 (REF) using default settings and excludes all mapping reads from the final short-read libraries. The output files are inserted in the relevant data directories and called m_pac.fasta, m.fastq and f.fastq. The quality of the Illumina-based short-read libraries are checked using FastQC quality control tool, and a report is generated for each of the two libraries in the QualityReports folder.

2. Mapping short to long reads (2_redkmer_ill2pac_ bowtie1.bash)

To improve performance, the PacBio fasta file is divided into chunks as a function of the number of nodes made available to Redkmer [NODES = # of nodes]. Illumina reads are then mapped to each chunk using Bowtie (REF) with the following parameters:

bowtie

- -a: reporting all alignments
- -t: instruct bowtie to report timing of mapping
- -5 [TRIMM5]: length in bp to trim at the 5' end of Illumina reads
- -3 [TRIMM3]: length in bp to trim at the 3' end of Illumina reads
- -p [cores]: number of cores to be used by each node
- -v 0: accept no mismatches
 - index_m_pac: bowtie index of each length filtered PacBio library chunk
- -suppress 1,2,4,5,6,7,8,9: report only the ID of the mapped PacBio read in output
- m/f.fastq: fastq file (either male or female library)
- 1> male/female.txt: output file containing ID of mapping hits
- 2> /pacBio_illmapping/logs/index_array_male/female_log
 .txt: log file

where the parameters [TRIMM5], [TRIMM3], and [cores] are set in the redkmer.cfg file.

The output file from each bowtie alignment, containing in each line the ID of the mapped PacBio read, is then processed by the mapsort count program (located in Cscripts folder) that sorts and counts each line providing for each unique PacBio ID a number of hits from the male or female Illumina library. The output files from the sorting step of each chunk are named male_uniq or female_uniq, contain the suffix of the chunk_ID and are located in the pacBio_illmapping/mapping_rawdata folder.

3. Chromosomal binning (3_redkmer_pacbins.bash)

Step 3 processes the count data, combines the output from each chunk of the PacBio data from Step 2, and resorts the entire alignment output. The output files from this sorting step are named male_uniq or female_uniq, and are located in the pacBio_illmapping/mapping_rawdata folder. The independent male and female outputs are merged, and read counts are normalized to library size. Step 3 then generates the pacBio_MappedReads.txt file that provides for each PacBio read the following information:

length: PacBio read length

- female: number of normalized mapping reads in the female library
- male: number of normalized mapping reads in the male library
- CQ: ratio of mapping reads (female/male also known as chromosomal quotient (REF))
- Sum: sum of mapping reads from both male and female libraries
- LSum: length normalized sum of mapping reads (sum of mapped reads/length of read × median length of all reads)

PacBio reads are then filtered based on the total number of length normalized mapping reads (LSum), defined in the redkmer.cfg [LSum], and we recommend a minimum LSum of 50. PacBio reads with mapping reads lower than the LSum defined in redkmer.cfg are not reported in the final output or used to generate the chromosomal bins.

Four chromosomal "bins," predicting the chromosomal origin of PacBio reads based of the ratio of mapping Illumina reads, are then generated: autosomal, X chromosome, Y chromosome, and "GA." The "GA" bin represents cases of possible genome amplification that may occur in the germline tissues of females, as is known for example in Drosophila (REF). The binning based on mapping ratio is performed using three variables, xmin, xmax, and ymax, which are set in the redkmer.cfg file. We usually recommend xmin of 1.5, xmax of 2.5, and ymax of 0.3 is recommended.

X-bin: mapping ratio ≥xmin ≤xmax

- A-bin: mapping ratio ≥ymax ≤xmin
- Y-bin: mapping ratio ≤ymax

GA-bin: mapping ratio $\geq xmax$

4. kmer generate (4_redkmer_kmers_jellyfish.bash)

Step 4 generates kmers of 25 bp (ideally suited length for gRNA design) from the female and male Illumina libraries using jellyfish (REF). The variable kmernoise, defining the minimum number of kmer occurrences to be included in the output of jellyfish, is defined in the red-kmer.cfg file. We usually recommend kmernoise=5, but that will depend on library depth.

5. *kmer processing* (5_*redkmer_kmers_processing.bash*) Step 5 processes the kmer output, generates unique IDs for each, normalizes counts to library size, and combines the male and female counts. kmers absent in the male library are removed as likely sequencing errors. Step 5 then generates the kmer_counts file (saved in the kmers/rawdata folder) that provides for each kmer the following information:

kmerID: a unique ID defining each kmer

seq: kmer sequence (25bp)

- female: normalized kmer occurrences in the female Illumina library
- male: normalized kmer occurrences in the male Illumina library
- CQ: ratio of occurrences (female/male also known as chromosomal quotient (REF))
- Sum: sum of occurrences from both male and female libraries

All kmers present in the kmer_counts file are also exported as a fasta file called allkmers.fasta (saved in the kmers/fasta folder).

6. *Mapping kmers to long reads* (6_redkmer_kmers2bins_ bowtie1.bash)

To assess chromosome specificity, Step 6 of redkmer uses bowtie to align all kmers in the allkmers.fasta file against each of the four chromosomal bins generated in Step 3. To improve performance, the chromosomal bins are divided into chunks as in Step 3. Mapping is performed using the following parameters:

bowtie

- -a: reporting all alignments
- -t: instruct bowtie to report timing of mapping
- -p [cores]: number of cores to be used by each node
- -large-index instructs bowtie that the index has been generated using the large-index option
- -v 0: accept no mismatches
- chunk{BINNAME}: bowtie index of each chunk of each bin -suppress 2,3,4,5,6,7,8,9: report only the ID of the kmer -f allkmers.fasta: fasta file input for mapping
- 1> {BINNAME}.txt: output file containing ID of mapping kmers
- 2> chunk_{BINNAME}_log.txt: log file

where the parameter [cores] are set in the redkmer.cfg file and BINNAME can be one of the four possible chromosomal bins (X, A, Y, or GA).

The output file from each bowtie alignment, containing in each line the ID of the mapped kmer, is then processed by the mapsort count program (located in Cscripts folder) that sorts and counts each line providing for each unique kmer ID, a number of hits to each chromosomal bin chunk. The output files from the sorting step of each chunk are named chunk_kmer_hits_BINNAME and are located in the kmers/bowtie/mapping folder.

7. kmers-2-bin processing (7_redkmer_kmers2bins_ processing.bash)

Step 7 processes the kmer mapping data, combines the output from each chunk of each chromosomal bin from Step 6, and resorts the entire alignment output for each bin. The output files from this sorting step are named kmer_hits_{BINNAME} and are located in the kmers/ bowtie/mapping folder. The four outputs for each bin are merged and combined with the kmer_counts file from Step 5. The "X-specificity index" (XSI) is then calculated by diving the number of hits to the X-chromosome bin by all hits to all bins. If the XSI is higher or equal to the XSI defined in the redkmer.cfg, kmers are labeled as "pass," otherwise "fail." We recommend an XSI of 0.9 (i.e., at least 90% of hits have to occur on the X chromosome). If there are no hits to the chromosomal bins, then kmers are labeled with "no hits." The output of Step 7, the kmers_hits_results file located in the kmers/rawdata folder, provides for each kmer the following information:

kmerID: a unique ID defining each kmer

seq: kmer sequence (25 bp)

- female: normalized kmer occurrences in the female Illumina library
- male: normalized kmer occurrences in the male Illumina library
- CQ: ratio of occurrences (female/male also known as chromosomal quotient (REF))
- Sum: sum of occurrences from both male and female libraries

hits_X: number of hits to the X-chromosome bin

hits_A: number of hits to the autosome bin

hits_Y: number of hits to the Y-chromosome bin

hits_GA: number of hits to the GA-chromosome bin

hits_sum: total number of hits to all chromosomal bins

percenthitsX: number of hits_X/hits_sum

hits_threshold: threshold for percenthitsX where:

if \geq XSI = "pass"

- if < XSI = "fail"
- if no hits to chromosomal bins = "no_hits"

All kmers with a hits_theshold == "pass" are extracted in the Xkmers.fasta file in the kmers/fasta folder and used in the subsequent steps.

8. Off-targets mapping (8_redkmer_kmers2bins_off_ bowtie1.bash)

To assess the potential for off-targeting—illegitimate cutting of non-canonical but related sequences by the endonucleases, Step 8 uses bowtie to map candidate X-kmers from the Xkmers.fasta file against the A, Y, and GA chromosomal bins (i.e., all but the X-chromosome bin) by allowing mismatches in the alignment in up to 2 of the 25 bp (80% identity). Again, to improve performance, chromosomal bins are divided into chunks as in Step 3 and Step 6. Mapping is performed using the following parameters:

bowtie

- -a: reporting all alignments
- -t: instruct bowtie to report timing of mapping
- -p [cores]: number of cores to be used by each node
- -large-index instructs bowtie that the index has been generated using the large-index option
- -v 2: accept up to 2 mismatches in alignment
- chunk{BINNAME}: bowtie index of each chunk of each
 bin
- -suppress 2,3,4,5,6,7,8,9: report only the ID of the kmer -f allkmers.fasta: fasta file input for mapping
- 1> {BINNAME}.txt: output file containing ID of mapping kmers
- 2> chunk_{BINNAME}_log.txt: log file

where the parameter [cores] are set in the redkmer.cfg file and BINNAME can be one of the three possible chromosomal bins (A, Y, or GA).

The output file from each bowtie alignment, containing in each line the ID of the mapped kmer, is then processed by the mapsort count program (located in Cscripts folder) that sorts and counts each line providing for each unique kmer ID, a number of hits to each chromosomal bin chunk. The output files from the sorting step of each chunk are named chunk_kmer_hits_BINNAME and are located in the kmers/bowtie/offtargets folder.

9. Off-targets processing (9_redkmer_kmers2bins_off_ processing.bash)

Processing of off-targets is performed as in Step 7, except by the lack of X-chromosome bin data (as off-targeting here can be accepted) and that the output, in number of hits to the chromosomal bins (here A, Y, and GA), are combined and reported in a single column (i.e., not separately as in Step 7). The output from this step is the kmer_results.txt file in the kmers folder and reports the following data:

kmerID: a unique ID defining each kmer

- seq: kmer sequence (25 bp)
- female: normalized kmer occurrences in the female Illumina library
- male: normalized kmer occurrences in the male Illumina library
- CQ: ratio of occurrences (female/male also known as chromosomal quotient (REF))
- Sum: sum of occurrences from both male and female libraries
- hits_X: number of hits to the X-chromosome bin
- hits_A: number of hits to the autosome bin
- hits_Y: number of hits to the Y-chromosome bin
- hits_GA: number of hits to the GA-chromosome bin
- hits_sum: total number of hits to all chromosomal bins
- percenthitsX: number of hits_X / hits_sum
- hits_threshold: threshold for percenthitsX where:
- if \geq XSI = "pass"
- if < XSI = ``fail''
- if no hits to chromosomal bins = "no_hits"
- sum_offtargets: number of hits to canonical and illegitimate hits to non-X chromosomal bins
- offtargets: number of canonical (100% identity hits) to non-X chromosomal bins
- degen_targets: number of non-canonical, degenerate (up to 80% identity hits_ to non-X chromosomal bins (true off-targets)

10. Final processing and X-kmer selection (10_redkmer_ kmers_output.bash)

Step 10 performs several calculations and annotations of the above mapping data to select the most specific and the most abundant Xkmers. First, thresholds of kmer CQ (occurrence ratio in female/male data) are used to annotate chromosomal origin using three variables, namely kmer_xmin, kmer_xmax, and kmer_ymax, which are set in the redkmer.cfg file and annotations are reported in the candidate column of the output. These are different from the previously used xmin, xmax, and ymax variable, which are used from binning of PacBio reads. We usually recommend kmer_xmin of 1.5, kmer_xmax of 2.5, and kmer_ymax of 0.3.

- X: mapping ratio ≥kmer_xmin <kmer_xmax
- A: mapping ratio ≥kmer_ymax ≤kmer_xmin
- Y: mapping ratio ≤kmer_ymax
- GA: mapping ratio ≥kmer_xmax
- Redkmer then defines the "selection" column that annotates kmers as "good kmers" if:
- XSI_threshold: == pass

 $kmer_CQ := X$

kmer_abundance: to be within 99.5 percentile of Xkmer occurrence (Sum)

Otherwise the selection variable for each kmer is annotated as "bad kmer". Step 10 then outputs all kmer data into the kmer_results.txt file, and the selected Xkmer data into candidateXkmers.txt and the candidateXkmers.fasta files, all of which are saved in the kmers folder. The kmer_results.txt file is then cut into seven smaller files containing information needed for plotting in the kmers/dataforplotting folder.

SUPPLEMENTARY FIG. S1. redkmer_plot_reads_1: PacBio read CQ (ratio of female/male data) over log10(LSum) (total number of mapping reads from male and female Illumina data) showing chromosomal bins and chromosomal repetitiveness.

SUPPLEMENTARY FIG. S2. redkmer_plot_reads_2: Histogram of PacBio read CQ distribution. Three distinct peaks can be observed, the major one falling in CQ ~ 1 (autosome-derived reads), one at CQ ~ 2 (Xchromosome-derived reads), and one at CQ ~ 0 (Y-chromosome-derived reads).

SUPPLEMENTARY FIG. S3. redkmer_plot_reads_3: Histogram of PacBio read log10(Sum) distribution.

SUPPLEMENTARY FIG. S5. redkmer_plot_reads_5: Histogram of PacBio read length distribution.

SUPPLEMENTARY FIG. S4. redkmer_plot_reads_4: Histogram of PacBio read log10(sum) distribution.

SUPPLEMENTARY FIG. S6. redkmer_plot_reads_6: PacBio read log2(LSum) boxplots for each chromosomal bin with median log2(LSum) for each bin printed below.

SUPPLEMENTARY FIG. S7. redkmer_plot_reads_7: PacBio read CQ over log10(LSum) with per chromosomal bin data density (in tenth percentile bins).

SUPPLEMENTARY FIG. S9. redkmer_plot_kmers_2: Density plot of kmer log10(sum) distribution.

SUPPLEMENTARY FIG. S8. redkmer_plot_kmers_1: Density plot of kmer CQ distribution.

SUPPLEMENTARY FIG. S10. redkmer_plot_kmers_3: kmer CQ (ratio of female/male data) over log10(sum) (total number of kmer occurrences from male and female in Illumina data) for all kmers.

● below XSI cutoff ● no hits to PacBio reads ● above XSI cutoff

SUPPLEMENTARY FIG. S11. redkmer_plot_kmers_4: kmer CQ over log10(sum) with XSI thresholds.

SUPPLEMENTARY FIG. S12. redkmer_plot_kmers_5: kmer CQ over log10(sum) with off-target classifications.

SUPPLEMENTARY FIG. 13. redkmer_plot_kmers_6: kmer CQ over log10(sum) with final redkmer selection.

SUPPLEMENTARY FIG. S14. redkmer_plot_kmers_7: kmer log(sum)—coverage in the Illumina data, over log10(Hits_sum)—coverage in the PacBio data, with final selection of kmers shown in red.

Supplementary Table S1. Important Redkmer Input and Outp	ut Files
--	----------

File name(s)	Location	Module	Description
raw_pac.fasta	[df]/reads/pacbio	Input	Long reads
raw_m.fastq	[df]/reads/illumina	Input	Male short reads
raw_f.fastq	[df]/reads/illumina	Input	Female short reads
M.fasta	[wd]/refgenome/M.fasta	Input	Mitochondrial genome
m_pac.fasta	[df]/reads/pacbio	1	Size-filtered long reads
m.fastq	[df]/reads/illumina	1	Mitochondrion-depleted male short reads
f.fastq	[df]/reads/illumina	1	Mitochondrion-depleted female short reads
pacBio_MappedReads.txt	[wd]/pacBio_illmapping	2–3	PacBio mapping data
Xbin; Abin; Ybin; Gabin ^a	[wd]/pacBio_bins/fasta	2–3	Chromosomal bins
allkmers.fasta	[wd]/kmers/fasta	4–5	Kmer sequences + IDs
kmer_results.txt	[wd]/kmers	6–10	Complete kmer results
candidateXkmers.txt	[wd]/kmers	10	X-kmer results
candidateXkmers.fasta	[wd]/kmers	10	X-Kmer sequences
diagnostic plots	[wd]/plots	Plotting	Plot output of redkmer

^aThese are .fasta files. df, datafolder; wd, work directory.