Science Advances

advances.sciencemag.org/cgi/content/full/5/7/eaaw6703/DC1

Supplementary Materials for

Protein lysine de-2-hydroxyisobutyrylation by CobB in prokaryotes

Hanyang Dong, Guijin Zhai, Cong Chen, Xue Bai, Shanshan Tian, Deqing Hu, Enguo Fan, Kai Zhang*

*Corresponding author. Email: kzhang@tmu.edu.cn

Published 17 July 2019, *Sci. Adv.* **5**, eaaw6703 (2019) DOI: 10.1126/sciadv.aaw6703

The PDF file includes:

Fig. S1. Kinetic curves of enzymatic reaction.
Fig. S2. MS/MS spectrum of lysine-acylated peptides (YGDEQVKQWR) identified in *P. mirabilis*.
Fig. S3. MS/MS spectrum of 2-hydroxyisobutyrylated, acetylated, and succinylated peptides under different incubation conditions.
Fig. S4. Comparative analysis of Khib, Kac, and Ksucc in *P. mirabilis*.
Legends for tables S1 to S5

Table S6. The list of reagents, bacterial strains, and plasmids used in this paper.

Other Supplementary Material for this manuscript includes the following:

(available at advances.sciencemag.org/cgi/content/full/5/7/eaaw6703/DC1)

Table S1 (Microsoft Excel format). The quantification result of H3K9hib and H3K9 probe enrichment in *P. mirabilis* protein lysate.
Table S2 (Microsoft Excel format). The identification result of Kac of *P. mirabilis*.
Table S3 (Microsoft Excel format). The identification result of Ksucc of *P. mirabilis*.
Table S4 (Microsoft Excel format). The quantification result of 2-hydroisobutyrylated proteomes with CobB KO *E. coli* and WT *E. coli*.
Table S5 (Microsoft Excel format). The PRM result of comparison of the quantities of K326ac and K343hib in T vector and CobB-overexpressing *P. mirabilis*.

Figure Legends

Fig. S1. Kinetic curves of enzymatic reaction. (**A**) Drawing the kinetic curves of CobB by OriginPro 8. (**B**) Drawing the kinetic curves of mutated CobB (Y55F) by OriginPro 8.

Fig. S2. MS/MS spectrum of lysine-acylated peptides (YGDEQVKQWR) identified in *P. mirabilis.* (A) MS/MS spectrum of YGDEQVK(hib)QWR. (B) MS/MS spectrum of YGDEQVK(ac)QWR. (C) MS/MS spectrum of YGDEQVK(succ)QWR.

в

Fig. S3. MS/MS spectrum of 2-hydroxyisobutyrylated, acetylated, and succinylated peptides under different incubation conditions. The incubation conditions contain: -CobB, +CobB, +CobB and –NAD ⁺, +CobB and +NAM, +CobB R58M, +: presents existence, -: presents absence. (**A**) MS/MS spectrum present PD searching results of CobB and 2-hydroxyisobutyrylated peptides incubation under different conditions. (**B**) MS/MS spectrum present PD searching results of CobB and acetylated peptides incubation under different conditions. (**C**) MS/MS spectrum present PD searching results of CobB and succinylated peptides incubation under different conditions.

Fig. S4

Fig. S4. Comparative analysis of Khib, Kac, and Ksucc in *P. mirabilis*. (A) Sequence Logo representation of significant motifs of peptides detected three acylation identified by Motif-X software. The motifs with significance of p < 0.000001 are shown. The motifs take acyllysine as center and show the distribution of 15 amino acids in both sides. (B) Analysis the biological

process, pathway, molecular function and cellular component of common acylated proteins in *P. mirabilis* by DAVID. (C) Khib, Kac and Ksucc enzymes in central metabolic network in *P. mirabilis*. (D) MS/MS Spectrogram of ENO pepetide containing K326ac. (E). Measurement growth curve of WT CobB and mutated CobB overexpressing *P. mirabilis* that transformed CobB WT and mutation (R58M) vector.

Table S1. The quantification result of H3K9hib and H3K9 probe enrichment in *P. mirabilis* protein lysate.

Table S2. The identification result of Kac of *P. mirabilis*.

Table S3. The identification result of Ksucc of P. mirabilis.

Table S4. The quantification result of 2-hydroisobutyrylated proteomes with CobB KO *E. coli* and WT *E. coli*.

Table S5. The PRM result of comparison of the quantities of K326ac and K343hib in T vector and CobB-overexpressing *P. mirabilis*.

Table S6. The list of reagents, bacterial strains, and plasmids used in this paper.

REAGENT OR RESOURCE	SOURCE	IDENTIFIER
Antibodies		
Rabbit pan anti-2-hydroxyisobutyryllysinepolyclonalantibody	PTM Biolabs	Cat# PTM-801
Rabbit pan anti-acetyllysine polyclonal antibody	PTM Biolabs	Cat# PTM-105
Rabbit pan anti-succinyllysine polyclonal antibody	PTM Biolabs	Cat# PTM-401
Rabbit pan anti-malonyllysine polyclonal antibody	PTM Biolabs	Cat# PTM-901
Rabbit pan anti-glutaryllysine polyclonal antibody	PTM Biolabs	Cat# PTM-1151
Mouse pan anti-crotonyllysine monoclonal antibody	PTM Biolabs	Cat# PTM-502
Rabbit pan anti-β- hydroxybutyryllysine polyclonal antibody	PTM Biolabs	Cat# PTM-1201
Anti-acetyllysine antibody beaded agarose	PTM Biolabs	Cat# PTM-104
Anti-succinyllysine antibody conjugated agarose beads	PTM Biolabs	Cat# PTM-402
6×His tag antibody (His. H8)	Thermo Fisher	Cat# MA1-21315
Bacterial Strains and Plasmids		
Proteus mirabilis ATCC29906	University of Lodz	N/A
BL21 (DE3) competent cells	TIANGEN	Cat# CB105
DH5α competent cells	TIANGEN	Cat# CB101
Escherichia coli MG1655	Tolo Biotech	N/A
npdA KO Escherichia coli MG1655	Tolo Biotech	N/A
pET28a vector	Solarbio	Cat# P3110
pTrc99a vector	addgene	KL-ZL-0193
pGEM-T Easy Vector	Promega	Cat# A1360
Synthetic Peptides		
ARTKQTAR-K(hib)-STGGKAC	SciLight Biotechnology	N/A
YGDEQV-K(hib)-QWR	SciLight	N/A

Table S6. The list of reagents, bacterial strains and plasmids used in this paper

	Biotechnology	
GIANSILI-K(hib)-FNQIGSLTETLAAIK	SciLight Biotechnology	N/A
YGDEQV-K(ac)-QWR	SciLight Biotechnology	N/A
IQLVGDDLFVTNT-K(ac)-ILK	SciLight Biotechnology	N/A
YGDEQV-K(succ)-QWR	SciLight Biotechnology	N/A
ARTKQTARKSTGGKAC	SciLight Biotechnology	N/A
PCR Primers		
ENO-pET28a-F: cgcggatcctccAAAATCGTTAAAG	Reported	N/A
ENO-pET28a-R: CCGCTCGAGTTATGCTTGGCCTTTA ACTTC	Reported	N/A
ENO-K343T-pET28a-F: CTAACTCTATCCTGATCACATTCAAC CAA	Reported	N/A
ENO-K343T-pET28a-R: GTGATCAGGATAGAGTTAGCAATAC CTTT	Reported	N/A
ENO-K326Q-pET28a-F: TTGTAACTAATACTCAGATCCTAAA AGAAG	This paper	N/A
ENO-K326Q-pET28a-R: GAGTATTAGTTACAAACAGGTCGTC	This paper	N/A
ENO-His-T vector-F: ACGCGTCGACGGATATGTGAGAAG AG	This paper	N/A
ENO-His-T vector-R: CATGCATGCTTATGCGTGGTGGTGG TGGTGGTGTTGGCCTTTAACTTC	This paper	N/A
ENO-K343T-T vector-F: CTAACTCTATCCTGATCACATTCAAC CAA	This paper	N/A
ENO-K343T-T vector-R: GTGATCAGGATAGAGTTAGCAATAC CTTT	This paper	N/A

ENO-K326Q-T vector-F: TTGTAACTAATACTCAGATCCTAAA AGAAG	This paper	N/A
ENO-K326Q-T vector-R: GAGTATTAGTTACAAACAGGTCGTC	This paper	N/A
npdA-pET28a-F: CGCGGATCCAATTTACCCAAAGTAG TG	This paper	N/A
npdA-pET28a-R: CCGCTCGAGTTATTGCGTCAAATCA GCTTTAG	This paper	N/A
npdA-Y94F-pet28a-F: AGCTGGTTCAGCAGTTTTTCAATGA GCGCC	This paper	N/A
npdA-Y94F-pet28a-R: AAAAACTGCTGAACCAGCTTAGGG TTGCG	This paper	N/A
npdA-R97M-pet28a-F: TTCAGCAGTTTTACAATGAGATGCG TCGTCAATTA	This paper	N/A
npdA-R97M-pet28a-R: CATCTCATTGTAAAACTGCTGAACC AGCTTAGGGT	This paper	N/A
npdA-His-T vector-F: ACGCGTCGACAACTTCGTCATCGTC GGCTTAGGAAGTTTC	This paper	N/A
npdA-His-T vector-R: CATGCATGCTTAGTGGTGGTGGTGG TGGTGTTGCGTCAAATCAG	This paper	N/A
npdA-His-pTrc99a-F: CGCGGATCCATGAAACTTAAACTTC GTCATCGTCGG	This paper	N/A
npdA-His-pTrc99a-R: GCTCTAGATTAGTGGTGGTGGTGGT GGTGTTGCGTCAAATCAG	This paper	N/A
npdA-R58M-pTrc99a-F: TTCAGCAGTTTTACAATGAGATGCG TCGTCAATTA	This paper	N/A

npdA-R58M-pTrc99a-R: CATCTCATTGTAAAACTGCTGAACC AGCTTAGGGT	This paper	N/A
Reagent		
HisPur Ni-NTA Resin	Thermo SCIENTIFIC	Cat# 88221
Fast Mutagenesis System	TRANS	Cat# FM111
PEP Colorimetric/Fluorometric Assay Kit	SIGMA-ALDRIC H	Cat# MAK102
SILAC TM L-Lysine HCL	Invitrogen	32461
U- ¹³ C ₆ -L-Lysine HCL	Invitrogen	32457