
Supplementary Information: Pulse control protocols for preserving coherence

in dipolar-coupled nuclear spin baths

A. M. Waeber,∗ G. Gillard, G. Ragunathan, M. Hopkinson, P.

Spencer, D. A. Ritchie, M. S. Skolnick, and E. A. Chekhovich†



2

Supplementary Note 1. DESIGN OF PULSE SEQUENCES USING AVERAGE

HAMILTONIAN THEORY

Average Hamiltonian theory (AHT) is an established tool for the theoretical characterisation

and analysis of pulse sequences for magnetic resonance spin control1–3. Within certain constraints

it allows the time evolution of a given spin Hamiltonian under interaction with a periodic time-

dependent external magnetic field to be approximated. We use AHT to determine how well a

frequency offset Hamiltonian Hz
0 (arising from inhomogeneous resonance broadening) and a dipolar

coupling term Hzz
d can be suppressed simultaneously by the CHASE sequences introduced in the

main text.

To this end, we consider a nuclear spin ensemble Ii with spin 1/2. The evolution of the wavefunc-

tion ψ(t) describing the state of the nuclear spin bath is determined by the Schrödinger equation:

∂ψ(t)/∂t = −(i/~)H(t)ψ(t) , (1)

H(t) = Hz
L +Hz

0 +Hzz
d +Hrf(t) , (2)

where the Hamiltonian H(t) is the sum of the Larmor term ĤL describing interaction of the spins

with a static magnetic field Bz along the êz axis, the offset term Hz
0 describing static resonance

frequency shifts, the dipolar term Hzz
d describing nuclear-nuclear spin interaction and the radio-

frequency (rf) term Hrf(t) describing the effect of the oscillating magnetic field inducing nuclear

magnetic resonance.

We use transformation into the frame rotating around the direction of the static magnetic field

(êz axis) at the radio-frequency. In this way the effect of the static magnetic field is eliminated

(Hz
L = 0) and the oscillating rf field becomes static (see Section 5.5 in Ref.4). The explicit time

dependence in Hrf(t) is then only due to the pulsed nature of the rf field.

The individual terms are explicitly defined as

Hz
0 = h

∑
i

∆νiIi,z , (3)

Hzz
d = h

∑
i<j

νij (3Ii,zIj,z − Ii·Ij) , (4)

Hrf(t) = −hνrf(t)
∑
i

Ii,ϕ . (5)

In the studied quantum dots (QDs) the resonance offset term Hz
0 is dominated by the inhomoge-

neous static quadrupolar frequency shifts (∆νi for the i-th nuclear spin), although in other systems

∆νi could also include different static frequency offsets such as chemical shifts or magnetic field
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gradients. In addition, we consider a truncated dipolar coupling term Hzz
d with coupling strength

νij =
µ0

4π

~
2π

γ2

2

1− 3 cos2 θ

r3
, (6)

between two spins Ii and Ij . Here, µ0 = 4π · 10−7 N A−2 is the magnetic constant, γ is the nuclear

gyromagnetic ratio, and r denotes the length of the vector connecting the two spins, which forms

angle θ with the êz axis.

Interaction with resonant rf pulses is described by the time-dependent termHrf(t) where the field

amplitude νrf(t) = ν0 during a pulse and νrf(t) = 0 otherwise. The spin operator Iϕ determines the

in-plane rotation axis about which the spin bath precesses under the rf field with a given phase ϕ:

Iϕ = Ix cosϕ+ Iy sinϕ . (7)

Here, we want to study the spin bath evolution under the internal static terms Hint = Hz
0 +Hzz

d

in the interaction frame of Hrf(t). AHT can give an approximate description of the time evolution

after one or more full rf cycles if three conditions are met: (i) The rf Hamiltonian is periodic over

the cycle time tc, i.e. Hrf(t+tc) = Hrf(t). (ii) The net spin rotation after a full rf cycle is a multiple

of 2π. (iii) Since AHT is a perturbation method in terms of tc/T
∗
2 , the solution only converges

quickly if |Hz
0|tc/~� 1 and |Hzz

d |tc/~� 1.

We write the total time-evolution operator as

U(t) = T exp

[
− i

~

∫ t

0
dt′H(t′)

]
= Urf(t)Uint(t) , (8)

with Dyson time-ordering operator T and

Urf(t) = T exp

[
− i

~

∫ t

0
dt′Hrf(t

′)

]
, (9)

Uint(t) = T exp

[
− i

~

∫ t

0
dt′H̃int(t

′)

]
, (10)

where we introduced the toggling frame Hamiltonian

H̃int(t) = U−1
rf (t)HintUrf(t) . (11)

While an exact solution for Eq. (10) is generally challenging to find, an approximate description

of the spin bath evolution at times t = n · tc can be found if conditions (i)-(iii) are fulfilled. In

this case, we can apply a Magnus expansion to replace the expression of Eq. (10) by an effective

average Hamiltonian H̄ such that

Uint(ntc) = exp

[
− i

~
ntcH̄

]
= exp

[
− i

~
ntc

(
H̄(0) + H̄(1) + . . .

)]
,

(12)
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with leading order terms

H̄(0) =
1

tc

∫ tc

0
H̃(t)dt , (13)

H̄(1) =
−i

2tc~

∫ tc

0
dt2

∫ t2

0
dt1

[
H̃(t2), H̃(t1)

]
, (14)

H̄(2) =
1

6tc~2

∫ tc

0
dt3

∫ t3

0
dt2

∫ t2

0
dt1( [

H̃(t1),
[
H̃(t2), H̃(t3)

]]
+
[
H̃(t3),

[
H̃(t2), H̃(t1)

]] )
.

(15)

The contributions of higher order AHT terms to H̄ scale as tkc Γk+1 for H̄(k), with free coherence

decay rate Γ ∝ 1/T ∗2 ∝
√
〈∆ν2

i 〉. We thus see that in the limit of n → ∞ cycles and cycle time

tc → 0, only the zeroth order term H̄(0) remains. However, in practice, higher order contributions

are rarely negligible, making e.g. longer solid echo sequences such as MREV5,6 and BR-243 more

efficient than the shorter WAHUHA cycle7 in many applications.

We calculate the average Hamiltonian for a spin bath interacting with a given pulse sequence as

described by equations (2)-(5) using Wolfram Mathematica software with the freely-available non-

commutative algebra package NCAlgebra8. For the zeroth order average Hamiltonian, we consider

finite pulse durations where tπ is the time required for a π-rotation. In this case, the cycle time tc

is given by the sum of pulse times and pulse-to-pulse delays τ . First and second order terms are

only calculated in the limit of infinitely short rf pulses tπ → 0.

The AHT terms we obtain for the CHASE sequences presented in the main text are listed in

Supplementary Table 1. For clarity, we split the k-th order average Hamiltonian into contributions

from the resonance offset (H̄(k)
0 ) and dipolar Hamiltonian (H̄(k)

d ). For higher orders k ≥ 1, we also

include mixed terms (H̄(k)
d0 ). The full k-th order average Hamiltonian is thus given by

H̄(k) = H̄(k)
0 + H̄(k)

d + H̄(k)
d0 . (16)

Only non-vanishing terms are listed, i.e. terms which do not appear in Supplementary Table 1 do

not contribute to the total average Hamiltonian.

The definition of the additional resonance offset and dipolar coupling Hamiltonians used in

Supplementary Table 1 is based on equations (3) and (4), i.e.

Hx
0 = h

∑
i

∆νiIi,x , Hy
0 = h

∑
i

∆νiIi,y , (17)

Hxx
d = h

∑
i<j

νij (3Ii,xIj,x − Ii·Ij) , Hyy
d = h

∑
i<j

νij (3Ii,yIj,y − Ii·Ij) . (18)
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Supplementary Table 1. Overview of AHT terms up to second order calculated for the CHASE sequences

presented in the main text. The cycle of each sequence is given in curly brackets where x, y (−x, −y)

represent positive (negative) π/2 rotations around the respective axes, x2, y2, −x2, −y2 stand for the π

rotations, while τ and 2τ are the free evolution intervals. Zeroth order terms are calculated assuming finite

pulse duration tπ whereas tπ → 0 is assumed for higher order terms. Unlisted terms H̄(0),(1),(2)
0 , H̄(0),(1),(2)

d ,

H̄(1),(2)
d0 are zero.

AHT term Sequence

CHASE-5

{τ ,-x,τ ,y,τ ,x2,τ ,y,τ ,x,τ}

H̄(0)
0

2tπ
πtc
Hz

0

H̄(0)
d

itπ
πtc

([Hxx
d , Iz] + [Hyy

d , Ix − Iz]− [Hzz
d , Ix])

H̄(1)
d0

itc
18~ [Hzz

d −Hxx
d ,H

y
0 ]

H̄(2)
d

1
2

(
tc
18~
)2

[Hzz
d −Hxx

d , [Hzz
d ,H

yy
d ]]

H̄(2)
d0 3

(
tc
18~
)2

([Hy
0 , [H

y
0 ,Hxx

d −Hzz
d ]] + [Hzz

d −H
yy
d , [Hz

0,H
y
0 ]])

CHASE-10

{τ ,-x,τ ,y,τ ,x2,τ ,y,τ ,x,2τ ,x,τ ,-y,τ ,-x2,τ ,-y,τ ,-x,τ}

H̄(1)
d0

itc
36~ [Hzz

d −Hxx
d ,H

y
0 ]

H̄(2)
d

1
2

(
tc
36~
)2

[Hzz
d −Hxx

d , [Hzz
d ,H

yy
d ]]

H̄(2)
d0 3

(
tc
36~
)2

[Hy
0 , [H

y
0 ,Hxx

d −Hzz
d ]]

CHASE-20

{τ ,-x,τ ,y,τ ,x2,τ ,y,τ ,x,2τ ,x,τ ,-y,τ ,-x2,τ ,-y,τ ,-x,2τ ,x,τ ,y,τ ,x2,τ ,y,τ ,-x,2τ ,-x,τ ,-y,τ ,-x2,τ ,-y,τ ,x,τ}

H̄(2)
d

1
2

(
tc
72~
)2

[Hzz
d −Hxx

d , [Hzz
d ,H

yy
d ]]

H̄(2)
d0 3

(
tc
72~
)2

[Hy
0 , [H

y
0 ,Hxx

d −Hzz
d ]]

CHASE-34

{τ ,-x,τ ,-y,τ ,-x2,τ ,-y,τ ,x,τ ,x,τ ,x,τ ,-y,τ ,-x2,τ ,-y,τ ,-x,τ ,-x,τ ,-y,τ ,-x,τ ,-x2,τ ,x,τ ,-y,2τ ,

y,τ ,-x,τ ,x2,τ ,x,τ ,y,τ ,x,τ ,x,τ ,y,τ ,x2,τ ,y,τ ,-x,τ ,-x,τ ,-x,τ ,y,τ ,x2,τ ,y,τ ,x,τ}

H̄(0)
0

4tπ
πtc

(Hx
0 +Hy

0 −Hz
0)

H̄(0)
d

itπ
πtc

(4[Hxx
d , Iy − Iz] + 2[Hyy

d , Ix + 2Iz]− 2[Hzz
d , Ix + 2Iy] + iπHzz

d )

H̄(2)
d0 3

(
tc

108~
)2 ( 2

3 [Hy
0 , [H

y
0 ,Hxx

d −Hzz
d ]] + 2

3 [Hzz
d −H

yy
d , [Hz

0,H
y
0 ]]− 1

3 [Hzz
d −Hxx

d , [Hz
0,Hx

0]]
)

As discussed in the main text, we see that CHASE-5 has a non-vanishing zeroth order contribution

if the pulse duration tπ is non-negligible. In order to suppress spin bath dynamics using cycles of

CHASE-5, it is therefore crucial to minimise the ratio tπ/tc. The subsequent longer sequences are

insensitive to finite pulse durations in zeroth order and leave progressively fewer higher order AHT

terms in the tπ → 0 limit. CHASE-34 forms an exception to this behaviour. While most efficient
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in suppressing the spin dynamics under ideal conditions, this cycle is also prone to finite-duration

pulse effects as the zeroth order resonance offset (H̄(0)
0 ) and dipolar (H̄(0)

d ) average Hamiltonians

contribute to dephasing under realistic experimental conditions. We note that the H̄(0)
0 term can be

eliminated if all six π rotations have the same sense. However, the CHASE-34 sequence with three

negative and three positive π rotations shown in Table 1 has a better bandwidth (see Supplementary

Note 3) and in experiments on quantum dot nuclei shows an overall better coherence preservation

performance.

 a MS-7
-x y y-y x

0 t =6τevol

x -x

 b MS-12
-x y y-y x

0 t =12τevol

x -x -y y -y x x

 c MKL-68
x -y y x-x -x -y y x

t =96τevol

0

x -y y -x -x -y y x

x -y y y-x -x -y y x x -y y -x -x -y y x 2

Supplementary Figure 1. Previously introduced pulse sequences for refocusing inhomogeneous

and dipolar broadening. a MS-7 cycle as introduced by Moiseev and Skrebnev in Ref9. b MS-12 cycle

as introduced by Moiseev and Skrebnev in Ref10. c MKL-68 cycle as described and used by Maurer, Kucsko

et al. in Ref11. Labels are defined as in Fig. 1 of the main text.

For comparison, we also calculate the AHT terms of alternative sequences from literature which

have been proposed or used with the aim of suppressing both dipolar coupling and frequency offset

terms. These results are listed separately in Supplementary Table 2.

The MS-7 pulse cycle9 (Supplementary Fig. 1b) yields average Hamiltonians identical to those of

CHASE-5 in the short pulse limit. Its extension10 to MS-12 (Supplementary Fig. 1c) removes odd-

order AHT terms owing to its symmetry properties. However, unlike the longer CHASE sequences

it is not robust against decoherence in case of a finite pulse duration tπ.
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Supplementary Table 2. Overview of AHT terms calculated for other cycles referred to in the main text.

AHT term MS-79

H̄(0)
0

2tπ
πtc

(Hy
0 +Hz

0)

H̄(0)
d

itπ
πtc

(
[Hyy

d −Hzz
d , Ix] + 5

2 iπHxx
d + iπHyy

d + 2iπHzz
d

)
H̄(1)

d0
itc
18~ [Hzz

d −Hxx
d ,H

y
0 ]

H̄(2)
d

1
2

(
tc
18~
)2

[Hzz
d −Hxx

d , [Hzz
d ,H

yy
d ]]

H̄(2)
d0 3

(
tc
18~
)2

([Hy
0 , [H

y
0 ,Hxx

d −Hzz
d ]] + [Hzz

d −H
yy
d , [Hz

0,H
y
0 ]])

MS-1210

H̄(0)
d

itπ
πtc

(
[Hyy

d −Hzz
d , 2Ix] + 5

2 iπHxx
d + 1

2 iπHyy
d + 5

2 iπHzz
d

)
H̄(2)

d
1
2

(
tc
36~
)2

[Hzz
d −Hxx

d , [Hzz
d ,H

yy
d ]]

H̄(2)
d0 3

(
tc
36~
)2

([Hy
0 , [H

y
0 ,Hxx

d −Hzz
d ]] + [Hzz

d −H
yy
d , [Hz

0,H
y
0 ]])

MKL-6811

H̄(0)
d

tπ
tc

(−2Hxx
d + 6Hyy

d −Hzz
d )

H̄(2)
d

1
2

(
tc

288~
)2

[Hzz
d −Hxx

d , [Hzz
d ,H

yy
d ]]

H̄(2)
d0 −3

(
tc

288~
)2

[Hy
0 , [H

y
0 ,Hxx

d −Hzz
d ]]

The intuitive approach of alternating MREV cycles with π-pulses (MKL-68, Supplementary

Fig. 1d) was employed by Maurer, Kucsko et al. to extend nuclear spin coherence times in

diamond11. Again, the performance of the cycle is limited under experimental conditions by a

non-vanishing zeroth-order term H̄(0)
d .
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Supplementary Note 2. PULSED SPIN LOCKING

Supplementary Figure 2. Observation of spin locking arising from spin evolution during finite

control pulses. Dependence of the experimentally measured normalised 71Ga nuclear spin echo amplitude

on the free evolution time τevol under the phase-alternating CP-X series tested in the main text. Each trace

shows data for a fixed pulse-to-cycle ratio tπ/tc and varying π-pulse number. Values are extracted from

exponential decay fits to experimental data as shown in Fig. 2b of the main text. The Hahn echo decay fit

is shown as a solid red line for comparison.

The extended nuclear spin polarisation decay times we observe in Fig. 3a-c of the main text

under phase-alternated Carr-Purcell sequences (CP-X) are attributed to a form of pulsed spin

locking described theoretically by Li et al.12 This spin locking mechanism arises due to dipolar

evolution during the non-negligible π-pulse duration tπ. As shown by the authors, in this limit

application of average Hamiltonian theory yields

H̄(0) =
4tπ
πtc
Hy

0 +
1

tc
(4τHzz

d − tπHxx
d ) , (19)

for a cycle (−τ − πx − 2τ − π−x − τ−). The static term ∝ Hy
0 in equation (19) is subsequently

removed by transformation into a second toggling frame where we time-average over a Rabi cycle

in its effective field. The twice averaged Hamiltonian is

¯̄H(0) = − 1

tc

(
2τ − tπ

2

)
Hyy

d . (20)

As the initial (π/2)x pulse of the CP-X sequence prepares the spin bath in the state Iy which

commutes with Hyy
d , the magnetisation is preserved or ‘locked’ and no spin echo decay is predicted
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in zeroth order. Li et al. also examined the cases of fixed-phase CP-X as well as CP-Y with and

without phase-alternation and found that, in agreement with our experimental results, no such

effect is predicted for the CP-Y sequence tested in the current work12.

Alternative mechanisms leading to prolonged coherence times under CP-X have been suggested

by other authors13,14. However, we can confidently link our experimental observation to the pulsed

spin locking mechanism outlined above. A key assumption in the transition to the second toggling

frame is that the spin bath evolves slowly under the Hamiltonian (4τHzz
d − tπHxx

d ) /tc over the

relevant timescale set by the Rabi frequency Ω = 4tπ∆νi
πtc

(c.f. condition (iii) for applicability of

AHT in Supplementary Note 1). Hence we expect a strong dependence of the spin locking efficiency

on the pulse-to-cycle time ratio tπ/tc ∈ [0, 0.5], where tπ/tc → 0 in the limit of infinitely short pulses

and tπ/tc → 0.5 in the limit of continuous rf excitation.

In Fig. 2a-c of the main text we show the nuclear spin polarisation decay as a function of the

free evolution time for a fixed number of pulses and varying pulse spacings τ . In order to verify

the dependence of spin locking on the pulse-to-cycle ratio, we now replot this experimental data

as a function of the π-pulse number for different fixed pulse-to-cycle ratios. Supplementary Fig. 2

shows that the spin locking efficiency is noticeably reduced for tπ/tc . 10% and the Hahn echo

decay (red solid line) is fully restored for tπ/tc . 0.5%.
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Supplementary Note 3. PERFORMANCE BEYOND THE HARD PULSE LIMIT

The central transitions (CTs) of the half-integer quadrupolar nuclear spins in a self-assembled

QD are typically inhomogeneously broadened to ∆νinh ∼ 10−40 kHz by the strain induced electric

field gradients15. In order to apply pulse sequences uniformly to the CTs of all the nuclei, we need

to ensure that rf pulses are sufficiently broadband (‘hard’). In other words the pulse amplitude

should be large enough to perform the desired π/2- or π-rotation even for spins I in the tails of

the inhomogeneously broadened transition spectrum where the rf excitation can have a resonance

offset ∆νi & 10 kHz. It is often assumed implicitly that this hard pulse condition is fulfilled.

However, while this is readily achievable for small pulse numbers (for a single pulse we require

TRabi . 2/∆νinh ≈ 25 µs), the hard pulse condition is increasingly difficult to meet for longer

sequences. We consider the Bloch equations of motion in the rotating frame of a static magnetic

field Bz

∂M(t)/∂t = Ω×M− Γ · (M−M0) , (21)

describing the evolution of magnetisation M =
∑

i γIi under an angular velocity vector Ω =

(Ωrf cosϕ,Ωrf sinϕ, 2π∆νi)
T and with relaxation rate Γ = (T−1

2 , T−1
2 , T−1

1 )T and equilibrium mag-

netisation M0. Here, Ωrf = 2π/TRabi is the resonant Rabi frequency. We see that even a small

resonance offset ∆νi results in a tilt of Ω towards the êz axis. As a consequence, an rf pulse of

duration TRabi and carrier phase ϕ will no longer result in a perfect 2π-rotation of the magneti-

sation M about Ω. Instead, a small rotation angle error is introduced, which can rapidly lead to

non-negligible effects as the errors of subsequent pulses add up. In practice, this is reflected in a

loss of NMR signal amplitude after a pulse sequence even in the limit of short free evolution as the

contribution of spins with large ∆νi to the measured final ensemble magnetisation is reduced.

We consider this effect numerically for the 71Ga and 75As nuclear spin bath ensembles studied

in this work. To quantify the ‘hardness’ (frequency bandwidth) over which a given pulse sequence

is stable against resonance offsets, we calculate the evolution of a magnetisation vector M under

the sequence including initialisation and readout π/2-pulses as a function of ∆ν. In order to

keep our results as general as possible, we rewrite the resonance offset in terms of the inverse

resonant Rabi period as δ = ∆νTRabi. We can then describe the resulting rotation axis as êΩ =

(1 + δ2)−1/2(cosϕ, sinϕ,−δ)T. For simplicity, our model does not consider any spin relaxation or

dephasing (e.g. through dipolar interaction) and we set T1 = T2 =∞.

Supplementary Fig. 3a,b shows the simulated dependence of the CP-X/Y sequences with alter-
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Supplementary Figure 3. Analysis of the broadband refocusing performance of the Carr-Purcell

pulse sequences. a,b Normalised magnetisation along the êz axis after evolution under a series of non-

resonant rf pulses as a function of the resonance frequency offset δ for (a) CP-X and (b) CP-Y sequences

with alternating carrier phase. Solid curves show simulated data for different cycle numbers n. Dotted lines

show normalised NMR spectra of the 75As (blue) and 71Ga (green) central transitions with frequency axes

rescaled by TRabi. c Weighted average of the normalised magnetisation over the 75As (circles) and 71Ga

(squares) central transition after a CP-X (solid symbols) or CP-Y (empty symbols) sequence as a function

of refocusing cycle number n.

nating pulse carrier phase discussed in the main text on the frequency offset δ. Solid lines corre-

spond to sets of simulations with different π-pulse numbers. Thus for example, the orange line in

Supplementary Fig. 3a shows the relative change of the z-component Mz/Mz(0) of a magnetisation

vector M (with M(0) = (0, 0, 1)T) after evolution under a CP-X sequence (πx/2−(πx−π−x)8−πx/2)

for resonance frequency offsets −1/(2TRabi) ≤ δ ≤ 1/(2TRabi). For comparison, experimental cw

NMR spectra of the 71Ga and 75As central spin transitions rescaled by the typical respective ex-

perimental Rabi periods (TRabi(
71Ga) = 5.6 µs and TRabi(

75As) = 9.8 µs at rf power P = 200 W)

are shown as dotted lines.

The desired performance is characterized by Mz/Mz(0) ≈ 1 over a wide range of offsets δ. In

this respect, we note that the CP-X cycle (Supplementary Fig. 3a) is very robust against frequency
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offsets: even at large cycle numbers, the magnetisation vector is largely restored over a broad range

of the offset frequencies. In practice, this means that we can expect a stable NMR echo amplitude

at short evolution times independent of the number of applied π-pulses (as long as additional pulse

calibration errors are negligible). This expected behaviour is shown in Supplementary Fig. 3c: here,

we calculate the expected experimental echo amplitude from a weighted average of the normalised

final magnetisation over the respective 71Ga and 75As NMR spectra for different cycle numbers

n. In agreement with the experimental data shown in Fig. 3d-f of the main text, the CP-X signal

amplitude (solid symbols) is stable. By contrast, we note from Supplementary Fig. 3b,c that the

bandwidth within which the CP-Y sequence can restore the initial magnetisation rapidly narrows

with increasing cycle number n. Again, this is in agreement with the experimental observation in

Supplementary Figure 4. Analysis of the broadband refocusing performance of the CHASE,

MS and MKL pulse sequences. a,b Normalised magnetisation along the êz axis after evolution under

a series of non-resonant rf pulses as a function of the resonance frequency offset δ for (a) CHASE-X and (b)

CHASE-Y sequences and additional cycles from literature. Dotted lines show normalised NMR spectra of

the 75As (blue) and 71Ga (green) central transitions with frequency axes rescaled by TRabi. c,d Simulated

data for CHASE-X/Y-20 with different cycle numbers n.
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the main text, where the CP-Y NMR spin echo amplitude ∆Ehf(τevol → 0) rapidly decreases with

increasing π-pulse number. Although periodic revivals of the restored magnetisation are seen in the

orange line of Supplementary Fig. 3b, these are experimentally compensated by the contributions

of spins at intermediate offsets δ where the final magnetisation vector is effectively flipped. This

oscillating behaviour arises as the total pulse rotation error adds up to multiple precessions of the

magnetisation vector M about êΩ.

We run the same simulations for the CHASE sequences introduced in the main text and for

the alternative sequences from literature analysed in Supplementary Note 1. The results for the

various cycles under X- and Y- initialisation pulses are depicted in Supplementary Figs 4a and 4b,

respectively. We note that most sequences have a similar ‘hard pulse’ bandwidth under both

initialisation pulse conditions. Overall, all of the sequences presented are more stable against

resonance offsets than the CP-Y sequence studied in the main text. However, the broadband

performance of the CP-X sequence (Supplementary Fig. 3a) remains higher than that of any

CHASE cycle. This is in qualitative agreement with our experimental results (compare Fig. 3d-f

of the main text).

Additionally, we see that multiple cycles of CHASE-X/Y-20 reduce the offset tolerance to some

extent (Supplementary Fig. 4c,d). This is confirmed experimentally, as the echo amplitude of the

spectrally broader 75As ensemble is noticeably reduced with increasing cycle number in Fig. 3e of

the main text.

In summary, the reduced NMR echo amplitudes at short free evolution times observed in the

experiments can be reproduced qualitatively using a simple Bloch model. We conclude that such

echo amplitude reduction is not a fundamental limitation of the various pulse cycles we study, but

can be attributed to ‘soft’ rf pulses which for a given spectral broadening of the spin bath can

in principle be avoided by using higher rf excitation powers. Alternatively, more advanced NMR

techniques such as composite pulses could be implemented in future experiments to increase the

‘hardness’ of the applied pulses16,17. This effect needs to be distinguished from the reduction of

the spin coherence times T2 observed in strongly inhomogeneous spin baths under multiple cycles

of CHASE, which occurs even under ideal (infinitely fast) rotations.
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Supplementary Note 4. NUMERICAL SIMULATION OF THE NUCLEAR SPIN

EVOLUTION UNDER PULSED RADIOFREQUENCY MANIPULATION

In this Note we describe the details of the numerical simulation of the quantum mechanical

evolution dynamics of the interacting nuclear spin bath.

The model

We consider once again the model introduced in Supplementary Note 1, where the evolution

of the wavefunction ψ(t) describing the state of the nuclear spin bath in the rotating frame of an

external magnetic field Bz is determined by:

∂ψ(t)/∂t = −(i/~)H(t)ψ(t) ,

H(t) = Hz
0 +Hzz

d +Hrf(t) .
(22)

As before, the Hamiltonian H(t) is composed of a term Hz
0 describing here quadrupolar interaction

with electric field gradients, a nuclear dipolar coupling term Hzz
d and a radio-frequency (rf) term

Hrf(t).

We consider half-integer spins I and simulate evolution only of the Iz = ±1/2 subspace cor-

responding to the NMR experiments on the central transition. The effect of the quadrupolar

interaction (more specifically of its second order term) on the Iz = ±1/2 manifold is equivalent to

an additional magnetic field that changes the Larmor frequency of the i-th nucleus by ∆νi. The

quadrupolar term can then be written explicitly as:

Hz
0 = 2π~

N∑
i=1

∆νiIi,z , (23)

where the summation goes over all N nuclei.

We consider the case of high magnetic field (significantly larger than the local dipolar field), so

that the nuclear-nuclear interaction is described by the truncated dipole-dipole Hamiltonian:

Hzz
d =

µ0

4π
~2γ2

∑
i<j

x2
i,j + y2

i,j − 2z2
i,j

(x2
i,j + y2

i,j + z2
i,j)

5/2

[
Ii,zIj,z −

(I + 1/2)2

2
(Ii,xIj,x + Ii,yIj,y)

]
, (24)

where µ0 = 4π × 10−7 N A−2 is the magnetic constant, γ is the nuclear gyromagnetic ratio,

(xi,j , yi,j , zi,j) is the vector connecting spins i and j and the summation goes over all pairs of

non-identical nuclei. We ignore here any possible contributions from pseudo-dipolar or exchange

interactions.
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The effect of the rf field is described by:

Hrf(t) = 2π~(I + 1/2)
N∑
i=1

(ν1,x(t)Ii,x + ν1,y(t)Ii,y) , (25)

where parameters ν1,x(t) and ν1,y(t) characterise the amplitude of the rf magnetic field along the

x and y axes of the rotating frame respectively. The parameters ν1,x(t) and ν1,y(t) are piecewise

functions of time describing the variation of the rf field amplitude during the pulse sequence.

In the above equations (23), (24) and (25) the operators Ix, Iy and Iz are spin-1/2 Pauli matrices

acting on the effective spin-1/2 subspace of the spin states with spin projections Iz = ±1/2. The

factors (I + 1/2) in equations (24) and (25) [which differ them from equations (3), (4), (5)] arise

from the matrix elements of the Ix and Iy operators of the full spin-I nuclei that are projected

on to the Iz = ±1/2 subspace. All quantities are in SI units, e.g. frequencies ν are in hertz and

Hamiltonians are in joules.

The evolution of the nuclear spin magnetisation is calculated by direct propagation of the

Schrödinger equation [Eq. (22)] using the 6-th order Runge-Kutta method implemented in Math-

ematica software versions 10.3, 11.0.1, or 11.3. The Hamiltonian matrices are stored and handled

as sparse arrays for improved computation efficiency. For a given system of few spins, direct evalu-

ation of Eq. (22) gives an exact evolution of the wavefunction, thus yielding a complete description

of the nuclear spin dynamics. The maximum number of spins N that can be simulated with this

direct approach is severely limited by the computational resources, since the memory and the

computation time scale approximately as ∼ N2 and ∼ N4 respectively. Thus when performing

simulations on a toy system with small N , the choice of the parameters and initial states becomes

important for obtaining results that are relevant for systems with much larger N (such as quantum

dots with N ≥ 10000). The choice of parameters is discussed in the following section.

Model parameters for simulation of the nuclear spin dynamics in quantum dots

For simulations, nuclear spins are placed at the nodes of the face-centered cubic (fcc) lattice.

One nucleus is placed at the origin x = y = z = 0 and the other nuclei are selected from its nearest

neighbors – this way the nuclear spin cluster is kept as ‘spherical’ and ‘dense’ as possible which

allows approximating the complexity and the magnitude of the dipolar interaction in a 3D lattice.

Example clusters with N = 6, N = 12 and N = 19 spins are shown in Supplementary Fig. 5a. The

nuclei are taken to be either 75As with I = 3/2 and gyromagnetic ratio γ = 2π×7.29×106 rad s−1,

or 115In with I = 9/2 and gyromagnetic ratio γ = 2π× 9.38× 106 rad s−1. The lattice constant of
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the fcc lattice is taken to be a0 = 0.564786 nm, corresponding to GaAs at a temperature of ∼4 K.

Inhomogeneous quadrupolar interaction is introduced by varying the Larmor frequency νL of

each spin [Eq. (23)]. First, the Larmor frequency of the i-th spin i ∈ [1, N ] in the rotating

frame is set to be ∆νi = νQ(i − 1/2 − N/2). This equidistant set of ∆νi is then rescaled as

∆νi → k1 ×∆νi, preserving the mean Larmor frequency ∆νi = 0. The factor k1 is chosen as an

implementation of a uniform random distribution in the range [0.77..1.3]. At the next step, each

frequency ∆νi is modified further by adding a random offset k2,i × νQ with k2,i selected randomly

for each nucleus from a uniform distribution in the range [−0.325, 0.325]. The purpose of such

a randomisation using parameters k1 and k2,i is to eliminate spurious periodic beatings in the

nuclear spin dynamics arising from the small number of the nuclear spins N < 20 used in the

simulations. Such beatings are not present in experimental decay curves on real III-V quantum

dots where N > 10000, but similar features are observed for defect spins in dilute nuclear spin

baths (e.g. NV centres in diamond), where electron-nuclear hyperfine coupling leads to periodic

coherence collapses18,19. The physical meaning of the randomisation procedure can be seen as

follows: The quantum dot can be viewed as built of a large number of clusters, each containing

N spins with a different random distribution of quadrupolar frequencies. The experimentally

measured NMR signal is an average over all such clusters, which is simulated by Monte-Carlo

averaging over k1 and k2,i in the numerical calculations. The step νQ for the equidistant spacing

of Larmor frequencies is chosen to be large compared to the dipolar coupling νij of any two spins,

so that the suppression of dipolar flip-flops arising from quadrupolar interaction (characteristic

of self-assembled quantum dots20) can be efficiently simulated. We typically use νQ = 2000 Hz

for 75As and νQ = 4000 Hz for 115In, which are chosen empirically by observing that no change

in Hahn echo spin dynamics occurs when νQ is increased further. The ranges for k1 and k2,i are

also chosen from trial simulations to be large enough to suppress spurious beatings while still

small enough to ensure that the minimum difference between any ∆νi is large enough to emulate

strongly inhomogeneous quadrupolar interaction. When simulating spin dynamics of the nuclei in

the absence of quadrupolar effects (∆νi � νij) we use the above procedure with νQ, k1 and k2,i

set to zero.

For initialisation of the nuclear spin system we use the following procedure. Each of the N

nuclear spins is randomly initialised in one of the four single-spin eigen states with Iz = −I..+ I.

The probabilities of finding each nucleus in Iz = ±1/2 states and |Iz| > 1/2 are taken to be 60% and

40% respectively. The probabilities for the Iz = +1/2 and Iz = −1/2 states are taken to produce

75% polarisation degree in the Iz = ±1/2 subensemble. Such a choice of probabilities corresponds



17

closely to the experimental conditions where optical pumping inducing nuclear spin polarisation

degree of ∼50% is followed by adiabatic radiofrequency sweeps exchanging the populations of

Iz = ±1/2 and Iz = ±I states20. (Additional simulations show that initial polarization in the

range 10% – 100% has little effect on spin echo decay times.) The nuclei in the |Iz| > 1/2 states

are then ignored when simulating the spin dynamics of the Iz = ±1/2 states. This is justified since

the |Iz| > 1/2 states have very long correlation times (τc ∼10 s, Ref.21) and act on the Iz = ±1/2

spins simply as a source of quasistatic local magnetic fields which are already taken into account

by the inhomogeneous spread of the Larmor frequencies ∆νi. This initialisation procedure gives a

tensor product random state which is not an eigenstate but where each nucleus is in a single-spin

eigenstate with Iz = +1/2 or Iz = −1/2. In each simulation run (Monte-Carlo sample) the initial

wavefunction is constructed by repeating the above procedure and creating a linear superposition of

1000 basic random states with random complex weighting coefficients. Such a highly entangled pure

state with finite polarisation along z direction has self-averaging properties arising from quantum

parallelism22 and allows for faster convergence of the Monte-Carlo simulations.

The typical number of Monte-Carlo samples is 1000. For each Monte-Carlo sample a set of

nuclear frequency shifts ∆νi is generated (with random parameters k1 and k2,i), the wavefunction

is then initialised into a random superposition state as described above. The time evolution of the

wavefunction is then calculated numerically from the Schrödinger equation (22) with a Hamiltonian

whose time dependence is a piecewise function determined by the rf pulse sequences. The overall

time dependence of the nuclear spin polarisation is calculated by averaging over the Monte-Carlo

samples. In all simulations the nuclei are initialised at t = 0 in a state polarised along the êz

axis before a single initialisation π/2-pulse is used to rotate the polarisation into the xy plane.

Then a cyclic time sequence consisting of rf pulse rotations and free evolution periods is simulated.

Finally a single π/2-pulse is used to rotate the magnetisation in the direction opposite to that of

the initialisation pulse. All of the studied NMR pulse sequences are cyclic, i.e. in the limit of a

short free evolution and ideal rf pulses the magnetisation is returned into its original state along

the êz axis (or into a state with inverted z-magnetisation for HE-Y, the Meiboom-Gill version of

Hahn echo). In simulations we use both ideal (infinitely short, or ‘hard’) and non-ideal (finite

duration, or ‘soft’) rectangular rf pulses. The total free evolution time τevol is varied, and for each

value of τevol the final value of the nuclear magnetisation 〈Iz〉 along the êz axis is computed. The

resulting time dependence 〈Iz(τevol)〉 reflects the process of nuclear spin echo decoherence and can

be used to derive the coherence time T2.

In the numerical simulations the nuclear spin wavefunction can be found explicitly at any
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time t during the pulse sequence. This wavefunction can be used to evaluate not only the spin

magnetisation components Ix(t), Iy(t), Iz(t) but also the degree of spin-spin entanglement CI(t) at

each time t. Entanglement of a quantum state can be quantified as a distance of this state to the

set D of all disentangled states23. Here we follow Ref.24 and quantify entanglement using intrinsic

coherence CI which relies on the quantum version of the Jensen-Shannon divergence (QJSD) as a

distance measure. The states in D are taken to be statistical mixtures (with probabilities pk) of

the states that are products of single-spin basis states (Eq. 3 in Ref.24). We find the minimum CI

by varying pk and the single-spin basis states (Eq. 4 in Ref.24). The number of products in the

statistical mixture is limited to three (k = 1..3), which is found to give CI with good accuracy within

a reasonable computation time. For entanglement evolution calculations we use the same settings

as for the spin echo decay simulations, except that the total number of spins is N = 9 with the

number of spins in the Iz = ±1/2 states restricted between 4 and 7 to reduce the computation time,

and the initial state is chosen to be one of the eigenstates of the spin system avoiding additional

initial entanglement arising in a superposition state. In case of a large inhomogeneous broadening

(∆νi � νij) many-body spin eigenstates have low entanglement CI ≈ 0.02 for 75As, CI ≈ 0.07 for

115In, whereas CI ≈ 0.3 in case of eigenstates under small inhomogeneous broadening (∆νi � νij).

Examples of simulations of the nuclear spin dynamics in quantum dots: dependence on the

number of spins N

We now give several examples of the results obtained from the above described numerical sim-

ulation procedure. Several simulated 〈Iz(τevol)〉 curves are shown in Supplementary Fig. 5b for a

Meiboom-Gill version Hahn echo (HE-Y, solid symbols) and CHASE-Y-20 (open symbols) pulse

sequences – these are computed for clusters with different numbers of nuclei shown in Supplemen-

tary Fig. 5a for the case of large inhomogeneous quadrupolar interaction (∆νi � νij). Lines show

fitting using compressed exponential functions 〈Iz(τevol)〉 = 〈Iz(τevol → 0)〉 · e−(τevol/T2)β (same as

Eq. 3 of the main text). For the Hahn echo sequence the decay is close to Gaussian (characterised

by compression factor β ≈ 2.0 − 2.1), while for CHASE-Y-20 the best fit is for β ≈ 1.56 − 1.67,

and some deviation from a mono-exponential decay is observed, especially at small N .

The nuclear spin decoherence times T2 derived from the fits as in Supplementary Fig. 5b are

shown in Supplementary Fig. 5c by the symbols and are compared to the experimental values

for 75As spins in self-assembled quantum dots (shaded areas). It can be seen that the number of

spins affects the overall timescale of the nuclear spin decoherence – for larger N the nuclear spin
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Supplementary Figure 5. Model system and results of first-principle simulations of the nuclear

spin dynamics under pulse control sequences. a Spatial geometry of the 75As nuclear spin cluster

used for numerical simulations. Red balls show a configuration with N=6 spins, red and green with N=12

spins, red, green and blue combined together form a cluster with N=19 spins. b Simulated dependence of

the NMR spin echo amplitude (i.e. nuclear spin magnetisation 〈Iz〉 at the end of spin evolution normalised

by the number of spins N) on the total free evolution time τevol under Hahn Echo (HE-Y, solid symbols)

and CHASE-Y-20 (open symbols) pulse sequences computed for N=6 spins (circles), N=12 spins (squares),

and N=19 spins (triangles). A Meiboom-Gill version of the Hahn echo sequence (π/2y − τevol/2 − πx −

τevol/2− π/2−y) is used with a π/2-shift between the rf carrier phases of the π/2- and π-pulses. Lines show

the fitting used to derive nuclear spin decoherence times T2. c Nuclear spin decoherence times T2 derived

from numerical simulations plotted as a function of the number of nuclear spins for Hahn Echo (circles) and

CHASE-Y-20 (triangles) pulse sequences. Shaded areas show experimentally measured decoherence times

of 75As spins in a self-assembled quantum dot.

decoherence is faster as the interaction with a larger number of neighbors is taken into account.

However, the overall trend in variation of T2 under different pulse sequences is found to be robust

against N . For example, while the decoherence times T2 depend on N as shown in Fig. 5c, the ratio

of the T2 values under CHASE-Y-20 and Hahn echo sequences is nearly independent of N , ranging

between ∼ 2.74 for N = 19 and ∼ 3.0 for N = 6 which is in good agreement with the experimental

ratio of ∼ 2.4. These test results justify the use of relatively small N – for most simulations in

this work we employ N = 12 giving a good compromise between accuracy and computation time.

The fact that the T2 simulated for N = 12 differs from the experimental T2 of a mesoscopic system

with N ∼ 10000 only by ∼50% indicates the robustness of our approach. Thus our simulations (i)

give a good quantitative numerical estimate of the absolute T2 values, and (ii) provide an excellent

tool for examining the effect of various pulse sequences on T2.
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Supplementary Figure 6. Examples of first-principle simulations results and derivation of the

nuclear spin coherence times. a Simulated dependence of the NMR spin echo amplitude (i.e. nuclear

spin magnetisation 〈Iz〉 at the end of spin evolution normalised by the number of spins N) on the total free

evolution time τevol under CHASE-Y-20 pulse sequence computed for N =12 spins. b Same for CHASE-

Y-34. The results are presented for infinitely short (tπ → 0, open symbols) and finite (tπ = 10 µs, solid

symbols) control pulses. The simulations were performed for 1 cycle (triangles) and for 4 cycles (pentagons)

of the sequence. Lines show best least-squares fits using compressed exponents. In the case of 4 cycles of

CHASE-Y-34 with tπ = 10 µs the imperfect pulse rotations result in significant loss of transverse nuclear

spin magnetisation even at short τevol – this prohibits unambiguous definition of the coherence time T2, thus

no fitting results are shown.

Procedure for derivation of the nuclear spin coherence times and echo amplitudes from the

results of numerical simulations

We now present the raw data of the numerical simulations for the CHASE sequences (Supple-

mentary Fig. 6) and discuss the procedure for analysing the raw data and deriving the spin bath

coherence times T2 and the echo amplitudes 〈Iz(τevol → 0)〉 in the limit of short free evolution time

τevol → 0. Supplementary Fig. 6a shows the simulated spin bath dynamics under CHASE-Y-20.

The results are presented for ideal infinitely short (‘hard’) rf control pulses (open symbols) and for

the finite (‘soft’) rectangular pulses (solid symbols, π-pulse length of tπ = 10 µs). The simulations

were performed for 1 cycle of the sequence (triangles) and for 4 cycles (pentagons). Lines show best

least-squares fits using compressed exponents (Eq. 3 of the main text). These fits are used to derive
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the spin bath coherence times T2. While for 1 cycle the fit is good, for more complex conditions,

e.g. 4 cycles and tπ = 10 µs, there is a considerable deviation between numerical simulations and

exponential fits – in such cases the T2 times are still derived from fitting but should be treated as

approximate values.

Supplementary Fig. 6b shows further results for the spin bath dynamics under the CHASE-Y-34

pulse sequence. Here deviation from the exponential fit is observed for 4 cycles even at tπ → 0

while at tπ = 10 µs the oscillations and reduction of the echo amplitude at short free evolution time

τevol → 0 are particularly pronounced. In case of spin-9/2 nuclei we find even stronger deviations

from a mono-exponential echo decay, with signatures of a two-stage decay. This requires care when

deriving decoherence parameters. Firstly, in our analysis the echo amplitude 〈Iz(τevol → 0)〉 is

derived not from fitting but rather by taking the average spin magnetisation 〈Iz〉 (normalised by

the number of nuclei N) at short free evolution times τevol < 5 µs – this definition of 〈Iz(τevol → 0)〉

is not affected by deviation of the spin decay from the exponential model. Secondly, for any cyclic

pulse sequences with ideal ‘hard’ pulses (tπ → 0) the resulting magnetisation 〈Iz(τevol → 0)〉 after

the sequence with short free evolution τevol → 0 is by definition equal to the initial magnetisation

〈Iz(t = 0)〉 before the pulse sequence is applied (in the studied example 〈Iz(t = 0)〉/N ≈ 0.217),

while for non-ideal pulses (tπ > 0) nuclear spin magnetisation at τevol → 0 may be lost simply due to

the imperfect spin rotations (i.e. due to the ‘soft’ pulse conditions). Such imperfect rotations mean

that the spin bath states during free evolution periods of finite duration τevol > 0 deviate from the

desired sequence. Under such conditions (e.g. tπ = 10 µs in Supplementary Fig. 6) the reduction

in 〈Iz(τevol)〉 is not related to decoherence as such, prohibiting any unambiguous definition for T2.

Taking into account the above arguments we establish an approach to the analysis of the nu-

merical results which can be summarised as follows: The echo amplitude 〈Iz(τevol → 0)〉 is derived

by averaging the Iz over short free evolution times τevol < 5 µs. For echo amplitudes 〈Iz(τevol → 0)〉

below 70% of the initial magnetisation 〈Iz(t = 0)〉 the coherence time T2 is undefined, while for

〈Iz(τevol → 0)〉 above this threshold, the T2 is derived from fitting with compressed exponential

functions. Moreover, in the main text and the subsequent discussion we present echo amplitudes

at short free evolution times 〈Iz(τevol → 0)〉 normalised by the initial magnetisation 〈Iz(t = 0)〉.
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Supplementary Note 5. ADDITIONAL RESULTS OF NUMERICAL SIMULATIONS OF

THE NUCLEAR SPIN EVOLUTION UNDER DIFFERENT PULSE SEQUENCES

In the main text we present the results of numerical simulations for the pulse sequences used

in the experimental work. Simulations are in good agreement with the experiment and confirm

robust extension of the nuclear spin coherence time T2 under CHASE pulse sequences. In this

section we present simulated nuclear spin dynamics under alternative pulse sequences reported in

the literature and compare their performance to CHASE.

Having discussed in Supplementary Note 4 how echo amplitudes 〈Iz(τevol → 0)〉 and coherence

times T2 are derived, we now examine their dependence on the control pulse sequence parameters.

The results of the simulations are summarised in Supplementary Fig. 7 for the cases of small inho-

mogeneous quadrupolar interaction (∆νi � νij , panels a, c) and large inhomogeneous quadrupolar

interaction (∆νi � νij , panels b, d). Four types of sequences are presented: (i) CHASE-10/20

and CHASE-34 as proposed in this work, (ii) the 7 and 12 pulse sequences proposed theoretically

by Moiseev and Skrebnev9,10 and labeled MS-7 and MS-12 here, (iii) the sequence consisting of

8 MREV-8 pulse trains interwoven with four phase-refocusing π-pulses used by Maurer, Kucsko

et al.11 in experiments on NV centers in diamond and labeled MKL-68, (iv) the ‘time-suspension’

sequence consisting of 48 π/2-pulses as introduced by Cory et al.25 (labeled CMG-48). The results

for Hahn Echo (HE) and Carr-Parcell (CP) sequences are shown as well for a reference. The num-

bers in the sequence labels stand for the total number of rf control pulses in one cycle. All results

in Supplementary Fig. 7 are plotted as a function of the total duration of the control rf pulses (total

gate time) in the units of the π-pulse duration tπ. Similar to the way the results are presented in

the main text, we combine CHASE-10 with CHASE-20 and MS-7 with MS-12: the points with the

shortest total gate time correspond to one cycle of CHASE-10 and MS-7 sequences, while points

with larger gate times correspond to integer numbers of repeated cycles of CHASE-20 and MS-12.

For each sequence we consider two cases: with nuclear magnetisation initialised by a π/2-pulse

along the same êx axis as the π-pulses of the sequence (-X sequences) and with initialisation along

the êy axis, orthogonal to that of the π pulses (Meiboom-Gill version, labeled -Y).

The case of negligible inhomogeneous resonance broadening

We first examine the case of small inhomogeneous resonance broadening ∆νi � νij (negligible

quadrupolar effects or chemical shifts) as shown in Supplementary Fig. 7a,c. It follows from
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Supplementary Figure 7. Nuclear spin coherence times and echo amplitudes under rf pulse

control sequences derived from numerical simulations on N = 12 dipolar coupled 75As nuclear

spins. a,c Results for the case of small ∆νi � ∆ij inhomogeneous (quadrupolar) broadening. b,d Same

for the case of large ∆νi � ∆ij inhomogeneous broadening. Symbols in panels (a) and (b) show the nuclear

spin coherence times T2 for different pulse sequences as a function of the total pulse (gate) time in units

of tπ. The plot for each type of sequence is obtained by varying the number of cycle repeats; for Hahn

Echo (HE), MS-7 and CHASE-10 we consider only one cycle and combine the data with CP, MS-12 and

CHASE-20 respectively. The dashed lines represent constant efficiencies of the pulse sequences, defined as

coherence time to gate time ratio. The gate time dependencies of the NMR spin echo amplitude (final

magnetisation) at short free evolution 〈Iz(τevol → 0)〉 are shown in (c) and (d), the values are normalised

by the magnitude of the initial magnetisation 〈Iz(t = 0)〉. Simulations are carried out for both infinitely

short (tπ → 0, open symbols) and finite pulses (solid symbols), where we set tπ = 80 µs for ∆νi � νij and

tπ = 10 µs for ∆νi � νij . The 〈Iz(τevol → 0)〉 values in (c) and (d) are plotted only for tπ > 0 since at

tπ → 0 one has 〈Iz(τevol → 0)〉/〈Iz(t = 0)〉 = 1 for any cyclic control pulse sequence by definition.

Supplementary Fig. 7a that all four types of sequences can be used to achieve arbitrarily long
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nuclear spin coherence time: the T2 increases approximately linearly with the increasing number

of sequence repetitions (increasing total gate time). This is largely expected from AHT – when

the number of cycles is increased, the cycle duration tc is reduced, and the average Hamiltonian

converges to its remaining zeroth order term H̄(0)
d . As shown in Supplementary Tables 1 and 2,

this term vanishes for tπ → 0 for all studied sequences. For a given total gate time, the T2

values are very close for all four types of sequences for initial magnetisation along either êx or

êy axes – the difference is less than a factor of 2. However, the performance of the sequences is

notably different when non-ideal pulses (tπ > 0) are considered. For both MKL and MS sequences

a pronounced loss of magnetisation 〈Iz(τevol → 0)〉 at short free evolution (echo amplitudes) is

observed for the Meiboom-Gill (Y) versions of the sequences when the number of cycles is increased

(Supplementary Fig. 7c) – this means that strong nuclear spin decoherence is induced by the

finite ‘soft’ control pulses irrespective of the decoherence during free evolution between the pulses.

By contrast the CHASE sequences show robust performance for an arbitrary direction of the

initial nuclear spin magnetisation for the total gate times of up to ∼ 200tπ studied here, thus

demonstrating their capability to dynamically freeze arbitrary fluctuation of the transverse nuclear

magnetisation. Similarly good performance under finite pulses is observed only for the CMG-48

‘time-suspension’ sequence25 (crosses in Supplementary Fig. 7c).

The case of large inhomogeneous resonance broadening

The case of large inhomogeneous resonance broadening ∆νi � νij (e.g. strong quadrupolar

effects) is presented in Supplementary Fig. 7b,d. We start by examining the coherence times under

ideal ‘hard’ control pulses (tπ → 0, open symbols in Supplementary Fig. 7b). The MKL sequence

exhibits reduced T2 times, which are even shorter (for 1 cycle) than in the case of simple π-pulse

trains (Carr-Parcell sequences, CP). This is likely due to the fact that the MKL sequence was not

designed to be applied to strongly inhomogeneous spin systems in the first place. By contrast, all

of the CHASE and MS sequences provide enhancement in T2 compared to Hahn echo and CP and

show a similar non-monotonic behaviour on the total gate time which is also presented in Fig. 4e,f

of the main text for CHASE-10/20 sequences. For the total gate times up to ∼ 100tπ − 200tπ

the nuclear spin coherence time T2 is seen to decrease. Such reduction is also observed for the CP

sequences and is interpreted to arise from fast rotations of the spins by the rf pulses which lead to an

effectively shortened spin lifetime and broadened nuclear spin transitions. Such a broadening can

compensate for the energy mismatch between the spins induced by the quadrupolar inhomogeneity
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and restores the dipolar exchange spin-spin flip-flops. This interpretation is readily confirmed by

examining the CP results: for a large number of pulse cycles (with the total gate time & 100tπ) the

T2 of the inhomogeneous (∆νi � νij , Supplementary Fig. 7b) nuclear spin bath reduces to exactly

the value of T2 ≈ 2.02 ms observed for the homogeneous bath (∆νi � νij , Supplementary Fig. 7a)

where dipolar flip-flops are allowed. When the number of CHASE or MS sequence cycles is increased

further (& 500tπ in Supplementary Fig. 7b), T2 increases steadily, indicating suppression of dipolar

interactions and convergence of the average Hamiltonian to zero, similar to the homogeneous

case (∆νi � νij , Supplementary Fig. 7a). The interplay between the opposing effects of the

reappearance of the flip-flops and the convergence of the average Hamiltonian depends strongly on

the magnitude of the quadrupolar inhomogeneity and rf pulse duration tπ. However, it is possible

to establish a qualitative agreement between the experiment and the simulations: for a wide range

of the CHASE-10/20 cycle numbers (. 200tπ in Supplementary Fig. 7b), T2 is nearly constant –

this matches the weak dependence of the experimentally measured T2 on the number of cycles as

observed in Fig. 3b of the main text.

We now examine the effect of the finite ‘soft’ pulses (tπ > 0) under strong inhomogeneous

broadening conditions (∆νi � νij , solid symbols in Supplementary Fig. 7b,d). It follows from

Supplementary Fig. 7d that the loss of transverse spin polarisation during the control rf pulses

(observed as decrease in the initial echo amplitude 〈Iz(τevol → 0)〉) is most pronounced for the

MS sequences – the spin coherence can be maintained well above 〈Iz(τevol → 0)〉 ∼ 0.7 only for

one cycle of MS-7. One cycle of MKL-68 with a total gate time of 36tπ can preserve the echo

amplitude above the 70% threshold but the resulting coherence time T2 < 2 ms is shorter than

for Hahn echo. Similarly, there is a strong loss of echo amplitude even for one cycle of the ‘time-

suspension’ sequence25 CMG-48 (crosses in Supplementary Fig. 7d, only finite-pulse results are

shown since ideal pulses tπ → 0 yield even shorter T2 values than under tπ > 0). By contrast,

the CHASE sequences demonstrate the best performance in terms of both preserving the echo

amplitude 〈Iz(τevol → 0)〉 under long rf pulse trains and enhancing the coherence time T2. While

CHASE-20 can maintain 〈Iz(τevol → 0)〉 > 0.7 for gate times > 100tπ, the coherence time T2

decreases abruptly above 24tπ in case of the Y- initialisation pulse. A robust performance in terms

of freezing of the spin bath fluctuation using finite pulses is obtained for either CHASE-10/20 or

CHASE-34 for the total rf pulse gate times up to 20tπ − 24tπ, with CHASE-34 producing a longer

coherence time T2.
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Analysis and discussion

In various applications of magnetic resonance it is a common aim to seek for an optimal shape

of the rf control field that produces the desired spin manipulation26,27. It is thus useful to compare

the different pulse sequences discussed here by introducing a quantity that characterises their

efficiency. To this end we take the ratio of the coherence time T2 during free evolution and the

duration of the rf control pulses required to achieve such T2 – in other words, the pulse sequence is

considered to be most efficient if it yields the largest increase in T2 at a smallest possible overhead

of spin manipulation via the rf control pulses. The dashed lines in Supplementary Fig. 7a,b

show constant efficiency levels (given by linear functions with different slopes). It follows from

Supplementary Fig. 7a that in case of negligible inhomogeneous resonance broadening (∆νi � νij)

the efficiency is nearly invariant, gradually decreasing with the growing number of sequence cycle

repeats. In case of large inhomogeneity (∆νi � νij) the increase in the number of sequence cycle

repeats (total gate time) leads to reduction in efficiency due to the re-appearance of the dipolar

flip-flops discussed above. Supplementary Fig. 7b shows that the best efficiency is achieved for

one cycle of either MS-7 or CHASE-10, while for one cycle of CHASE-34 the coherence time T2

can be extended only with some loss in efficiency. These results indicate that when the dipolar-

coupled spin bath is inhomogeneously broadened (Supplementary Fig. 7b) its coherence can be

extended efficiently only by introducing complex pulse sequences that cancel higher order terms

of the averaged spin Hamiltonian – this is different from the case of negligible inhomogeneous

broadening (Supplementary Fig. 7a) where cycles of the basic sequence repeated multiple times

efficiently enhance the spin bath coherence.

Further improvements in simultaneous suppression of inhomogeneous spectral broadening and

dipolar couplings in nuclear spin baths may be achieved by benchmarking the performance of the

pulse sequences using techniques beyond AHT. Optimized control pulses beyond simple rectangular

pulses used here may offer further improvements. One example of such a technique are composite

pulses. We have conducted preliminary numerical simulations with modified CHASE sequences,

where each pulse is replaced by a composite broadband BB1 pulse28. However, these pulses give no

improvement and in fact result in a slight reduction of the nuclear spin coherence times T2, while

requiring significantly longer gate times (and hence reduced efficiency). Alternative approaches

may involve more sophisticated tools, including numerical optimization algorithms29.

To summarise the results of these numerical simulations, we find that the most efficient control

of the spin bath coherence is achieved using one cycle of the CHASE-10, CHASE-20, or CHASE-
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34 sequences as they (i) extend the spin bath coherence time T2 both under small and large

inhomogeneous resonance broadening, (ii) show robust preservation of the spin bath magnetisation

even under non-ideal finite duration (‘soft’) control pulses, and (iii) effectively freeze nuclear spin

fluctuations regardless of their direction in the plane perpendicular to the static external magnetic

field. The simulations for CHASE-34 predict significant improvement of the coherence compared

to CHASE-10/20 when applied to an inhomogeneously broadened system – this is confirmed in

experiments on 75As nuclear spins in self-assembled quantum dots. Overall, the CHASE sequences

developed here provide a well balanced performance and can be used to control spin-1/2 and spin-

3/2 fluctuations both in systems with large inhomogeneous resonance broadening (e.g. quantum

dots) and systems with small broadening (e.g. defect spins in diamond) where good tolerance to

non-ideal finite pulses is required. By contrast, as discussed in the main text, controlling the

coherence of the spin-9/2 nuclei is inherently more challenging due to the strong flip-flop spin-spin

coupling [Eq. (24)].
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