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I. SIMULATION PARAMETERS

Parameters are displayed in Supplementary Table I

Physical machine parameters
Energy 1.285 GeV
Current 1.625 mA
Momentum compaction factor α 0.724 × 10−3

Revolution frequency 2.71579 MHz
Bending magnet radius of curvature 5.559 m
Vacuum chamber height 32 mm
Zero current RMS bunch length σz 1.21428 mm
Relative RMS energy spread δ 0.47 × 10−3

Synchrotron damping time 10.4 ms
Synchrotron frequency (νs) 13.5 kHz

Numerical parameters used for the simulations
Integration mesh size 20σz × 20δ
Number of mesh points 896 points × 896 points
Time step 1

4000
× 1

νs
Number of CPU cores 64

Table I. Parameters corresponding to experimental results
and used in the numerical simulation.

II. RECORDED OPTICAL SIGNALS: TIMING
AND TYPICAL RAW DATA

At each electron bunch turn, 3 laser pulses are sent to
the electro-optic sampling setup:

• Two reference pulses that do not interact with the
electron bunch electric field (one only being dis-
played in the article’s Figure 3, for clarity pur-
poses).

• One pulse that interacts with the electron bunch
electric field.

The timing of the signals is schematically represented in
supplementary Figure 1. The balanced detector’s output
contains two useful informations:

• The electro-optic (EO) signal.

• A background reference corresponding to ”zero
electric field”.

If the two balanced port were perfectly symmetric as dis-
played in the figure, this background should be zero. Ac-
tually small asymmetries are present, hence the first step
of the analysis consists of subtracting the EO and back-
ground signals.

A typical experimental raw signal (with nonzero back-
ground and EO) is represented in Figure 2.
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Figure 1. Timing of the signals (illustration) at the balanced photodetector’s inputs and output. The two useful output signals
are: the electro-optic (EO) signal, and the ”zero-field” background. Note that the EO signals at input and output are not to
scale.
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Figure 2. Typical signal at the balanced detector’s output (oscilloscope trace). (a) Whole signal. (b) zoom of the background
signal, i.e., without electric field. (c) zoom of the electro-optic signal. See supplementary Figure 1 for timing details.


