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Supplementary Figures 

Supplementary Figure 1. Summary of metabolite prediction performance across labelled and non-

labelled compounds. Top, middle, and bottom panels correspond to performance summary across (A) 

all labelled and non-labelled compounds, (B) all labelled compounds, and (C) all unique labelled 

compounds, respectively. 
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Supplementary Figure 2. Prediction accuracy across all data points (across subjects and well-

predicted labelled metabolites) in the validation cohort. Scatter plot of measured and predicted 

abundances across all NLIBD data points (across subjects and well-predicted labelled metabolites). A 

simple linear regression of measured metabolite profiles against predicted metabolite profiles revealed 

statistically significant association (R2 = 0.59, P < 2e−16). The best fitting regression line is shown in red. 
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 4 

 

Supplementary Figure 3. MelonnPan training performance across all compounds. Among 2,818 

metabolites that passed abundance and prevalence filtering, 59.6% (n = 1679) were well-predicted 

(Spearman correlation coefficient between measured and predicted profiles >0.3, denoted by a dashed 

red line). Median Spearman correlation coefficient (0.56) is shown by a dashed green line. 
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 5 

Supplementary Figure 4. MelonnPan model size across all compounds. Distribution of weights 

learned by the MelonnPan training model across all metabolites. Median model size (12) is denoted by a 

dashed red line. 
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 6 

Supplementary Figure 5. MelonnPan performance on negative training data. Negative training data 

(or repeatedly shuffled training set) produced a consistently lower proportion of well-predicted metabolites 

than the positive training (unshuffled) counterpart during both training and validation stages (McNemar’s 

exact test P < 0.0001, averaged over 1,000 permutations). 
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 7 

Supplementary Figure 6. Effect of Spearman correlation cut-off on MelonnPan negative training 

performance. MelonnPan’s performance in negative training data remained consistent across all 

Spearman correlation cut-offs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

● ● ●

●

●

●

●

●

●

●

●

●

●
● ● ● ● ●

●

●

●

●

●

●

●
● ●

●

●

●

●

● ● ● ● ●0

20

40

60

80

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Spearman r cutoff

Pe
rc

en
ta

ge
 o

f w
el

l−
pr

ed
ic

te
d 

m
et

ab
ol

ite
s

●

●

●

●

Training (Unshuffled)

Validation (Unshuffled)

Training (Shuffled)

Validation (Shuffled)



 8 

 

Supplementary Figure 7. MelonnPan accuracy for varying training similarities. Prediction accuracy 

of NLIBD subjects are plotted against the training similarity of their corresponding metagenomes as 

summarized by Representative Training Sample Index (RTSI). Subjects with higher RTSI scores (training 

similarity) tended to have higher MelonnPan accuracy (Spearman correlation between RTSI and 

MelonnPan accuracy = 0.4, P = 0.003). 
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 9 

 

Supplementary Figure 8: MelonnPan achieves better detection power and prediction accuracy 

than existing stoichiometric-based methods. A. Among the 162 KEGG compounds that passed 

prevalence and abundance filtering, MelonnPan was able to accurately predict the vast majority of 

metabolites (n = 130, 84%, Spearman r > 0.3). B. MelonnPan generally yielded higher confidence 

(greater Spearman correlation between measured and predicted abundances) compared to MIMOSA. 

Here bar plots of prediction accuracy for both MelonnPan and MIMOSA are provided for each common 

compound predicted by both methods. C. Contingency table describing the relationship between predictor 

type (MelonnPan or MIMOSA) and metabolite predictiveness indicate similar performance when restricted 

to the small subset of metabolites predicted by both methods. 
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Supplementary Figure 9: Enrichment plots for top enriched gene sets (genera). Statistically 

significant gene sets (genera) (FDR Q<0.25) enriched in the MelonnPan predictive gene list, as identified 

by the permutation-based Kolmogorov Smirnov (KS) test. Eight genera were significantly over-abundant 

in the MelonnPan gene list, with the strongest effects observed among Pseudoflavonifractor, Clostridium, 

Coprococcus, Anaerotruncus, Blautia, Collinsella, Ruminococcus, and Anaerostipe (A-H). P-value for 

each genus was calculated as the fraction of 100,000 permutation values that are at least as extreme as 

the original KS statistic derived from non-permuted data. Black bars (bottom) illustrate the position of the 

gene families belonging to the gene sets (genera) in the context of ranked list of MelonnPan predictive 

gene families. The quantities in the X axis (ranked predictability metric) indicate the number of 

metabolites in the well-predicted metabolite features. The running enrichment score (ES) for each genus 

is also shown (top) as a function of the position within the ranked list of gene families. 
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Supplementary Figure 10: Statistically significant overrepresentation of uncharacterized gene 

families in MelonnPan gene set. Contingency table describing the relationship between class 

membership in various databases (GO (A), informative GO (B), MetaCyc (C), and Enzyme Commission 

(D) obtained from HUMAnN2) and metabolite predictiveness reveal enrichment of uncharacterized 

proteins in the metabolite prediction process. 
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Supplementary Figure 11. Differential abundance effect size is associated with IBD metabolomic 

structure. Here, for each of the 50 top well-predicted metabolites, we reproduced the ordination in Fig. 4 

overlaid with effect size estimates (for both CD vs HC (A) and UC vs HC (B) comparisons) from 

differential abundance analysis of measured metabolites in the NLIBD cohort (Methods). Generally, 

associations between metabolomic differential abundance and effect sizes increased in strength from left 

to right along the first principal component. 
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Supplementary Figure 12. Differential abundance analysis of measured and predicted metabolites 

reveal similar quantitative results. We used the same differential abundance analysis on both 

MelonnPan-predicted and measured metabolomic compositions (Methods), which revealed highly similar 

quantitative results across metabolites (Spearman correlation between effect size estimates based on 

measured and predicted profiles = 0.7 for CD vs HC (A) and 0.45 for UC vs HC comparisons (B) 

respectively; P < 2.2e-06). 
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Supplementary Figure 13. Enrichment analysis of broad metabolic categories. Statistically 

significant metabolic categories (P<0.05) enriched in the MelonnPan well-predicted metabolites, as 

identified by the overrepresentation analysis. Contingency tables describing the relationship between 

class membership in metabolic category and metabolite predictiveness for top metabolic categories are 

shown: Bile acids, alcohols and derivatives (A) and Tetrapyrroles and derivatives (B). Numbers in the 

parentheses indicate the size of the metabolic classes. 
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Supplementary Figure 14. MelonnPan’s performance in non-human-gut datasets. MelonnPan 

remained accurate for inference across the human body and environmental microbiomes, as shown by 

the higher prediction rate of Melonnpan as compared to MIMOSA across datasets. 
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Supplementary Figure 15. MelonnPan’s metabolite prediction in the coral dataset (Dataset 1).  A. 

Top 20 compounds from MelonnPan training in Dataset 1. B. Top predictive families as key contributors 

to the prediction model across well-predicted metabolite compounds. 
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Supplementary Figure 16. MelonnPan’s metabolite prediction in the vaginal dataset (Dataset 2).  A. 

Top 20 compounds from MelonnPan training in Dataset 2. B. Top predictive families as key contributors 

to the prediction model across well-predicted metabolite compounds. 
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Supplementary Figure 17. MelonnPan’s metabolite prediction in the murine gut dataset (Dataset 

3).  A. Top 20 compounds from MelonnPan training in Dataset 3. B. Top predictive families as key 

contributors to the prediction model across well-predicted metabolite compounds. 
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Supplementary Figure 18. MelonnPan prediction performance with species-level predictors. A. 

Contingency table describing the relationship between predictor type (species-level or gene-level) and 

metabolite predictiveness indicate similar performance in the training cohort. B. Species-level predictors 

did not generalize training performance in the validation cohort. 
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Supplementary Figure 19. Cross-phenotype prediction accuracies in the combined PRISM and 

NLIBD subjects. To assess generalizability across human gut-specific phenotypes, we mimicked a 

cross-study analysis by creating three independent datasets consisting of CD, UC, and HC subjects in the 

combined PRISM and NLIBD cohorts. We then independently trained MelonnPan models within each 

dataset and used these individually cross-validated models to generate predictions on the holdout 

datasets. A substantial number of metabolites remained well-predicted across phenotypes during 

validation within and between studies.  
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Supplementary Tables 
 
Supplementary Table 1. Baseline characteristics of PRISM and NLIBD cohorts. 

 PRISM NLIBD 

Sample Size (n) 155 65 

Age at recruitment (mean + std. dev.) 41.7+16.9 45.4+15.5 

Gender (male/female, n) 74/81 16/27 

Diagnosis (n) CD (68), UC (53), 
Control (34) 

CD (20), UC (23), 
Control (22) 

Origin USA Netherlands 
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Supplementary Table 2. Summary of MelonnPan prediction in non-human-gut datasets.  

 Dataset 1 Dataset 2 Dataset 3 
Reference Sogin et al.1 Srinivasan et al.2 

 
Theriot et al.3 

 
Data Types 

 
NMR 
16S 

LC-MS 
16S 

 

 

LC-MS/GC-MS 
16S 

 

 
Organism and Site 

 
Coral reef Human vagina Mouse gut 

Sample Size n = 38 n = 70 n = 21 
Dimension (Pre-filter) nOTU = 32078 

nMBX = 196 
 

 

nOTU = 171 
nMBX = 96 

 
 

nOTU = 491 
nMBX = 295 

 

Dimension (Post-filter) nOTU = 165 
nMBX = 98 

nOTU = 21 
nMBX = 47 

 
 

nOTU = 95 
nMBX = 118 

 

% of well-predicted metabolites 
(MelonnPan) 

 

84.7 63.8 91.5 

Median model size (MelonnPan) 29 14 32 

% of well-predicted metabolites 
(MIMOSA), as reported in Noecker et 

al. 4) 

N/A 34.5 
 

 

33.6 
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