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Section 1. Derivation of the EK limit 

Because the electrophoretic force is co-directional with the fluid drag force for the cation and 

counter-directional for the anion and analyte particle, the fluxes of charged species satisfy 

   J1
∞≫ J2

∞ ,    J1
∞≫ J3

∞ , as supported by the simulation data in Fig. S1-1. 

 
Fig. S1-1. The fluxes of the cation, anion and analyte particle at the steady state at different Vcn’s.  

 

In this derivation, we will only consider symmetric binary electrolytes (e.g. KCl) as the 

buffer, i.e.   D1 = D2 ,  Z1 = −Z2 ,  C1
0 = C2

0 . The electroneutrality is generally obeyed except in the space 

charges layers in the ion depletion zone, so we can approximate that   C1
∞ ≈ C2

∞

 for x<L/2. By 

approximating   J2
∞ ≈0  and   J3

∞ ≈0 , the fluxes of the cation, anion, and analyte can be written as, 

  
J1

∞ = −D1
dC1

∞

dx
+ (u + µ1E)C1

∞ = JC , S1.1 

  
J2

∞ = −D2
dC2

∞

dx
+ (u − µ2E)C2

∞ ≈ 0 , S1.2 

  
J3

∞ = −D3
dC3

∞

dx
+ (u − µ3E)C3

∞ ≈ 0 , 
S1.3 

where JC is constant with respect to x (x<L/2) at the steady state, and  u  is independent of x due to 

the incompressibility of fluid. 

Subtracting Eq. S1.2 from Eq. S1.1 yields that, 

  
µ2EC2

∞ ≈ JC / 2 . S1.4 
Substituting Eq. S1.4 to Eq. S1.2 yields that, 

  
−D2

dC2
∞

dx +uC2
∞ − JC

2
≈0 . S1.5 



At the inlet (  x = 0 ),
  

dC2
∞

dx |x=0≈ 0 and   C2
∞(x = 0) = C2

0 , which leads to, 

  
JC ≈ 2uC2

0

. S1.6 
Substituting Eq. S1.6 to Eq. S1.5 yields that, 

  
−D2

dC2
∞

dx + (C2
∞ −C2

0 )u ≈0 . S1.7 

Therefore,   C2
∞ (x) ≈C2

0 + Ae
u
D2

x
, where A is a constant. 

We define the downstream anion concentration (after depletion) as   C2
d . At the nanochannel 

arrays (  x = L / 2 ), we have
  
C2

∞(x = L
2

) = C2
d , which leads to, 

  
C2

∞ (x) ≈ 1− Ψe
Pe⋅

x

L/2
⎛
⎝⎜

⎞
⎠⎟
⋅C

2

0

,  (x < L / 2)  S1.8 

where 
  
Ψ = (1−

C2
d

C2
0 )e−Pe  and 

  
Pe= u (L / 2)

D2

, with Pe being the Péclet number of the system. 

Substituting Eq. S1.6 and Eq. S1.8 to Eq. S1.4 yields that, 

  

E(x) ≈ u
µ2

⋅ 1

1−Ψe
Pe⋅ x

L/2
. S1.9 

Up to this point, the distributions of buffer ions and the electric field have been solved. 

 

Next, by substituting Eq. S1.9 to Eq. S1.3 and applying the boundary condition   C3
∞(x = 0) = C3

0 , 

one can obtain the distribution of the analyte concentration along the x-axis as, 

  

C3
∞ (x) ≈ 1−Ψe

Pe⋅ x
L/2

1−Ψ

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
⋅e

(1− b
a

)⋅Pe⋅ x
L/2 ⋅C3

0
. S1.10 

At the concentration peak ( CEK
∞ ), 

  

dC3
∞ (x)
dx

= 0 , from which one can obtain that, 

  
CEK
∞ ≈ 1

Ψ
(1−µ3

µ2

)
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

D2
D3
(1−µ3

µ2
)

1
1−Ψ

µ3

µ2

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

D2
D3

µ3
µ2

C3
0
. 

S1.11 

Under conditions of  C2
0 ≫C2

d

 
(due to the ion depletion effect)

 
and  ePe≫1 (	ePe= 609 and 35614 for 

Vcn=2VT and Vcn=15VT, respectively.), Eq. S1.11 can be simplified to, 

  
CEK
∞ ≈ 1−µ3

µ2

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

D2
D3
(1−µ3

µ2
)

⋅
µ3

µ2

⎛

⎝
⎜⎜⎜⎜
⎞

⎠
⎟⎟⎟⎟

D2
D3

µ3
µ2

⋅ ePe( )
D2
D3
(1−µ3

µ2
)
⋅C3

0
. 

S1.12 



Defining 
 
a =

D2

D3

, 
 
b =

Z3

Z2

, 
  

b

a
=

µ3

µ2

, Eq. S1.12 can be re-written as, 

  CEK
∞ ≈ a−abb(a− b)(a−b) ⋅e(a−b)⋅Pe ⋅C3

0
. S1.13 

 



Section 2. Derivation of the EN limit 
 

At the steady state, the fluxes of all charged species are constant along the x-axis (x<L/2). 

Considering the inlet and the concentration plateau, one can have   J1
∞ (in) = J1

∞ (p) ,   J2
∞ (in) = J2

∞ (p) ≈ 0

,   J3
∞ (in) = J3

∞ (p) ≈ 0 , where “in” denotes the inlet, and “p” denotes the concentration plateau. These 

equations can be expanded to, 

  
−D1

dC1
∞ (in)
dx

+ (u + µ1Ein )C1
∞ (in) = −D1

dC1
∞ (p)

dx
+ (u + µ1Ep )C1

∞ (p) , S2.1 

  
−D2

dC2
∞ (in)
dx

+ (u − µ2Ein )C2
∞ (in) = −D2

dC2
∞ (p)

dx
+ (u − µ2Ep )C2

∞ (p) ≈ 0 , S2.2 

  
−D3

dC3
∞ (in)
dx

+ (u − µ3Ein )C3
∞ (in) = −D3

dC3
∞ (p)

dx
+ (u − µ3Ep )C3

∞ (p) ≈ 0 . 
S2.3 

At the inlet, the concentrations of all charged species equal the initial concentration, and the 

concentration gradients can be considered zero. At the concentration plateau, the concentration 

gradients of all charged species are zero. Therefore,   Ci
∞ (in) = Ci

0 , 
  

dCi
∞ (in)
dx

= 0 , 
  

dCi
∞ (p)
dx

= 0 , i=1, 2, 3. 

Eqs. S2.1-S2.3 can be reduced to, 

  
(u + µ1Ein )C1

0 = (u + µ1Ep )C1
∞ (p) , S2.4 

  
(u − µ2Ein )C2

0 = (u − µ2Ep )C2
∞ (p) ≈ 0 , S2.5 

  
(u − µ3Ein )C3

0 = (u − µ3Ep )C3
∞ (p) ≈ 0 .

 
S2.6 

In Eq. S2.5, the total flux is zero, and   C2
0  is much greater than zero, one can have, 

  u ≈ µ2Ein . S2.7 
In Eq. S2.6, the total flux is zero, and   C3

∞ (p) is much greater than zero, one can have, 

  
u ≈ µ3Ep . S2.8 

From Eq. S2.7 and Eq. S2.8, one can have, 

  
Ep ≈

µ2

µ3

Ein . S2.9 

Substituting Eq. S2.7 and Eq. S2.9 to Eq. S2.4 yields that, 

  
C1

∞ (p) ≈
µ1 / µ2 +1
µ1 / µ3 +1

C1
0

. S2.10 

At the concentration plateau,   C2
∞ (p) ≈ 0 , so the electroneutrality condition requires that, 

  Z1C1
∞ (p)+ Z3C3

∞ (p) ≈ 0 . S2.11 
Combining Eq. S2.10 and Eq. S2.11 gives that, 

  
CEN

∞ = C3
∞ (p) ≈ −

Z1

Z3

⋅
µ1 / µ2 +1
µ1 / µ3 +1

⋅C1
0
. S2.12 



Note that this equation is generally applicable to arbitrary binary electrolytes. For symmetric 

electrolytes, Eq. S2.12 can be reduced to, 

  
CEN

∞ ≈ 2
a + b

⋅C1
0
. S2.13 

 



Section 3.  The relation between u  and Vcn 

 
The velocity profile of the system is shown in Fig. S3-1. The action of a tangential electric 

field upon the induced space charges near the nanochannel arrays induces a non-equilibrium 

electroosmotic flow, which is named the electroosmosis of the second kind (EOF2) by Dukhin et 

al.1 This electroosmotic slip is much faster (>10x) than the primary electroosmosis (EOF1) in the 

bulk channel. Consequently, a pair of vortices is generated near the nanochannel arrays to satisfy 

the incompressibility of fluid. At the same time, a pressure-driven flow is induced in the bulk 

channel that speeds up the net fluid velocity ( u ), as indicated by the parabolic flow profiles at 

higher Vcn’s. 

 
Fig. S3-1 Fluid velocity profiles in the central microchannel. The electrical configuration is 

VHL=20VT, with Vcn labeled on each curve. The color map represent the x-direction velocity (u) at 

Vcn=20VT. 

 

Theoretical modeling of the fluid flow of the system is challenging, as it involves the coupling 

of EOF1 and EOF2. Rubinstein et al.2-5 and Kim et al. 6 studied the symmetric case of the system 

(VH=VL) , in which there is no net tangential fluid flow (  u = 0 ). According to their studies, the 

EOF2 slip velocity (  us2 ) near the nanochannel surfaces is proportional to the square or cube of 

Vcn, depending on the magnitude of the electric field applied. This nonlinear dependence is 

observed in our model by setting VH=VL, as shown in Fig. S3-2. 



 
Fig. S3-2. (a) Velocity streamlines and velocity magnitude in a symmetric system. The color 

map represent the x-direction velocity (u) at Vcn=21VT. (b) The EOF2 slip velocity (  us2 ) in the 

vicinity of the nanochannel arrays (x=59 µm). 

 

However, when the symmetry is broken (  VHL =VH −VL > 0 ), EOF2 contributes to the net 

tangential fluid flow. Fig. S3-3(a) shows the velocity profiles along the cross-section of the 

channel in the vicinity of the nanochannel arrays (x=59 µm) at different Vcn’s. We take the 

maximum velocity as the EOF2 slip velocity (  us2 ). As shown in Fig. S3-3(b),   us2  is proportional 

to Vcn, which is clear departure from the scaling relation in the symmetric scenario. The detailed 

mechanism calls for further theoretical studies. 

 
Fig. S3-3. (a) The x-direction velocity (u) profiles along the cross-section of the channel in the 

vicinity of the nanochannel arrays (x=59 µm) at different Vcn’s at VHL=15VT. (b) Dependence of 

the EOF2 slip velocity (  us2 ) on Vcn at VHL=15VT. 



Fig. S3-4 shows the dependence of  u  on Vcn and VHL. When Vcn is relatively low compared to 

VHL, the system is dominated by the tangential electric field set up by VHL. In this regime,  u  is 

mainly determined by EOF1, because EOF2 is relatively low due to the weak ion depletion effect. 

Consequently,  u  increases approximately linearly with Vcn at a small slope, as lowering Vn also 

increases the upstream tangential electric field that drives EOF1. As Vcn further increases, the 

system becomes dominated by the electric field set up by VH and Vn. In this regime,  u  is mainly 

determined by EOF2. Because EOF2 is linear with Vcn as aforementioned and EOF2 is much 

faster than EOF1,  u  increases linearly with Vcn with a large slope. Lastly, the higher VHL is, the 

higher Vcn is needed to enter the EOF2-dominated regime. 

 

 
Fig. S3-4. Dependence of the net fluid velocity  u  on VHL and Vcn. When Vcn is small,  u  is 

dominated by EOF1, which is approximately linear with Vcn. When Vcn is large,  u  is dominated 

by EOF2, which is linear with Vcn with a higher slope than that of the EOF1-dominated regime. 



Section 4. Effect of the electrophoretic mobility of buffer ions 

We will only discuss symmetric electrolytes, where the electrophoretic mobility of the cation 

and anion equals ( µ1 = µ2 ). We will simply use  µ2 to refer to the electrophoretic mobility of the 

buffer ions. 

The high electrophoretic mobility of buffer ions accelerates the transport of cations through 

the ion depletion zone and the nanochannels, and the repulsion of anions from the ion depletion 

zone, thereby forming ion depletion zones with lower ion concentrations, as shown in Fig. S4-

1(a). Consequently, thicker extended space charge layers are formed in the ion depletion zone in 

buffers of higher ion mobility, as indicated by the color maps in Fig. S4-1(b). According to the 

Poisson equation, more abrupt changes of the electric field exist in the ion depletion zone at 

higher ion mobility, which leads to stronger electric fields, as indicated by the arrows in Fig. S4-

1(b). As a result, the non-equilibrium EOF in the ion depletion zone is accelerated and the 

trapping of the analyte is enhanced, leading to higher CFs. 

 
Fig. S4-1. Effect of the electrophoretic mobility of buffer ions. (a) Cation concentration profiles 

at different ion mobility. (b) The space charge density (color map) and the electric field (arrows 

plotted in natural logarithm-scale at different ion mobility. 



Section 5. Meshing issues 

We adopted non-uniform distributed meshes to discretize the fluid domain. In the regions 

near the surface of the channel wall, the intersection of the channel wall and the membrane, as 

well as the inlet and outlet of the microchannel, the density of the mesh is increased significantly. 

While in the other regions, relatively coarse meshes are used. For example, to discretize the half 

width (2 µm) of the microchannel, we use a geometric sequence of 40 elements, with the 

maximum size being 12000 times larger than the minimum size (0.428 µm near the center of the 

microchannel and 0.036 nm near the charged surface, respectively). Inside the Electrical Double 

Layer (~10 nm), there are ~20 layers of exponentially decreased meshes, which provides 

sufficient details for the physical fields, while total number of meshes is kept small.  Similarly, 

the 1 µm length of the membrane is discretized into 60 elements with the maximum size (in the 

middle) 30 times larger than the minimum size near the intersection of the membrane and the 

channel wall. This provides good approximation of the sharp changes of fields like electric 

potentials, fluid velocities, and ion fluxes at the intersection regions. 

To further prove that the simulation is converged and mesh independent, we studied the 

results of concentration factor, maximum electric field and maximum velocity in the axial 

direction along the center line of the microchannel using increased mesh densities up to 10 times 

of our original mesh. The parameters are Z3=-2, D3=D2/4, and Vcn=14VT. From results in the table 

below, we can find that the differences are negligibly trivial, and there is no clear trend for 

increasing mesh density. Therefore, we believe that the difference between them is caused 

largely by random truncation errors, instead of by insufficient mesh densities. 

 

Table S5-1. Comparison between different meshing densities. 

Relative mesh 

density 

CF Max(Ex ) (V/cm)  Max (Ux)(mm/s) 

1 304.7901175 229.486504707708 0.47307413622658 

2 304.7901175 229.486504709585 0.47307413633830 

3 304.7901174 229.486504707187 0.47307413631592 

4 304.7901175 229.486504708426 0.47307413632509 

5 304.7901174 229.486504705944 0.47307413618178 

6 304.7901175 229.486504709408 0.47307413632049 



7 304.7901176 229.486504710507 0.47307413632845 

8 304.7901176 229.486504710479 0.47307413627204 

9 304.7901174 229.486504707839 0.47307413632964 

10 304.7901175 229.486504707485 0.47307413618932 
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