
Supporting Information

Structural Transition in Physical Networks

Nima Dehmamy,1 Soodabeh Milanlouei,1 and Albert-László Barabási1, 2, 3
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5. Erdös-Rényi Random Graphs 59

D. Average Link Length 61

1. Average Link Length in Erdös-Rényi Random Networks 61
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SI 1. INTRODUCTION

Some networks, such as the network of neurons in the brain, reside in three-dimensional

space. Links and nodes in these networks occupy space. Many aspects of such networks are

studied as part of “gelation” processes in polymer physics (see [19] chapter IV for instance).

Gels are like frozen polymers with inter-linking, like vulcanized rubber. But in polymers, the

ideal situation with maximally stretched links (occupying minimal volume) is not generally

of interest, as it is highly unnatural. For problems such as the organization of the white

matter of the brain, however, each long fiber has a cost to produce and thus the system must

be very economical.

To understand the structural properties of networks in 3D, we must understand the con-

straints that being embedded in 3D puts on the network. In particular, the layout algorithm

used to embed the network in 3D must take the thickness of the links and node sizes into

account. Most layout algorithms used today are derived from the “Force-directed Layout”

(FDL) algorithms [20, 21]. FDL has the benefit that nodes connected to each other are pulled
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closer and, thus, it clusters nodes that belong to the same network modules [22]. However,

FDL without modification does not take link thickness into account. Here we develop a

layout algorithm which is based on FDL, but which allows for efficient layout of networks

in 3D, helping us understand the physical properties of such layouts. By efficient layout we

are referring to a layout which aims to minimize the space occupied by the nodes and links.

In other words, the algorithm tries to find the layout with the shortest links, while avoiding

crossings between links or nodes. We achieve this by defining repulsive forces among links

and among nodes. As we will discuss below, finding the real optimum of this problem is

NP-hard. However, using heuristic methods, such as simulated annealing, allows us to find

reasonably good layouts in a short time.

Our main result that networks in 3D will have two main phases: Weakly interacting

regime, where links are very thin, compared to node sizes, and link crossing is rare; Strongly

interacting regime, where links are thick, filling the space, and have to bend and curve

significantly to avoid crossing. The existence of these two phases is observed in various order

parameters. We use the average link length, average link curvature, as well as the relaxation

time for simulations to quantify these two phases and to identify where the transition occurs.

The details of the definition of link curvature and how we define the relaxation time are given

in sec. SI 5.

SI 2. LINK CROSSING IN LAYOUTS WITH STRAIGHT LINKS

Before examining the bent links, we first discuss the behavior of link crossing in 3D

embedded networks when the links are straight. Analyzing the number of crossings as

a function of link thickness in FDL yields a linearly growing number of crossings (Fig.

SI.4.) The point where crossings become noticeable depends mostly on the network density

parameters, similar to how in self-avoiding polymers the excluded volume depends on the

interaction strength. Figure SI.5 shows that as we increase the link thickness, the number of

crossings grows linearly. We show below that randomly oriented cylindrical links will result

in a linear trend for the number of crossings versus link thickness.
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FIG. SI.4. (A) Crossing links for a Barabasi-Albert (BA) network (N = 20,m = 3) in space, drawn by FDL. While
increasing the link thickness rL, the network occupies more space and crossings increase. (B) The plot shows the trend by
which the number of crossings increases in a BA network with N = 100,m = 3 laid out in 3D using FDL. The number of
crossings increases linearly with rL at first, before tapering off due to finiteness of the network. It can be shown (SI 2) that
layouts which result in random link orientations yield such linear trend in the growth of the number of crossings.
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FIG. SI.5. Left: The behavior of the number of crossings as a function of link thickness. Trivially, once the thickness
becomes comparable to the network size (when “thickness/net. size” becomes order 1) the crossings saturate and most links
cross. The region in which trying to make links avoid each other is much smaller. It extends from zero thickness up to where
thickness / net. size is of order 1/

√
Ne with Ne being the number of links in the network. In the BA network with 100 nodes

and m = 3 considered here 1/
√
N3 ≈ 0.06, which is a safe lower limit for the region where avoiding crossings is possible. Right:

a zoomed-in version of the dashed-red box on the lest highlighting this region of validity of avoiding crossings. The legends
show a good linear fit to the data up to thickness / net. size = 0.2.

A. Number of Conflicts: Phase Diagram

We wish to find the number of crossings as a function of link radius. We will divide this

radius by N1/3 to get the average space per node. The number of links should be of order

2N because each new node brings in exactly two new links. Thus, we expect most links to

intersect once their radius becomes of order r/2. When the thickness is very small, we expect
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FIG. SI.6. Simulations of number of crossings in BA and ER networks, when laid out using FDL. When plotted in log-log,
we see that both networks show a linear trend in the growth of the number of link conflicts as a function of the link thickness.
To efficiently calculate the number of crossings, the links are broken into small segment and the space is partitioned into cells.
Then, only conflicts within cells with more than one link crossing them are counted. This avoids order L2 computation.

there to be very few crossings. In this case, perturbing the layout should be able to resolve

the crossing. At very high thickness, though we know that the layout may get clogged up

so that no perturbation could resolve the crossings. There should be a qualitative difference

between these two states.

Simulations of Barabasi-Albert and Erdös-Renyi networks layed out in 3D using the

Fruchterman-Reingold forced-directed layout seems to suggest that in this setting the qual-

itative behavior of these networks for different values of parameters is very similar. Figures

SI.7, SI.8 and SI.9 show simulations with parallel, randomly oriented and finite links, re-

spectively. The plateau in the number of crossings at large radii is due to the limitation of

the optimized algorithm, which partitions the space into smaller boxes and fails when the

link radius reaches box size. As we can see in Figure SI.6, the number of crossings in both

types of networks and in all four simulations grows linearly with link radius. The question

is whether this is due to the layouts randomness.

B. Random Crossings

What is the source of the linear growth of the number of crossings between links with

link thickness? We show here that it depends a lot on the way the links are arranged in

space. In particular, we first show that if the links were arranged parallel to each other,

but at random distances from each other, the number of crossings among them would grow

quadratically with the thickness, inconsistent with the observed trend in FDL. Next, we
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FIG. SI.7. Simulated crossing count of 200 parallel links. One simulation used 30 partition cells in space and the other used
300 cells. In both the number of crossings grows as r2, in accordance with the theoretical expectation. This is in contrast with
the linear trend observed in the link crossing of force-directed layouts of random graphs.

show that the observed linear trend is reproducible if the links are either randomly oriented,

or even grouped in two groups of parallel links but in two different spatial dimensions (e.g.

one stack parallel to the x-axis, another to the y-axis).

1. Parallel Links with Random Distances

For simplicity, let’s first consider a number of dots scattered with a random uniform

distribution in d dimensional space with a density ρ. Suppose we want to grow d dimensional

balls around these dots and wish to count the number of balls that overlap. Because of the

uniformity, the total number of balls of radius r crossing each other is the number of points

that are within less than 2r distance of each other, which is

n(r) =

∫ 2r

0

ρ(r)dV ol = ρΩd−1(2r)d (SI.5)

which scales with the volume of space. In two dimensions, for example, this would mean

that the number of circles of radius r crossing each other will be 4πρr2. To compare with

the problem of link crossing, if we had parallel cylindrical links in 3D, their cross-section

would have been randomly scattered circles in 2D and again the number of crossings should

grow quadratically with radius.
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FIG. SI.8. Simulated crossing count of randomly oriented links. In both the number of crossings grows as linearly with r,
in contrast to the parallel link case. This is the same trend as the one observed in the link crossing of force-directed layouts of
random graphs.

2. Randomly Oriented Links

Now consider infinite cylindrical links scattered with random orientations in a 3D space.

Assume that the space occupied by the cylinders has a roughly constant density within cubes

of links d� r. Take the cross-section of this space with a flat plane. The center lines of the

cylinders are uniformly distributed points on the plane and the cross-section of the cylinders

are ellipses. The ellipses may be very eccentric, but the minor axis, which is also the radius

of the largest circle that fits inside the ellipse, is again r. Thus, regardless of the eccentricity,

if two dots on the plane (the cross-section of center lines of two links) are closer than 2r

from each other, then the two links will definitely cross. Again, the number of dots less than

2r away from each other on any random flat plane grows with r2 and this is only a lower

limit for the crossings assuming zero eccentricity for the cross-sectional ellipses. Therefore

the number of link crossings should also grow at least quadratically in 3D.

3. Two and Three Stacks of Parallel Links along Different Axes

However, contrary to this argument, as Fig. SI.8 shows, the number of crossings among

randomly oriented infinite links does grow only linearly with radius, as it did in the random

graph layouts. The same linear trend is observed in finite random links.

But there are other simpler examples which also show a linear trend in the growth of the

number of collisions. For instance, if we take a number of random parallel links and add a
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FIG. SI.9. Simulated crossing count of randomly oriented finite links which shows the same linear trend as the infinite
randomly oriented links, suggesting that the random orientation is cause for the trend.

similar number of links that go in a direction perpendicular to those links the trend becomes

linear instead of quadratic, as is demonstrated in Figure SI.10. The trend is linear for two

sets of parallel links, where one parallel set is perpendicular to the other parallel set. The

same is true for three perpendicular sets of parallel links.

C. Deriving the Linear Growth of Conflicts

The number of links within distance r of a point on link a can be found by projecting all

links onto the plane to which link a is normal. Since the angle distribution is random, we

get a uniform distribution of lines on this plane and the number of lines within distance r

of a point on a 2D plane grows linear in r (Fig. SI.11.)

Consider a set of infinite parallel lines distributed uniformly in 2D with linear density λ in

the direction perpendicular to the lines. Now consider a point p on this plane. The number

of links that a circle of radius r centered at p crosses is simply

n(r) = λr

and is a linear function of r because only the projection in the direction perpendicular to

the lines determines whether or not they cross the circle.

Now, consider n random lines in a 2D plane with a uniform density (i.e. number of lines

passing through a unit square) λ. Again, the number of lines passing a circle of radius r

around a point p grows linearly with r. To see this, take a line l. Draw the line that passes
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FIG. SI.10. Simulated crossing count of 2 and 3 sets parallel links with each set running perpendicular to the other sets.
The trend of the number of crossings becomes linear, which is different from the quadratic trend observed in oe set of parallel
links in Fig. SI.7 and agrees with the linear trend observed in the link crossing of force-directed layouts of random graphs and
in the randomly oriented links in Figs. SI.8 and SI.9, suggesting that being having components perpendicular to another link
may be the key to the linear trend.

FIG. SI.11. Left: The projection of the line through the center of an link e1 on the plane normal to link e2 which crosses
the link at point n2. Because links are randomly oriented, the distance of e1 and e2 is the distance of the blue line from the
point n2. The uniformity then means that the blue lines have uniform density at random angles on the plane and thus their
number within distance d is linear in d. Right: If links were parallel, the projection of e1 onto the plane would be a point.
Thus the distance of the links is the distance of two points on the plane. Uniform spatial distribution in this case means we get
uniformly distributed points on the plane and their number within a circle of radius d grows as d2.
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through p and lands perpendicular to l. Say the distance from p to l is d. This distance

determines whether or not l crosses a circle around p. Because of the rotational symmetry,

if we rotate all lines around p and make all lines parallel to each other, we will not change

the distribution of their distances from p. Since they were distributed uniformly in space,

the parallel version will also have a uniform distribution. As we showed above, the number

of crossings for the uniformly distributed lines grows linearly with r and thus so does the

trend for randomly oriented lines. The point p above can be thought of as the center of the

cross-section of a link running perpendicular to a plane containing other links. Thus, the

number of crossings of a link that is perpendicular to a number of other links inside a plane,

either parallel links or randomly oriented ones, will grow linearly with the radius of the cross-

section of links. To see this, take a plane crossing a link (with the link coming out normal

to it). Project all the other links onto this plane. The projections of the centroid of these

links will be randomly oriented links on this plane. Now, any line that is within distance

2r of p results in a conflict with our reference link. If the links are uniformly, randomly

distributed in space, the number of links within 2r grows linearly with r, as argued above.

This argument only fails if the projections of the other links is not a line in this plane, which

only happens if all links are parallel to the reference link. We already showed that in that

case the crossings grow quadratically.

Thus, having links that have components in at least two perpendicular directions in 3D

leads to a linear trend in the number of crossings as a function of r.

D. Finding Overlapping Links

Consider two straight links A and B. Denote the two vectors pointing to the endpoints

of the two links by A1, A2 and B1, B2. Define the a = A1 − A2 and b = B1 − B2 which are

parallel to the lines connecting the two endpoints of each link. The links are cylinders of

diameter d. We wish to find whether or not the two links intersect, i.e. whether the two

links come closer than a distance d of each other. The shortest distance between the two

vectors is a× b, since this is perpendicular to both a and b. Define

c = a× b

12



we can decompose a to its components parallel and transverse to b

a = a‖b̂+ a⊥(b̂× ĉ)

a‖ = a · b̂,

a⊥ = a · (b̂× ĉ) = ĉ · (a× b̂) =
|c|
|b|

(SI.6)

1. Measuring Link Distance

Consider the plane P spanned by b and c and containing the link B. The unit vectors b̂

and ĉ form an orthonormal coordinate system for this plane and any point on the plane can

be written as

xp = xmb̂+ xcĉ

The plane itself is defined through the normal vector

n̂ = b̂× ĉ

and any multiple pn̂ of n̂ from the origin intersects the plane. When a and b are not parallel

to each other, a will cross the plane P at a single point. The projection of link A onto P is

a line parallel to B. Therefore we can use the following to find the distance between the two

links. We will first pick one endpoint from each of A and B. The vector connecting the two

d = A1 −B1

is a vector whose projection of the vector c = a × b is perpendicular to both a and b and

thus also to the projection of a onto P . Since on P the projection of a is parallel to b, the

magnitude of the projection dp of d onto P is the minimum distance between the two links.

Thus we have

|dp| = d · ĉ
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2. Caveat

The above-mentioned dp is the least distance between the two links only if A crosses the

plane P . Otherwise, one of the endpoints will be the closest point to the other line and we

need a different strategy. Let’s first figure out a way to see if A crosses P or not. To this

aim we will look at the projections of d1 = A1 − B1 and d2 = A2 − B2 along the normal n̂.

Regardless of which endpoints of A are being connected to which on B, if the projections of

d1 · n̂ and d2 · n̂ have the same sign it means A did not cross P and if they have opposite

signs or one is zero A will have crossed P . Thus

if: (d1 · n̂)(d2 · n̂) > 0 ⇒ A not crossing P

And so the closest point on A to B is one of A’s endpoints. Similarly, we need to check if

B crosses the plane spanned by A and ĉ. If not, the closest distance of the A and B will be

one of their endpoints to each other.

SI 3. ELASTIC LINK MODELS: ELI AND FUEL

Our main goal is to understand the volumetric constraints on embedding networks in 3D.

To achieve this, we propose a simple model that minimizes the length of links, while avoiding

link crossing. We will begin by deriving mathematically how to find the shortest path

between two points, in the presence of obstacles, showing that it is equivalent to stretching

a rubber band between them. Next, we define smooth alternatives to hard-core repulsion

to define repulsive forces among links and among nodes to make crossings energetically

unfavorable. We then combine all the potential energy terms and derive the equations of

motion in a strongly dissipative medium, to make sure the system moves to a local minimum

energy state.

A. Equivalence of Shortest Path and Stretched Rubber Band

To find a globally optimum geodesic, be it in flat or curved space, one has to check

many different paths and locally optimize them. A locally optimized path, meaning every
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segment is as short as possible, is a geodesic. But in curved space there exist many geodesics

connecting two points. This is because the geodesic equation is a second order ODE and

different initial velocities may exist which make the geodesic cross the same final point in

space. Denote the components of the metric of the space by gµν . Heuristically, since a

geodesic is locally the shortest path, a simple way to find geodesics between points should

be to assume that they are stretched rubber bands. This assertion can be made rigorous.

The key point is that for a geodesic we are minimizing the total path length locally, which

means that we are minimizing the action

S[γ; a, b] =

∫
γ

dt

√
gµν(x)

dxµ(t)

dt

dxν(t)

dt
(SI.7)

where γ denotes the geodesic path. The energy for a rubber band has a similar form, but it

lacks the square root

E[γ; a, b] =
k

2

∫
γ

gµν(x)
dxµ(t)

dt

dxν(t)

dt
dt (SI.8)

But if the parameter t is itself an “affine parameter” (e.g. using the actual proper length

element dl = dS as the parameter, with S being the action above), we can show that the

equations of motion derived from S and E become the same. To see this, we will derive the

Euler-Lagrange equations from varying S and E. First define

dl ≡
√
gµν(x)dxµ(t)dxν(t),

and for convenience f (x) ≡ kx2/2 so that E =
∫
f(dl/dt)dt. Varying S yields

δS =

∫
dtδ

(
dl

dt

)
=

∂l̇

∂ẋµ
δẋµ

∣∣∣∣∣
tf

t0

−
∫
dtδxµ

d

dt

(
∂l̇

∂ẋµ

)
(SI.9)
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where the first term is a boundary term and vanishes because δẋµ = 0 at the boundaries.

From varying E we have

δE =

∫
dt
df(l̇)

dl̇

δl̇

δxµ
δxµ

=
df(l̇)

dl̇

∂l̇

∂ẋµ
δẋµ

∣∣∣∣∣
tf

t0

−
∫
dtδxµ

d

dt

(
df(l̇)

dl̇

∂l̇

∂ẋµ

)

=−
∫
dtδxµ

[
∂l̇

∂ẋµ
d

dt

(
df(l̇)

dl̇

)
+
df(l̇)

dl̇

d

dt

(
∂l̇

∂ẋµ

)]
(SI.10)

In the last line, if we only had the second term minimizing E would require the same equation

as minimizing S. The first term here contains

d

dt

(
df(l̇)

dl̇

)
= k

dl̇

dt
=
d2l

dt2

If the parameter t is an affine parameter, say t ∝ l, i.e. proportional to the proper length l it-

self, this term is proportional to d2l/dl2 = 0 and would vanishes. So, an affinely parametrized

geodesic and the energy function of a rubber band with the same parametrization yield the

same equations of motion. Thus, we can replace the problem of finding geodesics between

two points with the problem of finding minimum energy configurations of a stretched rubber

band connecting the two points. The difference in initial velocities of an object following

the geodesic, which leads to having multiple geodesics connecting two points, is related to

having different spring constants k.

B. Elastic Links

As is known about geodesics [1], and discussed in appendix SI 3 A, the problem of mini-

mizing the length of links can be mapped to stretching elastic rubber bands between points

in space1. The contribution of the stretched rubber band model of link l to the total energy

is

El[γl] =
k

2

∫
γl

dsl
d~xl
dsl
· d~xl
dsl

, (SI.11)

1 The trade-off is that we lose re-parametrization invariance. The energy equation has a fixed parametriza-

tion dsl which is an affine parametrization of the path.
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where d~xl/dsl denotes the tangent vector to link l (along the line through the center of the

tube), γl is the path of the link, and k is the spring constant. The energy is obviously a

function of the path γl. The full elastic potential Vel of the system is

Vel =
∑
l

El (SI.12)

The rubber links will occupy some space and exert a strong repulsive force on each other.

Within one link, however, we will only assume no repulsive interactions. This allows the

links to shrink to their minimal length under the elastic force of the stretched rubber band

model and assume the equilibrium length of the band the be zero to allow for maximum

shrinking.

C. Repulsive Potential

For large molecules, one usually uses a potential ansatz like the Lennard-Jones potential

V ∼ (rL/r)
12−(rL/r)

6 to simulate the van der Waals interactions, which is weakly attractive

at large distances and strongly repulsive at short distances of order rm. Since we are not

concerned with molecules here but rather spatially embedded networks in general, we will

not assume any attractive force between links and only assume there is a strong repulsion

once link walls get close to each other. The simplest way to model this would be a repulsive

force F = −∇V that grows quickly once links get closer than twice the link thickness. In

the ideal case, the force is infinite when the two touch or have distance less than twice the

thickness. But a force coming from an infinite potential does not behave well in numerical

simulations. A remedy is to simply not allow segments to move into each other by fixing

minimum distance. But a better strategy numerically is to “regularize” the potential by

replacing it with a finite potential that achieves approximately the same results.

The simplest regularization would be to replace the wall potential with a steep incline

V ∼

−A(r − rL) r < rL

0 otherwise

with A being large compared to 1/δt. But again, from the numerical point of view this
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has the problem that the force is exactly zero at rL + ε and nonzero and large at rL − ε

which causes numerical errors and irregular behavior. Also from the physics perspective, this

potential is bad because the direction of the force is ambiguous at the origin. A physically

meaningful force would either become infinite so that the other particle could never reach

r = 0 or it would go to zero so that the force direction wouldn’t matter at r = 0

Physical: lim
r→0

F (r) = 0 or ∞

Since F (r) → ∞ is again numerically problematic, the only choice is F (0) = 0. To get

F (0) = 0 we may choose the potential to be an inverted parabola like

V ∼

A(r − rL)2 r < rL

0 otherwise

Of course we can also take V ∝ 1/rn and regularize it to something like 1/(rn + ε), but the

resulting force is long-range, because it falls like a power-law. We may again cut this force

off beyond rL, but all these choices make the repulsive force harder to control and make

assuring that the links stay outside of 2rL distance harder to implement. Also, to fix the

numerical force discontinuity issue when r → rL we have to have a potential which is smooth

at rL. Thus instead of the patchwork encountered above, the numerically sane alternative

that provides both a controlled, localized force and with an adjustable amplitude without

having to patch different functions together and without the need for regularization is the

Gaussian potential. The Gaussian provides a force which is smooth everywhere, including

at the origin and is therefore an ideal choice for numerical simulations. The thickness of

the links will then be twice the width of the Gaussian potential and the amplitude is the

strength of the repulsion.

1. Gaussian-type Repulsive Force

We argued above that one of the most appropriate choices of repulsive potential which is

tailored for our purpose is the Gaussian potential. We will assume that every line segment in

one link has a repulsive Gaussian interaction with every segment of another link. Consider a
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FIG. SI.12. Comparison of the linear incline and the Gaussian potential. While looking similar in shape, the force from the
Gaussian is much more well-behaved at r = rL and r = 0 and is better suited for numerical analysis.

segment of link a. Denote the value of the length parameter parametrizing the path γl of the

link by sl. The tangent vector to this infinitesimal segment d~xl(sl) interacts with segments

of other links via

dVlm = dsldsmA exp

[
−|~xl − ~xm|

2

4r2
L

]
. (SI.13)

Here A is the amplitude of the force and rL is the cross-sectional radius of the links. Thus,

the total interaction between segments of a and b is found by integrating over the paths of

the two links

Vlm[γl, γm] =

∫
γl

∫
γm

dVlm (SI.14)

which depends on the two paths γl and γm. The full link-link repulsion potential is then

VLL =
∑
l 6=m

Vlm (SI.15)

Other potentials of the form exp[−| ~Xi − ~Xj|n/(2r)n] with n > 2 may also be used. The

higher the n, the steeper will be the potential.
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D. Node Repulsion

To add node dynamics to the system, we will define the node positions ~Xi as dynamical

variables. The full node-node repulsion potential is

VNN =
∑
i 6=j

Vij, Vij = AN exp

[
−|

~Xi − ~Xj|2

4r2
N

]
. (SI.16)

where i, j are node indices, AN is the amplitude of the repulsive potential and rN is the node

radius.

The force from the links on the nodes does not come from a new potential. It is, in fact,

contained inside the elastic potential of the links, as the endpoints of the links are attached

to the nodes. The only point is that we will allow nodes to be dynamic, instead of fixed.

We denoted the tangent vector along link a by ~vl(l) = d~xl(sl)/dsl. To couple the links with

their corresponding nodes we simply need to add a minimal coupling interaction between

the end-point tangent vectors ~vl(0) and ~vl(sl) with the nodes they attach to. Here sl denotes

the final value of the affine length parameter sl for link a. The potential for this interaction

looks like2

VNL = c
N∑
i=1

~Xi ·
∑
a∈<i>

~vl

(
l
(end)
l

)
(SI.17)

where < i > denotes the set of indices of links connected to node i and l
(end)
l is either 0 or

sl depending on which end of link a is attached to node I. We will assume c = 1. We will

also assume that the mass and friction constant for the nodes is such that the λN in the

Langevin equation is of the same order as the λ for the link segments in (3).

2 In general each term could have a different coupling coefficient, but that degree of complexity is unnecessary

here.
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E. Full Potential Energy

In summary, the total potential energy of the system becomes

V = Vel + VNL + VNN + VLL

=
k

2

∑
l

∫
dsl

∣∣∣∣d~xldsl

∣∣∣∣2 + k

N∑
i=1

∑
l∈<i>

~Xi ·
d~xl
dsl

∣∣∣∣∣
sl=s

(end)
l

+ AN
∑
i 6=j

exp

[
−|

~Xi − ~Xj|2

4r2
N

]
+ AL

∑
l 6=m

∫∫
dsldsm exp

[
−|~xl − ~xm|

2

4r2
L

]
, (SI.18)

where Vel is the total elastic potential of all links l = 1, ..., L. Each link is modeled as

an elastic cylinder with radius rL, experiencing both internal elastic forces and short-range

external repulsive force from other links and nodes. VNL captures the node-link interactions

at link endpoints; the non-crossing condition is ensured by a short-range repulsive force in

VNN (node-node interaction) and VLL (link-link interaction) modeled as short-range Gaussian

potentials whose strength is set by AN and AL. In (SI.18) sl is the length parameter of link

l and ~xl(sl, t) represents the position of a point along the center of the link at time t; s
(end)
l is

the parameter value at the endpoints of link l; l ∈< i > represents the set of links connected

to node i; ~Xi(t) is the position of node i; rN is the range of the node-node repulsive force; k

is the elastic constant of the links.

F. Dynamics and Minimization of the Potential Energy

The total potential energy for the links, which is a function of the set of paths {γ} that

they take, is given by

V [{γ}] = Vel + VLL =
∑
l

El +
∑
lm

Vlm. (SI.19)

To find the ground state of this system, i.e. optimal static configuration, we can introduce

strongly dissipative dynamics in the system. As we show below, this will make the equations

of motion effectively first order, gradient descent equations.

Consider a point ~xl(sl(t)) on link a where the length parameter has value sl(t) and at

time t. We can introduce a kinetic energy term to the energy which is the sum of the kinetic
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energies of all infinitesimal segments. A segment of length dsl will have a mass λdsl, λ being

the linear mass density, and thus its kinetic energy is

dKl = λdsl

∣∣∣∣d2~xl
dt

∣∣∣∣2 .
Summing over all segments, we get Kl[γl] =

∫
γl
dKl. Friction terms for an infinitesimal

segment will have a similar structure. If we assume we are in a viscous medium and that

the amount of friction is simply proportional to the length, in the equation of motion for a

segment of length dl, kinetic friction fk appears as

dfk(l, t) = ηdsl
d~xl(l, t)

dt
.

Since the potential depends on both time t and the length parameters sl, the equations of

motion are more complicated than the usual particle equations of motion. We can think of

the position vectors ~xl(sl, t) as three component (in 3D) fields whose parameters are sl, t.

The equations of motion are derived the same way as for fields. We have a potential energy

density that is a function of both the field ~xl and its derivative with respect to sl ~vl ≡ d~xl/dsl.

The equation of motion therefore includes partial integration with respect to sl. In summary,

if we denote components of ~xl by xµl , we have

EoM : λ
d2xµl
dt2

+ η
dxµl
dt

= − ∂V
∂xµl

+
d

dsl

∂V

∂vµl
. (SI.20)

The first term on the right is the familiar ∇xlV and will be nonzero only for the repulsive

potential Vlm. But the second term acts on the internal elastic potential and yields

d

dl

∂V

∂vµl
= k

d2xµl
ds2

l

.

This is measuring the change in lengths of the segments from one point to another. The

reason is that when a rubber band is stretched uniformly, the internal points will not move

relative to each other because all forces in all pieces are the same and they cancel out. There

will be a non-zero force, and hence movement along the rubber band, only if there is a change

in the segment tangent vectors ~vl = d~xl/dsl in adjacent segments, as they measure length
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vectors along the band.

We can now derive the Euler-Lagrange equations for a segment of length dsl around this

point using the action S = K − V . To do so, we need the variations with respect to both

the position of the points ~xl and the tangent vector ~vl ≡ d~xl/dsl(t). They read

δS[{γ}]
δ~xl

:
d2~xl
dt2

=~∇xlV [{γ}]− d

dl
~∇vlV [{γ}]

=− kd
2~xl
ds2

l

+
A

2r2
L

∫
γm

dsm(~xl − ~xm) exp

[
−|~xl − ~xm|

2

4r2
L

]
(SI.21)

To allow the system to quickly converge to a local minimum of the potential, we will

assume strong friction, meaning that, if the observation time is τ , we will assume λτ � 1

and will discard the acceleration term. So in the end the equation whose dynamics we will

simulate to find local minima of this system is

η
d~xl
dt

= −~∇vlV +
d

dsl
~∇vlV. (SI.22)

Once the dynamics stops, all forces vanish and we will end in some local minimum.

G. Curse of Local Minima

Notice that the equations above stop the dynamics at any local minimum. Similar to many

other coupled systems, such as spin glasses [23, 24], the energy landscape of this system is

rough and consists of exponentially many locally optimum states which may themselves lie

far from the globally optimum configuration. Therefore, we will use Simulated Annealing to

allow the system to escape local minima and find close-by, potentially lower local minima.

The amplitude of repulsion among links, as well as the choice of number of segments

play a role in how well the system can manage to get out of local minima. Choosing a high

number of link segments to mimic the continuity of links, will make it harder for links to

pass through each other. Subsequently, tunneling between local minima gets more difficult

and the layout will almost always get stuck in a local minimum, where part of the lattice is

twisted, or has a kink.
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1. Simulated Annealing and Vast Local Minima

The trick is to add some thermal noise to the system. In our case, we can think of the

thermal noise literally as thermal fluctuations of the links. We start by assuming that the

positions of link segments are only known as a statistical average and that they fluctuate.

Thus we replace

dsl(t)→ 〈dsl(t)〉T (t)

where T (t) is the temperature of the system at time t. The amount of fluctuation will be

proportional to the temperature and the energy of the path. Thus, we have to sum over all

paths that the links take and we have to weight each path by the Boltzmann factor based

the energy of the path. If we discard the kinetic part of the energy because of high friction,

the expression for the Boltzmann weight becomes similar to the “world-line formalism” of

polymers. Denote the sum over all possible paths γl for link a by
∫

[dγl]. The partition

function for this system, assuming strong friction, is given by

Z[β] =

∫ ∏
l

[dγl] exp [−βV [{γ}]] , (SI.23)

with β = 1/T . This is closely related to the world-line formalism of polymer partition

function [2]. Now, instead of the original Langevin equations, the expected values of variables

satisfy these equations

0 =

〈
λ
d~vl
dt

+ ~∇vlV

〉
=

∫ ∏
l

[dγl]e
−βV [{γ}]

(
λ
d~vl[γl]

dt
+ ~∇vlV [{γ}]

)
. (SI.24)

Note, however, that this equation only makes sense if we are close to equilibrium because

we are using an equilibrium Gibbs distribution. That is the thermal fluctuations must

happen at a time-scale that is much faster than the time-scale of the dynamics so that

the thermodynamic averaging makes sense. When this is not the case, the problem still

makes sense as a non-equilibrium system, but the expected value equation above will deviate

significantly from zero if the temperature is not extremely small. In other words, even when
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the dynamics takes the system to the vicinity of a local minimum we have

〈F (t)〉T,dt ≈ F ± δt |∂tE|√
T
σ(F )T,dt, (SI.25)

where F is the value without thermal fluctuations (i.e. at T = 0), and |∂tE| is the rate

at which the system’s energy is changing. This means that when the system is not at

equilibrium the thermal average taken over a period dt will fluctuate in accordance with

the rate of energy change. Since the global minimum cannot be calculated analytically in

general, we don’t have to worry about near equilibrium description and running the annealing

schedule should yield good enough configurations because the fluctuations in (SI.25) allow

the system to jump over barriers in the potential energy that are smaller than the σF term

in (SI.25).

The setup described above is mathematically similar to that of interacting elastic poly-

mers, or more generally fluctuating manifolds in [3] with imaginary noise.

2. Annealing Schedule

We start cooling the system with an exponential cooling schedule and once it “freezes” as

T → 0, we will examine the energy. Simulated annealing is not guaranteed to find the global

optimum, but it generally finds states that are much better than a local minimum attained

by a fixed initial condition3. This is related to the fact that the thermal fluctuations may

be seen as renormalization of the free energy (similar to the discussion of chapter XI of [19])

which gets rid of small local dents in the potential energy landscape.

Thus, all we need to do is add thermal noise to the system during the dynamics and

gradually decrease the level of the noise, hence decreasing the temperature and “anneal” the

system. We choose the schedule of the annealing process to be exponential in time

T (t) = T0 exp[−t/τcool], (SI.26)

where τcool is the cooling exponent, chosen based on the speed of the dynamics. The system

3 The reason is that the thermal fluctuations allow the system to explore large areas of the energy landscape

and the gradient descent introduced as the dynamics will help the system fall into the lowest minimum

within that large phase space area. The fluctuations, which allow the system to overcome small barriers

between local minima, are effectively smoothening the energy landscape in the sense of (SI.25).
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will need the thermal noise for short period of time. T0 is also chosen based on the parameters

of the system. In particular, initially T0 > A where A is the amplitude in Eq. (SI.19) of the

repulsive potential V .

SI 4. CONTRACTIBLE LINKS WITH SELF-REPULSION

Note the l 6= m in (SI.18) in the link repulsion VLL, excluding self-repulsion in links. The

reason is that VLL models every link segment dsl as a soft sphere repelling other link segments

in its vicinity. Thus, allowing self-repulsion would interfere with the contraction of elastic

links and result in wiring length exceeding minimal possible length. While in most situations

avoiding such self-repulsion is desired, in some cases where space is very limited links are

pressed against themselves, bending sharply onto themselves as a consequence, resulting

in unnatural layouts (Fig. SI.13C). For these situations, we propose a more sophisticated

potential energy which models the link segments dsl as ellipsoids. These ellipsoids will have

radii rL in directions perpendicular to the link segment and radius |dsl|/2 along the link. VLL

will then describe the interaction of pairs of ellipsoids, which can be achieved by replacing

the simple Euclidean norm |xl−xm| by a norm calculated using a “double-ellipsoidal metric”√
∆xTlmg

(lm)∆xlm, where ∆xlm = xl − xm (SI 4). For a pair of link segments dsl and dsm

this metric is given by

g(lm) =
[(
r(l)R(l)T + r(m)R(m)T

)(
R(l)r(l)T +R(m)r(m)T

)]−1

, (SI.27)

where r(l) =
(

dsl
2

r1 r2

)
is the “structure matrix” of ellipsoid l, which is the set of three

vectors defining the axes of the ellipsoid (one along the link segment dsl/2, and r1, r2 per-

pendicular to dsl) and R(l) is the rotation matrix transforming these three vectors into the

principal x, y, z directions in space. The interaction of ellipsoids has been discussed exten-

sively in the context of polymers and the Gay-Berne potential [4, 25, 26]. It has also been

used to describe DNA and other macromolecules as stack of ellipsoids [27–29]. The only

difference in our case is that the ellipsoids will stretch and shrink with the links. Using this

more accurate double-ellipsoid VLL and allowing l = m, resolves the anomalies in the case

where space is limited (Fig. SI.13). Finally, note that the outcome of the ellipsoidal potential
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is the same as the spherical case when space is not limited as both models are minimizing

wiring length, while avoiding crossings, and both have short-range repulsive forces. Thus

we will use the spherically symmetric potential in (SI.18) in most cases, unless space is too

limited and the layout becomes unnatural.

A. Resolving Self-crossing Using a Gay-Berne Potential

When defining repulsive forces for elastic links, a dilemma. Consider a simple short-

range repulsive force, such as hard-core repulsion or smooth versions of it. They all define a

minimum distance that any given point on a link would have from all other link points. Here

lies the dilemma: We want the links to not have a predefined minimum length –the length

is determined by the optimization process–, but on the other hand, we don’t want a link to

cross itself, either. If we introduce self-repulsion through a fixed radius hard-core repulsion,

that radius times the number of discrete link segments determines the minimum link length

and it will prevent us from finding optimal wiring length. The resolution that we propose is

a repulsive force that adjusts itself to the length of the link.

In directions perpendicular to the link segment, we want the range of the repulsive force

to be the link thickness rL. But along the link segment with length ds, we want the force

to only reach a distance ds/2. This assures that the segment does not push its adjacent

segments away and, thus, doesn’t interfere with the link shrinking process, which is essential

in the wiring length optimization. To do so requires defining a much more complex type

of force than spherical repulsion. We need to define a force based on the interaction of

two ellipsoidal force fields. We call this the “double-ellipsoidal” basis, and it will require

defining a metric for every pair of interacting link segments to measure how close they are

relative to the link orientation, segment length and the link thickness. This type of problem

has been encountered before in polymer dynamics and the modified potentials are known as

Gay-berne potentials [4, 25, 27].

B. Double-Ellipsoidal Metric

The current form of the repulsive force between two links i, j is a function of the distance

between points xi and xj along the links. Defining a distance requires defining a metric.
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FIG. SI.13. Spherical vs Double-Ellipsoidal Potential: If the forces between links l,m depend on the Euclidean
distance between link segments, it is as if each link segment generates a spherically symmetric potential around it and the
overlap of these potential fields defines the interactions (A). We must exclude self-repulsion within links in this case if we want
the links to shrink to their minimal lengths. Excluding self-repulsion is not an issue as long as no link is pushed against itself.
However, it poses a problem when space is very limited, for instance when nodes are fixed and links are very thick (C). Lack of
self-repulsion removes the penalty for links bending into themselves, resulting in sharp cusps and unnatural layouts. We resolve
this issue by using a more sophisticated potential field in link segments, and including self-repulsion. If instead of a spherical
potential field, each segments emanates a field which stretches and shrinks together with the link, we can make sure that the
link segments of the same link exclude each other, while at the same time allowing the link to shrink to its minimal length.
thus we define an ellipsoidal field stretching half the segment length dsl/2 along the link l and rL in the cross-section of the
link (B). The potential energy, then, arises from overlap of two ellipsoidal potential fields of a pair of links l and m. (D) shows
the same network as in (C) but this time using the double-ellipsoidal potential. Notice the smooth nature of the layout in (D)
and the absence of the sharp ends resulting from self-crossing in (C).
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Naively, one might expect that this metric is the Euclidean space metric, but note that

the strength of the force depends on the scale defined in this metric. For instance, in the

Gaussian potential for links with thickness rL the width of the Gaussian can be thought of

as part of the metric function g(X, Y ). In other words, the metric yields

g(∆x,∆x) = ∆xi∆xj
δij

(2rL)2
.

The denominator comes from the thickness of the two links. When the thicknesses are

different, we must have

g(∆x,∆x) = ∆xi∆xj
δij

(r(i) + r(j))2
.

To generalize this to the case of ellipsoidal potential, we must first understand how this

metric relates to projections along different directions. The inverse of the metric can be

related to these projections. We want a definition of the inverse metric which would yield(
r(i) + r(j)

)2
in the spherical case.

The inverse metric is defined on the tangent space as a symmetric rank 2 tensor g−1 =

(g−1)
µν
∂µ∂ν . The components of the inverse metric come from three projections onto three

vectors vi (
g−1
)µν

= V µ
ρ δ

ρλV ν
λ =

∑
ρ

V µ
ρ V

ν
ρ . (SI.28)

For each pair of links i, j if we define the vectors as V µ
ρ =

(
r(i)µ

ρ + r(j)µ

ρ

)
, r(i) and r(j) are each

a set of three mutually orthogonal vectors defining the axes of the ellipsoids. When we have

spheres, all three vectors r
(i)
ρ and r

(i)
ρ have the same magnitude. The spherical case should

reduce to the usual metric with the radii r(1) and r(2) of the spheres appearing in the metric

along the diagonal, as

(
g−1
)µν

= |r(i) + r(j)|
∑
ρ

r̂µρ r̂
ν
ρ = |r(1) + r(2)|δµν .

This is because (g−1)
µν

is a Hermitian matrix with all eigenvalues equal to |r(1) + r(2)| and

is therefore proportional to the identity matrix I. The identity matrix is invariant under

all rotations and so, this metric is diagonal in all bases. We will use this as a test for the

consistency of our double-ellipsoidal metric below.
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C. Gay-Berne Potential Energy

We start by defining the “orientation tensor” of the ellipsoid. This tensor is the set of

vectors defining the major axes of the ellipsoid and in the orthonormal basis of the axes of

the ellipsoid it becomes diagonal. Let us denote everything in the basis of the ellipsoid by a

prime as x′, y′, z′. The orientation tensor in this basis is

r′
(i)

=
(
r′x′ r

′
y′ r

′
z′

)
= R


|r′x′ |

|r′y′|

|r′z′|

 . (SI.29)

The set of orientation vectors r(i) with components r(i)ν

µ is a (1,1) tensor and transforms

under rotations R as r → R−1rR. For the spherical case, this doesn’t matter, because the

orientation tensor r(i) = |r|I and is invariant under rotations. But other cases where the

ellipsoid has different radii in different directions require us to find the transformations that

take a diagonal r = diag(rx, ry, rz) from the basis of the ellipsoid to the global x, y, z. In

practice, we know the axes of the ellipsoid in the global coordinates µ = x, y, z as three

vectors with components r(i)µ

x′ , r
(i)µ

y′ , r
(i)µ

z′ . However, the other index x′, y′, z′ is defined in

the basis of the ellipsoid and we still need to transform that index to the global coordinates.

To reiterate, we have the three columns of r(i) as vectors in the global coordinates µ, we

already have the row index transformed into the global basis and don’t need to transform it

again. But we still need to transform the ellipsoid µ′ index, which involves a rotation similar

to the rotation that would act on r(i) to take the µ index to the local µ′, just transposed.

How do we efficiently find this transformation? To do this, note that r(i) is the result of

acting with one rotation R from the one side on a diagonal matrix with the radii of the

ellipsoid r′µ′ on its diagonal, that is

r(i) =
(
r′x′ r

′
y′ r

′
z′

)
= R


|r′x′ |

|r′y′ |

|r′z′ |

 . (SI.30)
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Thus, if we find the magnitude of each column and divide the column by it, we find R. Then

we simply multiply r(i) by the transpose of R from the right in order to go from the µ′ basis

to the global µ basis,

r̃(i) = r(i)RT .

r̃(i) has components
(
r̃(i)
)µ
ν

where both indices are in the global coordinates. Note that this

step is crucial when dealing with two ellipsoids with different orientations, because, although

(SI.28) has an inner product on the local index ρ, the basis in which r(i) and r(j) are diagonal

are the orientation bases of each of the ellipsoids they represent. Therefore, both have to

be first transformed into a similar basis (e.g. the global basis) before they can be added in

V µ
ρ . Once we have these transformed orientation vectors, we can compute the inverse metric

which we need for the double ellipsoid potential. It is easy to check that for a sphere r̃(i) is

diagonal and thus the inverse metric remains a scaled Euclidean metric. Thus, the final step

is to combine the transformed orientation tensors and construct the metric for the pair i, j

as

g(ij)
µν =

[(
r(i)R(i)T + r(j)R(j)T

)(
R(i)r(i)T +R(j)r(j)T

)]−1

µν
(SI.31)

The potential energy is then defined using the new metric

∆x(ij) = x(i) − x(j)

Vij = A exp

[(
g(ij)
µν ∆x(ij)µ∆x(ij)ν

)p/2]
(SI.32)

where sum over µ, ν is understood (i.e Einstein notation).

D. Implementation of the Double-Ellipsoid Potential

To construct the ellipsoids, we first need to find two vectors perpendicular to the dl vector

going along the link segment. This can be done using the cross product. For example, the

two vectors can be found through

r̂1 = x̂× d̂l, r̂2 = r̂1 × d̂l, (SI.33)
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and then define r1 = rLr̂1 and r2 = rLr̂2. Finally, to ensure that the cross product in r̂1

doesn’t vanish, instead of x̂ we should choose the direction in which dl has the smallest

projection. In terms of time complexity, brute-force matrix inversion is O(n3) and the dot

product using the metric is O(n2), while the spherical case had a simple dot product for

|∆x|, which is O(n). Here n = 3 is the dimensions of the vectors. However, the main

part of the time complexity comes from iterating over Ns different link segment points and

forming interaction pairs. Since that part is not different between using the spherical versus

Ellipsoidal forces, the overall complexity only changes by a factor, and the exponent of Ns

will not change.

SI 5. PHASE SPACE AND ORDER PARAMETERS

A. Curvature

The curvature of a curve γ(s) measures how much the tangent of the curve T (s) ≡ γ′(s)

changes along the path. Here s is an affine parameter, like the arc-length. Hence, the

extrinsic curvature κ(s) is given by the magnitude of the second derivative of the curve

κ(s) = |T ′(s)| = |γ′′(s)| (SI.34)

The path is defined as γ(s) = (x(s), y(s), z(s)) in Cartesian coordinates and the tangent

related to the gradient of γ(s),

T (s) =
dγ(s)

ds
= ~x′(s) · ~∇γ(s) = x′(s)x̂+ y′(s)ŷ + z′(s)ẑ. (SI.35)

Since s is the affine parameter and ds2 = dx2 + dy2 + dz2, we always have |T (s)| = 1. For

arbitrary parametrization, we have T = γ′/|γ′|. Therefore, just as in circular motion, T ′(s)

will be perpendicular to T (s) and related to the radius of curvature. Taking the second

derivative, the curvature can be summarized as

κ =
|γ′ × γ′′|
|γ′|3

. (SI.36)
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Link Node

FIG. SI.14. Link curvature, which is equal to the inverse of the radius of curvature, is related to the angle between the
tangent vector γ′(s) and the change in the tangent vector γ′′(s). This can be estimated discretely in numerical simulations.

In practice, to measure link curvature, we can measure the cross product of the tangent

vector γ′(s), calculated for every link segment, and the second derivative γ′′(s) and divide by

|γ′(s)|3. Note that κ(s) = 1/R(s) with R(s) being the radius of curvature. But, taking the

same curve and scaling it up will increase the radius of curvature and decrease the curvature.

Therefore, to compare curvature in networks of various sizes we rescale the curvature by the

average link length 〈l〉 and measure 〈l〉κ(s) = 〈l〉 /R(s).

1. Regularizing Singularities in Curvature

In numerical simulations, the links are broken into segments with finite length. Ideally we

want these segments to have comparable lengths and be uniformly distributed over the link.

In practice, however, some segments may become tiny due to numerical fluctuations. One

tiny piece will lead to a large amount of curvature and corrupt the whole curvature vector.

We know that there should be no sharp dents in the simulations. We must mitigate this to

avoid artifacts caused by it. We therefore regularize the segment lengths dsn → dsn+0.1l/ns

by a fraction of the total link length l divided by the number of segments ns to ensure that

tiny pieces do not contribute too much.

B. Relaxation Time

We documented that around the predicted crossover point in FUEL (where both nodes

and links are free to move) the relaxation time grows colorblue relatively large. In the weakly
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interacting regime node repulsion dominates and determines the layout, while in the strongly

interacting regime link repulsion dominates and node repulsion is vanishingly small. Near the

transition point, many links are pushing against each other, driving nodes apart from each

other and thereby reducing the node repulsion dramatically. At this transition point, the

system is switching from a node repulsion dominated phase to a link repulsion dominated

one, node repulsion has decreased significantly, while link repulsion is just catching up.

Consequently, the relaxation time grows significantly near the crossover. ELI lacks this peak

because in ELI nodes are fixed and there is no competition between link and node repulsion.

Note that care must be taken when measuring the relaxation time. Aside from having fixed

criteria for when to stop the simulations (e.g. how small the fluctuations in the potential

energies must become), we must also make sure that the time units are the same for all

simulations. The equations of motion are gradient descent equations and time units will

be involved in corrections to positions of nodes and link segments. Therefore, one needs

to have an invariant way of defining the time units to determine if there is any significant

difference in relaxation times at different thicknesses and values of other parameters. In our

simulations, the time step, dt, is determined through a series of functions of other variables.

It is defined as

dt = c1(R) min{ rN
maxFN

,
rL

maxFL
},

where R is the total edge lengths of the layout and c1(R) itself is determined from the

fluctuations of the layout size and the largest length scale of the problem

c1(R) ≡ ε0 + c0
max{r2

N , r
2
L}

σR + |∆R|+ ε1

,

and εi are small regularizers. Thus, since the layout size R is proportional to the relevant

dominant length scale rmax = max {rN , rL}, we find that approximately

c1 ∝
r2

max

R
, dt ∝ c1 ×

rmax

Fmax

.

Since the repulsive forces and the elastic forces cancel, they will have the same size. The

repulsive forces have an exponential piece F = AF0 = Ar/rmax exp[−r2/r2
max] which is

dimensionless, but they also have an amplitude factor A, which we are scaling as A = A0rmax
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in our simulations, and therefore A scales linearly with radius. Since the structure of both

node and link repulsion is this way, all the above arguments apply to both the weakly

interacting as well as the strongly interacting regime. Thus, in both phases we have

dt ∝ r2
max

R
× rmax

rmaxA0F0

∝ r2
max

R

Thus, to define an invariant time unit, independent of the length scale, we have to divide

dt by r2
max/R, obtaining the time we show in the Figure 2D of the paper for the relaxation

time.

SI 6. STRESS TENSOR

To understand how ELI and FUEL respond to stress we must analyze various components

of their “Cauchy stress tensor” [8, 30]. Consider moving one of a node or a point on a link

at position x by a small amount δ~x. The network will respond with a force, which to lowest

order in δ~x is

~F (~x+ δ~x) ≈ ~F (~x)− δ~x · ~∇
(
~∇v(~x)

)
. (SI.37)

Here v(x) is the potential energy density and the full potential energy is V =
∫

Net
d3xv(x).

The term −~∇
(
~∇v(~x)

)
is the Cauchy stress tensor and has components Tµν(~x) ≡ −∂µ∂νv(~x),

with µ and ν labeling the (x, y, z) components. Note that v, Fµ, Tµν are all densities. To

get the total potential energy, force and stress we need to integrate over the volume of the

space. Recall that the potential energy was given by (SI.18). The derivatives of the elastic

force can be evaluated similar to deriving variations for the Euler-Lagrange equations. The

first derivative yields

∂µ

(
k

2

∑
l

∫
dsl

∣∣∣∣d~xldsl

∣∣∣∣2
)

=
k

2

∑
l

∫
dsl

δ

δxµl

∣∣∣∣d~xldsl

∣∣∣∣2
= −k

∑
l

∫
dsl

d2xµl
ds2

l

. (SI.38)
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A second derivative then yields

∂ν∂µ

(
k

2

∑
l

∫
dsl

∣∣∣∣d~xldsl

∣∣∣∣2
)

= −k
∑
l

∫
dsl

δ

δxνl

d2xµl
ds2

l

= −kδµν
∑
l

∫
dsl

d2δ(xµ − xµl )

ds2
l

= −kδµν
∑
l

∫
dsl

[
~∇δ(xµ − xµl ) · d

2~xl
ds2

l

+
dxµ

′

l

dsl

dxν
′

l

dsl
∂µ′∂ν′δ

3(x− xl)
]
, (SI.39)

where we have summed over µ′ and ν ′. The first term is related to the curvature of the links

at point x and the second term is related to their tangent vectors vµ ≡
dxµ
′
l

dsl
. In terms of

components, we need the Hessian matrix of the potential energy

Tµν(x) =∂µ∂ν (Vel + VLL + VNN + VNL)

=− kδµν
∑
l

∫
dsl

d2δ3(x− xl)
ds2

l

+ AL
∑
l 6=m

∫∫
dsldsmδ

3(x− xl(sl))
−2r2

Lδµν + xlmµxlmν
4r4

L

exp

[
−|xlm|

2

4r2
L

]

+ AN
∑
i 6=j

δ(x−Xi)
−2r2

Nδµν +XijµXijν

4r4
N

exp

[
−|

~Xij|2

4r2
N

]
, (SI.40)

where ~xlm ≡ ~xl − ~xm and ~Xij ≡ ~Xi − ~Xj. The first row corresponds to the elastic stress

in the links, the second to the link repulsion and the third to node forces4. Now we need

to estimate the value of the integrals over the links. In the weakly interacting regime, the

links touch at isolated points and thus the integral turns into the sum over these touching

points. In this phase, the main contribution to total stress
∫
d3xTµν comes from the node

term, meaning the last term in (SI.40). In the strongly interacting regime, links push against

each other along the whole link. Since the direction and magnitude of the forces is random

and without bias in any specific direction, we expect the distance of link segments to be

distributed based on the potential energy cost of being at that distance. This means that

4 Note that the first term contains both the elastic forces and the node-link forces, as they are just the

elastic forces at link end-points.
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we can treat the potential energy VLL of link-link interaction as a distribution for the link

segment distances. Evaluating the integral over
∫
dsldsm in (SI.40) involves two parts: 1)

approximating the integral over directions for ~xlm; 2) integrating over the length of the links.

The sum over b also becomes an integral over all directions for ~xab because the link is covered

on all sides. Based on observations from the simulations, we will assume that for a random

network, every piece of a link is subject to the same distribution of link repulsion in all

directions. For links that touch each other |xlm| ≈ 〈r〉. Since in the strongly interacting

regime the links fill up the space, each link is approximately covered by other links along

its entire length. This means that the sum over adjacent links basically defines an envelope

which covers the link. Thus, for the directions of the stress, we can write ~xlm ≈ rn̂. This

yields

∑
b 6=a

∫∫
dsldsmf(~xab) ≈

∫
d|sl|

∫
rdr

∫
dn̂f(rn̂)

≈ 〈l〉
∫
rdr

∫
dn̂f(rn̂), (SI.41)

with 〈l2〉 being the average square length of the links, which in the strongly interacting

regime will be a numeric factor times the size of the layout squared. Also, note that

∫
dn̂nµnν = πδµν . (SI.42)

This can, for example, be seen by writing n̂ in the 2D cross-sectional plane of each point on

the link in polar coordinates. In this plane dn̂ = dθ and the x, y components in this plane

become

∫
bulk

dn̂nxnx =

∫ 2π

0

dθ cos2 θ = π∫
bulk

dn̂nxny =

∫ 2π

0

dθ sin θ cos θ = 0

⇒
∫

bulk

dn̂nµnν = πδµν . (SI.43)

This result is valid in higher dimensions as well, as using spherical and generalized polar

coordinates easily show. The result (SI.43) was for the bulk. We will also need to calculate
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this at the boundary, where n̂ may only be pointing into the network. As near the surface of

the network, the normal vector for network elements near the surface can only point into the

network, the orientation of n̂ cannot take all angles between 0 and 2π, but rather at most

half of the angles. Suppose the boundary is the x-axis and the upper half-plane is inside the

network. In this case, θ runs between 0 and π instead of 2π and we have

∫
bdy

dn̂nxnx =

∫ π

0

dθ cos2 θ =
π

2∫
bdy

dn̂nxny =

∫ π

0

dθ sin θ cos θ = 0

⇒
∫

bdy

dn̂nµnν =
π

2
δµν , (SI.44)

where “bdy” means for links on the surface boundary of the layout.

A. Stress from Vel

With regards to the terms from Vel in (SI.40), in the strongly interacting regime at every

point in the bulk link segments are isotropically distributed. To evaluate the derivatives of

the delta function, if we regularize the delta function and write it as a sharp Gaussian, we

see that the affine parameter sl is like r and |dxl| = dsl = dr. To see this, we start with the

substitution

δ3(x− xl) = lim
b→∞

(
b

π

)3/2

exp[−b|x− xl|2].

Since the delta function is zero when x and xl are different, the integral and sum
∑

l

∫
dsl

in the second line of (SI.40) only needs to be evaluated where xl ≈ x+ δxl. Although δxl is

infinitesimal, since the width of the regularized delta function is going to zero, we can treat
√
bδxl as an arbitrary vector which can be integrated to infinity. As a result, in the bulk of

the network we get

∑
l

∫
dsl

d2δ3(x− xl)
ds2

l

≈ lim
b→∞

4b

π1/2

∫ ∞
0

dr∂r
(
r2∂r exp[−br2]

)
= 0, (SI.45)

where we have used spherical coordinates and r ≡
√
b|δxl|. The isotropic link distribution

in the bulk therefore results in the same result as ∂µ∂νVLL. Similarly, at the boundary, we
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still have the same radial part and stress vanishes again. This vanishing of terms is similar

to stress in fluids: Inside the fluid all local stress diffuses away in currents and the fluid

equilibrates. Of course, we still need to determine the VLL contribution to fully understand

if the strongly interacting regime really behaves like a fluid.

B. Stress from VLL

Now we need to determine 〈r〉 and 〈r2〉 where 〈rn〉 is the average of distance between link

segments to power n, taking VLL as a distribution. In the strongly interacting regime the

cross-section of links is 2D, so the integral of vectors r run in 2D. For all points in the bulk

of the network (i.e. everything but the outer surface) we have

b ≡
(
4r2

L

)−1

C =

∫
d2re−br

2

=
π

b
= 4πr2

L

〈r〉 = C−1

∫
rd2re−br

2

= −2πC−1∂b

√
π

b

= C−1
(π
b

)3/2

=
8π3/2r3

L

4πr2
L

= 2
√
πrL〈

r2
〉

= C−1

∫
r2d2re−br

2

= −C−1∂bC = 4r2
L. (SI.46)

Consequently, inside the bulk of the network, we have

∂µ∂νVLL = AL
∑
l 6=m

∫∫
dsldsmδ

3(x− xl(sl))
−2r2

Lδµν + xlmµxlmν
4r4

L

exp

[
−|xlm|

2

4r2
L

]
≈ AL 〈l〉

∫
rdr

∫
bulk

dn̂
−2r2

Lδµν + r2nµnν
4r4

L

exp

[
− r2

4r2
L

]
= ALπ 〈l〉δµν

∫
rdr
−4r2

L + r2

4r4
L

exp

[
− r2

4r2
L

]
= ALπ 〈l〉δµν

−16πr4
L + 16πr4

L

4r4
L

= 0. (SI.47)

The two terms coming from VLL in (SI.40) cancel each other and the stress vanishes, similar

to inside a fluid where no localized stress survives. Of course, if we cut the network and

measure the push on a surface placed inside the network, we have produced a boundary and
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the result will be different. Similarly, we expect all the excess forces to propagate to the

surface of the network. On the surface, we need to use (SI.44) instead of (SI.43) and we

have
∫

bdy
dn̂ = π, not 2π, and so the terms cancel again

∂µ∂νVLL ≈ AL 〈l〉
∫
rdr

∫
bdy

dn̂
−r2

Lδµν + r2nµnν
4r4

L

exp

[
− r2

4r2
L

]
= ALπ 〈l〉δµν

−8πr4
L + 8πr2

L

4r4
L

= 0 (SI.48)

C. Stress at the Walls Pushing the Network

As we showed above, the contributions from the elastic forces and the repulsive forces

both vanish in the bulk, as well as free boundaries of the network. This suggests that the

strongly interacting regime may be acting like a fluid, dissipating internal stress. However,

to prove that it is actually behaving like a fluid, we have to prove that if a wall pushes against

a part of the network, the local stress generated by displacing that part from equilibrium

has the form of hydrostatic stress, meaning that we have Tµν ≈ pδµν with a pressure p that

depends on the force pushing the network. Only in parts where a link or a node is pushed

away from its equilibrium position, we will see stress because the forces on it do not vanish

any more. The amount of stress will be the change in the force that the displaced link

segment experiences. Thus, we have to assume that before the push the forces canceled (i.e.

the gradient ∇V = 0) and now the piece is experiencing a force. In other words, the paths

sl of links are varying slightly, and locally, when the push occurs and we want to calculate

the energy cost of this variation. Since the forces were zero, the energy cost is second order

in derivatives of V .

To calculate the stress at a wall, let us first solve a simple case, where we of have a link with

elastic energy pressing against another link via the Gaussian repulsive force. Considering
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the forces on only one link segment, the potential energy is of the form

V0 ∼ −
k

2

∫
d3t |xl(s)− xl(s+ t)|2 + AL

∫
d3xm exp[−(xl(s)− xm)2/(4r2

L)]

−∂µV0 ∼ k

(
xµl (s)−

∫
d3txµl (s+ t)

)
+ AL

∫
d3xm

xµl − xµm
2r2

L

exp[−(xl(s)− xm)2/(4r2
L)]. (SI.49)

At a wall with normal vector n̂, for any radial function f(r) we have

∫
d3rf(r)rµ = c(r)n̂µ,

which is because f(r) is an even function of r and thus all components perpendicular to n̂

cancel. Thus the integrals become

∫
d3(δs)(xµl (s)− xµl (s+ t) ∼ dsln̂

µ,

and ∫
d3xm

xµl − xµm
2r2

L

exp[−(xl(s)− xm)2/(4r2
L)] ∼ g(rL)n̂µ.

Therefore, regardless of the details of g(rL) since the gradient at the wall is always propor-

tional to n̂µ and the stress tensor will be

Tµν = ∂µ∂νV ∝ ∂µ

∫
d3rf(r)n̂µ ∼ Cδµν +B

∫
dn̂n̂µn̂ν ∝ δµν .

Thus, even though evaluating the exact form of the stress at the walls in the strongly

interacting regime might be complicated, it is diagonal and thus hydrostatic in nature. This,

together with the vanishing of stress in other parts of the network suggests that the strongly

interacting regime behaves like a fluid. Below, we will discuss how this can be validated

numerically.

The repulsive terms from VNN in (SI.40) resemble the pressure tensor discussed in [31]

used to describe jamming phenomena and stress networks in granular materials [32, 33]. with

nodes that feel each other’s force being at a distance |Xij| ≈ 〈r〉N and nodes farther apart

than 〈r〉N basically not contributing to Tµν . Here 〈.〉N means we are using the Gaussian
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FIG. SI.15. Left: Total stress in an ER and a BA network with 49 nodes and 280 links, and a 3D lattice network with 300
links at various link thicknesses. The solid curve is the average over 10 measurements done by randomly rotating the layout in
space and the shaded area shows one standard deviation around this average value. The red strip indicates the approximate
transition point. Right: The ratio of parallel and transverse stress in BA, ER and 3D lattice. In the strongly interacting regime,
the ratio becomes 1/

√
2 (black dashed horizontal line) in all three networks. This indicates transition to hydrostatic stress,

meaning that stress is uniformly distributed in all direction like a fluid. The green strip indicates the transition point.

potential VNN as a distribution. Thus, we expect the weakly interacting regime to behave

more like an amorphous solid, while, as we found above, we predict that the strongly in-

teracting regime has fluid-like characteristics. Since the links are not constantly moving, it

will be more like a gel than a running fluid. This difference in the strong and weak regime

should be best visible in the diagonal components of the stress: in the strongly interacting

regime we have Tµν ∝ δµν , i.e. we have hydrostatic stress, so the parallel and transverse

components, σ‖ and σ⊥, are proportional to each other. If the stress components σx, σy

and σz have similar magnitude, as in hydrostatics, we have σ‖ = 1
L3

∫
net
d3x|σy| = p and

σ⊥ = 1
L3

∫
net
d3x
√
σ2
x + σ2

z =
√

2p, consequently σ‖/σ⊥ = 1/
√

2. If, however, the σ‖/σ⊥ ratio

varies as we rotate the layout, the network possesses solid-like properties.

We examined numerically whether the σ‖/σ⊥ ratio is constant in the ELI layouts. We

find that, as predicted by the theory, σ‖/σ⊥ fluctuates significantly for node stress at almost

all (except at very high) link thicknesses, indicating that it does not satisfy the hydrostatic

condition (Fig. SI.15). In contrast, the stress in links shows a remarkably constant σ‖/σ⊥
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ratio starting at thicknesses well below the crossover, indicated by a red strip. At very low

thicknesses link stress too shows large fluctuations. In conclusion, the simulations confirm

that once link stress dominates over node stress, the ratio σ‖/σ⊥ approaches a constant 1/
√

2

value and its fluctuations become small. This confirms the fluid or gel-like behavior of the

strongly interacting regime.

SI 7. VISUALIZATION PARAMETERS

For a weighted network, there are multiple choices one can make regarding how the

weights are related to the link thicknesses. Choosing a linear relation is not always ideal,

especially if the distribution of link weights is fat-tailed. For the Flavor Network [11]5, we

chose the link thickness to grow with w1/2, which means that the cross-sectional area of links

is proportional to their weights. This is consistent with what using multiple links would

yield. It also makes for a visually more pleasant visual outcome.

A. Relation between Node Radii and Link Thicknesses

To make sure the node size is adequate to make it visible in the presence of its links, the

node radius should be related to the link thicknesses. When links cross their node of origin,

they cover a portion of its area. When the link thickness is small compared to the node size,

the area covered on the link is roughly the cross-sectional area of the link. Thus, for the

node to be visible in this situation, its radius RN must satisfy

4πR2
N > π

∑
l∈<N>

r2
l RN >

1

2

√ ∑
l∈<N>

r2
l =

√
kNrrms (SI.50)

where kN is the degree of node N . In the extreme case where the link thickness is very

large such that one link is covering most of the node area, the cross-sectional area of the link

becomes roughly the cross-sectional area of the node itself, meaning RN ∼ rl.

Thus, a safe choice for node size that would satisfy both cases would be RN > rrms. To

5 The Flavor Network has actually very little variations within each module, as it is a co-occurrence based

network. To make the 3D print capability and the visualization more dramatic, we broke this uniformity

by randomly shuffling the link weights.
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make the nodes prominent in the visualization, we chose

RN = 1.5rrms

B. 3D Printing

Since the layout of a network will contain links going in all directions, 3D printing them

can be occasionally challenging. In particular, 3D printing technologies such as “Fused De-

position Modeling” (FDM) and “Stereolithography” (SLA) which require adding a support

structure to the model are possible, but highly impractical. The reason is that a network

with randomly oriented links requires a large amount of support structure and removing

the supports is rather tedious, if not impossible. We found that the best technology for 3D

printing is “Selective laser sintering” (SLS). In this method, at each step a layer of powder is

added to the top of the printing bed, and a laser then fuses powder particles in the new layer

together and to the previous layer. This way, the powder itself provides a natural support

which keeps the model in place and removes the need for support structures entirely. We

used SLS through the online service ShapeWays to 3D print networks (main article, Fig. 3).

SI 8. OPTIMIZATIONS

Brute-force calculations quickly become intractable for even medium sized networks. We

used a number of strategies to optimize these computations. Many of them involve binning

the space in various ways to focus only on the parts where computations are required. Such

strategies in some cases reduce the computation time by a factor of 10 or more as they

change the time complexity of the problem.

A. Finding Crossings more Efficiently

We only need to check pairs of nodes whose links come close to each other and may thus

have a chance of crossing. This means that only nodes A : (a1, a2) and B : (b1, b2) for which

in all three directions x, y, z the four nodes fall within a certain geometric shape. If links

were just lines, the sufficient condition for potential crossing would be that A,B form a
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tetrahedron with no obtuse angle. Since we only wish to speed up the search for crossings,

we can choose a very crude measure. The constraint is that the measure has been evaluated

very efficiently and very rapidly, faster than it would take to do the computation for checking

the crossing, which involves calculating three cross products and several dot products and

square-roots.

B. Partitioning the Space for Efficient Spotting of Potential Link Crossings

We can partition the space into cubes whose edges are longer than a few link thicknesses.

Then, most crossings will occur inside these cubes and we don’t need to compare link seg-

ments which do not cross the same cube. We assign an ID to each link. Then we make

a hash-table (for quick look-up) of all the cubes and keep the list of link segments that

cross the cube in a list inside this hash-table. The number of the cubes with more than one

links crossing them can be very small, depending on how their scale compares to the total

space occupied by the network. This partitioning approach allows spotting precisely which

segments of which link are crossing. If the network has M , we have to make sure compiling

this hash-table and looking up pairs takes less than O(M2). The hash-table will only have

entries for partition cells that had at least one link crossing them. The look-up of hash-table

is normally O(1) and O(k) in the worst case, with k being the number of cells occupied by

links. Compiling the hash-table is O(M).

C. Time Complexity with and without Partitions

Consider a uniform graph of average degree m, with k cells occupied. We have M = Nm/2

links. Each link may stretch several cubes. If they stretch q � k regions, we will break the

links into q segments. The total number of segments yields the cumulative occupancy of

the k regions. Thus each cell has Mq/k links. The total number of checks for crossing is

therefore

O(M) +O(k) +O

(
k × M2q2

k2

)
= O(M) +O(M2q2/k).

Assuming that in the worst case the look-up of the hash-table is O(k) (typical case is O(1)).
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Thus in order for the partitioning approach to be more efficient than the original we must

have q �
√
k. If our links are straight lines, if the network is embedded more or less

symmetrically in all three dimensions, then the maximum number of cubes a link may pass

through is O(k1/3). For k � 1 a uniform embedding in d dimensions yields

q ∼ O(k1/d)� O(k1/2), if: k � 1 and d > 2.

In 3D this method will most likely improve the performance. The amount of improvement

is

O

(
M2k2/3

k

)
= O

(
M2

k1/3

)
.

The full complexity depends on how many partitions we choose. Assuming that look-up of

the hash-table can be done in linear time O(k) in the worst case, if we choose k such that

1 � k � M , we can significantly accelerate finding crossings. Implementing this resulted

in a very significant improvement in finding link crossings. For a BA network of 500 links

and m = 2 minimum degree, the brute force method took about 20 secs, while the regioned

approach with maximum 500 spatial regions took only 2 secs. The hash-table is updated

every few steps, because the nodes and link segments are moving under the forces. The

number of steps before next update to the table is estimated based on the magnitude of

forces (the larger the forces, the sooner will be the update).

D. Parallelization using GPU

Once the space is partitioned, the computation of repulsive forces inside each cell can be

done independently and may thus be parallelized. Within each cell, we may have a number of

link segments and we need to calculate all of their repulsive forces efficiently. We therefore

need an architecture that performs matrix computations efficiently. Graphics Processing

Units (GPU) are optimized for such computations. High-end GPUs also generally have

thousands of compute cores and a single GPU can act as a computer cluster. Rewriting our

simulation code to run on a GPU resulted in a 10-50 fold speed-up, on average, on networks

with a few hundred links in the strongly interacting regime. To use the GPU, we used

Google’s machine learning package Tensorflow [34]. The package requires an NVIDIA CUDA
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compatible GPU. We ran our simulations on machines with NVIDIA GeForce GTX970m on

a laptop, as well as NVIDIA Tesla K80 GPUs on the Google Cloud Platform.

E. ELI and FUEL Computational Complexity

If each link has s segments, the complexity of calculating the elastic forces is O(sL). The

brute-force complexity of node repulsion is O(N2) and link repulsion is O(s2L2). Since for

a connected network L ≥ N − 1 and s > 1, the complexity is mostly due to link repulsion.

We can reduce this complexity by realizing that we only need short-range link repulsion to

avoid crossings, allowing us to partition the space into cells of size arL with 10 > a > 2 and

calculate link crossings in these cells only, as the repulsive forces between links farther than

arL will be exponentially small. To be specific, if the layout is broken into k cubic cells, each

cell contains sL/k link segments, on average, and so the total number of pair interactions

has complexity O(k × s2L2/k2) = O(s2L2/k) (SI 8.C). A fixed minimum number of cells,

k, is desirable at early stages as links may be very densely packed and a cell of size arL

may contain too many segments, resulting in memory shortage from storing the O(s2L2)

interaction matrix in the worst case. When the system has opened up sufficiently, we can

break the layout into cells of fixed size arL and index which segments of which links cross

each cell. The indexing is O(sL) and is updated every few iterations, depending on the

magnitude of forces. We only need to calculate forces in cells that contain more than one

link. We also shift the cells randomly for each indexing event to remove biases at the cell

walls.

In the weak regime using cells speeds up calculations enormously, as the number of cross-

ings is very few and so cells crossed by more than one link are very few. Thus the total

complexity will be either O(N2) from brute-force node repulsion or O(sL) from indexing

link segments and elastic forces, depending on which one is bigger. In the strong phase,

the links are filling the space. But, as links can shrink and stretch, both with no link self-

repulsion (Eq. (1)) and the double-ellipsoid potential (SI C. Eq. (SI.32)) the number of link

segments within one cell can vary from 1 segment per cell to O(s) per cell in the worst case.

A cell of size arL contains a maximum of O(a3) distinct links. Since links can shrink and

stretch, the number of segments of each link that falls in each cell can vary. In the best
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case, a cell has 1 segment per link, and in the worst case it contains all s segments. Thus, in

the worst case one cell may have O ((sa3)2) pairs of interacting link segments. The number

na of spatial cells with links crossing through them can be estimated from the size of the

layout. The cross-section of all the links when the layout has opened up is R ∼ L1/2rL and

so dividing by the cell size arL, the number of cells becomes na ∼ O
((
L1/2/a

)3
)

. Therefore,

the worst case time complexity is

naO
(
(sa3)2

)
∼ O

(
s2a3L3/2

)
In practice, because the number of pairs s2a6 in a cell may become large, we randomly sample

up to a maximum number of pairs ∼ max(100, s2a3) in each cell to calculate the repulsive

forces and the elastic forces help move the rest of the link segments to the correct positions.

This way, for large networks the complexity is mostly due to number of cells O(L3/2/a3).

Our algorithm starts with a minimum number of cells k and switches to cells of fixed size

arL once the network has opened up enough so that more than k cells are occupied by more

than one link.

As in the weak regime link crossings are rare, most cells will contain a single link. Thus, in

the weak regime partitioning the space reduces the complexity of link repulsion so much that

it may become less than the brute-force complexity of node repulsion, O(N2). Therefore,

with partitioning the time complexity in the weak regime will be max{O(N2), O(sL)}, where

O(sL) is the complexity of partitioning the space (same as the elastic forces). In practice,

we do not partition the space in every iteration, rather every 50-100 steps.

F. Remarks on scalability

In the strong phase, the reduced complexity O
(
cL3/2/a3

)
after partitioning can be con-

siderably better than the brute-force O (s2L2). In the weak phase, the full layout is a

perturbation to FDL. Thus one can do a fast FDL first –ignoring the internal degrees of

freedom of links– and then run the full algorithm to resolve potential link crossings. This

can be done for networks with thousands of nodes. With our current simulation code, run-

ning on an NVIDIA GPU, a network with a few hundred links takes a few seconds in the

weak regime and about ten minutes in the strong phase. A network with 1,000 links in the
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strong regime may take one to two hours. The largest network that we have tried so far is a

coarse-grained network of the white matter of the mouse brain, with 600 nodes and 20,000

links, which took about a week prior to the recent improvements (Fig.SI.16). As discussed

above, while the brute force method would scale as O(L2) for every iteration, our improved

code reduced this to O(L3/2) by exploiting the short range of interactions. Examples with

the best working settings are provided in the code which is available online.

A B

FIG. SI.16. Simulations based on Mouse Brain White Matter Connectivity: The Mouse Brain Atlas data, collected
by the Allen Institute, shows the trajectories of millions of axon bundles in the white matter of the mouse brain, connecting
different regions of the gray matter. We bundle these axon bundles even further to find the total connectivity of large anatomical
brain regions, yielding a weighted network of connectivity of brain regions, as well as trajectories of bundles. We then discard the
trajectory information, keeping solely the weights (used as link thicknesses) and the location of brain regions (used as nodes).
We use this weighted network and run ELI on it, keeping nodes fixed, to generate simulated mouse brains with optimized
wiring in 3D. These models serve as null models to compare against the actual trajectories and to answer questions regarding
optimality of the white matter connectivity. Depending on the level of detail by which we define anatomical regions in the brain,
we obtain different coarse-grained networks of brain connectivity. The top figure shows the top view of a simulation. There are
a total 20,000 weighted links, connecting about 700 brain regions at this level of bundling. (A) Side view of the highest level
of bundling resulting in 26 large brain regions and 700 weighted links, while (B) one lower level in hierarchy of brian regions,
yielding 700 nodes and 20,000 links.
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For modular networks or networks with strong hierarchy, one can exploit the hierarchy

to lay the network out at multiple scales, thereby reducing the complexity of each run. For

non-modular networks, the best heuristic algorithm would be to use k-d tree to partition the

space to only resolve crossings within the partitions. We are using a space partitioning with

fixed partition sizes in our simulation code as well. Beyond this, for non-modular networks

the computation cannot be optimized much further other than large scale parallelization or

using the GPU, also implemented in our code and we discuss these recommendations briefly

below.

G. Simulation variables and parameters

The strength of the repulsive forces is proportional to the amplitudes AN and AL in VNN

and VLL, while the strength of the elastic force is proportional to the spring constant k. In

order for the model to avoid crossings, the repulsive forces must be much larger than the

elastic forces, otherwise the links will be squeezed into each other. We chose AN = AL = A.

Also, for a fixed A and k, a larger network will have proportionately larger elastic forces,

as its links are stretched longer. Therefore, to make the ratio of the repulsive forces and

elastic forces the same for networks of any size, A must grow with the network size. Thus,

for our simulations we choose A = A0 max{rN , rL} and to have a repulsion stronger than

the elastic forces we chose A0 = 10k. We checked through simulations that these choices

won’t affect the outcome of the simulations adversely. We ran many sets of simulations with

fixed A = 100k or higher ratios and arrived at the same results. The problem with having

a fixed and very large A is that the simulations take a long time to converge. The reason is

that the time steps are adaptively calculated from the largest forces in the system to avoid

numerical instabilities. We also observed that not scaling A does, indeed, lead to layouts

where links are squeezed into each other and the layout does not grow to the correct physical

size with links and nodes not crossing each other. Finally, note that the average distance of

adjacent nodes and links also depends on the k/AL,N ratios, as we discuss below in sec. SI

11 A 2. This is because the repulsive potential is a sof-core repulsion and the dependence of

the “effective” radius of nodes and thickness of links on k/AL,N is non-linear.
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SI 9. DIMENSION OF SPACE AND TOPOLOGICAL STATES IN NETWORK

LAYOUT

Layouts of networks in 3D can exhibit topological defects, as well as knotted links. In

an arbitrary D dimensional space, a node has an exclusion region of the form of a D-

dimensional sphere and the cross-section of a link is SD−1, the spherical shell, or boundary

of a D-dimensional ball. Intertwined links in 3D, however, can form of knots on the links,

because the links remain effectively 1D objects, whereas in D > 3 they can always pass by

each other. This is because if one considers the segment of links 1 and 2 near the crossing,

the segment from link 1 can be embedded in the dimensions x1, x2, and the segment from link

2 in x3, x4. This makes links 1 and 2 invisible to each other and allows them to resolve the

crossing by moving away from the crossing area (which is why knot theory for 1D curves only

exists in 3D [12], and in general knotted n-spheres can be untied in n + 2 dimensions). So,

D = 3 is the lowest dimension where any link crossing can be resolved by moving links apart,

and also the highest dimension where crossing can lead to knots and topological defects.

In a truly continuous link with infinite hard-core repulsion we cannot resolve the knots,

nor is it possible for links to pass through each other to find more favorable configurations.

In Eq. (1) we made the repulsive forces smooth, analytical functions with finite maximum

repulsive force. This allows nodes and links to tunnel through each other with a suitable

amount of thermal noise. However, when the noise amplitude is large (above rL) and the

annealing schedule is such that the noise persists longer than the relaxation time, we do get

many twists and knots. In addition to this, we observe “kinks” and “solitons”, best seen

when laying out 3D lattices (Fig. SI.17 here). The underlying reason is the same as regular

solitons: there are multiple global minima for V which are related to each other via discrete

symmetries, such as reflection in the x direction. During the dynamics one side of the network

may fall into one minimum configuration and the other side into the reflected configuration,

resulting in a twist at the boundary of the two layouts. These solitonic solutions are still low

energy solutions. Even though they are not a global minimum, their energy is close to the

global minimum and their number is more plentiful than the global minima because of the

combinatorics. In fact, most layouts of the 3D lattice, including the ones used for Fig.2 turn

out to have such twists, but in the log-scale, 〈l〉 and curvature seem to be similar among
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A B

FIG. SI.17. Solitonic solutions: A frequent outcome of laying out networks with discrete sym-

metries, such as 3D lattices due to reflection symmetry, are topological defects: the orientation of

two ends of the lattice may be different (A, red arrows pointing to the fact that the orientation of

the lattice along the y direction has switched from one end of the layout to the other), resulting

in a twist in the middle of the layout. (B) A clearer view of a twist. Twists, like other solitonic

solutions, are generally localized, increasing the total link lengths only by a small amount. As a

result, these solitonic solutions have energies close to the global minimum. They are encountered

frequently during simulated annealing.

them, suggesting that they belong to approximately degenerate energy states.

SI 10. DERIVING THE LOCATION OF THE WEAK-STRONG TRANSITION

We have observed two qualitatively different behaviours in the layout geometry, driven

by changes in the ratio rL/rN . Here, we analytically derive an equation for the value of

r̃c = rcL/rN , representing the transition point from the weakly interacting to the strongly

interacting regime and discern the nature of the transition.

A. Transition from a Node-dominated State to a Link-dominated State

Deep in the weakly interacting regime link crossings are exceedingly rare, hence node

repulsion is the dominant force, determining the structure of the layout. Deep in the strongly

interacting regime, however, repulsion among links dominates. Indeed, when link thickness,

rL, is larger than the node repulsion range, rN , in this regime nodes are too far apart

to sense each other’s repulsion. As the volume of the layout is determined by the exclusion

volumes of nodes in the weakly interacting regime and the volume of the links in the strongly

interacting regime, our hypothesis is that the change from the weakly interacting to the
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strongly interacting regime occurs at a value of r̃c = rcL/rN where the node and link exclusion

volumes, VN and VL, become comparable. To determine this trnasition point, next we will

discuss node and link volumes separately.

Total Node Volume: The total node exclusion volume VN , and thus the effective layout

radius RN , can be found from close-packing of spheres in 3D. The volume occupied by N

close-packed spheres is 4
√

2Nr3
N because spheres can occupy a maximum fraction of 3π/

√
2

of the volume. We have

VN ≡
4π

3
R3
N = απNr3

N (SI.51)

where α = 4
√

2/π ≈ 1.8 assuming the nodes are densely packed in 3D, resulting in

RN =

(
3αN

4

)1/3

rN =

(
3
√

2N

π

)1/3

rN (SI.52)

Total Link Volume: Finding the exclusion volume of links involves two parts: 1) tubular

volume; 2) overlap at end nodes.

First, the node and link volumes become comparable at r̃c < 1 as each link has a length

RL ≥ 2rN and when rL ≈ rN the links are filling the layout space. When approaching

r̃c from the weak phase, links will begin to curve where they are about to intersect other

links. However, most links remain approximately straight, the conflicts being resolved by

local bendings, until rL ≈ rN . Therefore, we will approximate the volume of each link as

a cylinder v0L = πRLr
2
L, where RL is the length of the link. Note that the link length RL

depends on the network connectivity and needs to be calculated separately. We will calculate

RL for scale-free and Erdös-Rényi networks below, after we derive the general condition for

the transition.

Links emerging from a point-like node will inevitably overlap up to some radius r0, which

is the minimum radius around the node beyond which its links stop overlapping (Fig. SI.18).

For a node of degree k and with link thickness rL, the region where link overlap is unavoidable

is a sphere with radius r0(k, rL) around the node. On the surface of this sphere, links are

barely touching each other. Let us assume that the surface area of the sphere with radius r0
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FIG. SI.18. Links emerging from the same node (at the center, node not shown here) will inevitable

overlap with each other up to a certain radius, which we denote by r0. The radius r0, which is the

minimum radius around the node beyond which links emerging from it stop overlapping, depends

on the degree k as r0 ∝
√
k. For any radius smaller than r0 around the node, the links emerging

from it will have some overlap which cannot be resolved.

is completely covered by the total cross-section of the k links. Naively, this means

4πr2
0(k, rL) ≈ kπr2

L, ⇒ r0 ≈
√
k

2
rL (SI.53)

A slightly more accurate value for k � 1 can be found by realizing that the linka can arrange

themselves in an optimal hexagonal lattice on the surface of the sphere, so the area occupied

by each link is 2
√

3r2
L instead of πr2

L. Therefore

r0(k, rL) ≈

√√
3k

2π
rL ≈

√
k

1.9
rL

which is not that different from the approximation (SI.53). Note that the two end-nodes may

have different degrees and thus different overlap radii r0(k, rL). Thus, to accurately account

for the non-overlapping length of links, we will use “stubs”: assign RL/2 to each end-node.

This way, to calculate the total link volume we sum over the contributions from each node.

As for each node we only use RL length of the link, we avoid double counting. To account
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for the link overlap at nodes, the link length used to calculate its cylindrical volume has to

be RL/2 − r0. Having excluded the overlap radius r0 for each node, we will then add back

the link overlap volume 4π/3r3
0 to find the total link volume. Thus, for node i of degree ki

the total link volume is

VLi(k) = πr2
L

∑
l∈<i>

(
RLl

2
− r0(k, rL)

)
+

4π

3
r3

0(k, rL)

=
π

2
r2
L

∑
l∈<i>

RLl −
π

3
k3/2r3

L (SI.54)

where RLl is the length of link l, l ∈< i > means links l connected to node i, and we used

(SI.53). The total volume of the links is found by summing VLi over all nodes i

VL = πLr2
LRL −

π

3
N
〈
k3/2

〉
r3
L (SI.55)

where L is the number of links, RL =
∑

lRLl/L is the average link length, and
〈
k3/2

〉
=∑

k p(k)k3/2 when p(k) is the degree distribution.

B. General Transition Condition

To find the general expression for r̃c = rcL/rN we set VN = VL. In general, RL will be a

function of RN , as we see below. In the random and scale-free networks which we work out

explicitly below, we get RL ≈ cRN . Using (SI.51), (SI.52) and (SI.55) we have

VN ≈ VL, RL ≈ cRN

απNr3
N ≈ πr3

L

(
c′N1/3L

rN
rL
− 1

3
N
〈
k3/2

〉)
0 = αN

(
rN
rL

)3

− c′N1/3L
rN
rL

+
1

3
N
〈
k3/2

〉
(SI.56)

where we used (SI.52) to define c′ = (3α/4)1/3 c =
(
3
√

2/π
)1/3

c ≈ 1.1× c. Rewriting (SI.56)

in terms of r̃c ≡ rcL/rN yields

0 = α (r̃c)−3 − c′N−2/3L (r̃c)−1 +
1

3

〈
k3/2

〉
(SI.57)
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which represents our main result. Note that Eq. (SI.57) is general, i.e. it is valid for any

network topology. We will show below in sec. SI 10 E that (SI.57) has a single positive root

satisfying r̃c < 1, leading to our main result

r̃c =
6A

1
3

A
2
3 + 12B

, A = −12

(
3
〈
k

3
2

〉
+

√
9
〈
k

3
2

〉2

− 12B3

)
, B =

(
3

4

) 1
3 cL

N
2
3

(SI.58)

It is important to note that when calculating RL for random or scale-free networks, N and

L should correspond to the full network, whereas for lattices and random geometric graphs,

N and L need to be replaced by Nu and Lu of the unit cell (the smallest sub-network which

is, approximately, repeated in the layout). Indeed, we observe that in lattices with the same

structure the transition point is largely independent of the number of nodes in the lattice

(Fig. SI.21, bottom).

Finally, note that c depends on the network architecture and layout. We compute ap-

proximate values for c for ER and scale-free networks in SI 10 D below.

C. Dependence on degree distribution through
〈
k3/2

〉

Here we will explicitly calculate the contribution from
〈
k3/2

〉
in (SI.58). In scale free

networks the moments 〈kn〉 can be readily calculated from the degree distribution p(k) =

Ck−γ. Using C = (γ − 1)kγ−1
min , and kmax = kminN

1
γ−1 [35] and assuming n 6= γ − 1 we have

〈kn〉 = C

∫ kmax

kmin

kn−γ = C
kn−γ+1

max − kn−γ+1
min

n− γ + 1

=
Ckn−γ+1

min

n− γ + 1

(
N

n
γ−1
−1 − 1

)
=

(γ − 1)knmin

n− γ + 1

(
N

n
γ−1
−1 − 1

)
. (SI.59)
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When γ 6= 2, and N � 1 we approximately have

L

N
= 〈k〉 = kmin

γ − 1

γ − 2

(
1−N

2−γ
γ−1

)
≈ kmin

γ − 1

|γ − 2|
×

 N
1

γ−1
−1 if: 1 < γ < 2

1 if: γ > 2
(SI.60)

Similarly, for 〈kn〉 with n < 2 we have

〈kn〉 ≈ knmin

γ − 1

|n− γ + 1|
×

 N
n
γ−1
−1 if: 1 < γ < n+ 1

1 if: γ > n+ 1
(SI.61)

We shall now work out some explicit examples.

1. Scale-free: γ > 5/2

From (SI.59) we get

〈
k

3
2

〉
≈ γ − 1

5
2
− γ

k
3
2
min =

(2− γ)
3
2(

5
2
− γ
)

(γ − 1)
1
2

(
L

N

) 3
2

(SI.62)

Therefore, unlike the 1 < γ < 2 case, when γ > 5
2

we have

O

(〈
k

3
2

〉2
)
∝ L3N−3 = N−1O

(
B3
)
� O

(
B3
)

(SI.63)

which means that we can ignore
〈
k

3
2

〉2

in A in (SI.58) and write

A ≈ −i(12B)
3
2 r̃c ≈ B−

1
2 (SI.64)

and using c = 3/4 from sec. SI 10 D 2 we get

if: γ > 5/2 → r̃c ≈
(

4

3

) 2
3

L−
1
2N

1
3 (SI.65)
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where (4/3)2/3 ≈ 1.21.

2. Scale-free: 2 < γ < 5
2

Again, from (SI.58), to approximate r̃c, we need A, which requires comparing the magni-

tude of B3 and
〈
k3/2

〉2
. In this case from (SI.60) and (SI.59)

L

N
=
γ − 1

γ − 2
kmin

〈
k3/2

〉2 ∝ N−2
(
kminN

1
γ−1

)3

=
L

3
2

N2
N−3 γ−2

γ−1 . (SI.66)

Since γ > 2, when N � 1 we have

O
(〈
k3/2

〉2
)

= N−3 γ−2
γ−1O

(
B3
)
� O

(
B3
)

(SI.67)

because the exponent −3γ−2
γ−1

< 0. Thus, we can ignore the
〈
k3/2

〉
, resulting in the same

result as γ > 5
2

if: 2 < γ < 5/2 → r̃c ≈
(

4

3

) 2
3

L−
1
2N

1
3 (SI.68)

3. Scale-free: γ = 2

For the special case of γ = 2 we have kmax = kminN and so L = N 〈k〉 = kminN lnN . It

follows that

B3 =
3

4
c3
BA

L3

N2
=

3

4
c3
BAk

3
minN (lnN)3〈

k
3
2

〉2

= 4k3
minN = 4

L3

N2 (lnN)3

O
(
B3
)

= (lnN)3O

(〈
k

3
2

〉2
)

(SI.69)
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Since the difference is in lnN , both B and 〈k〉3/2 may be significant in A in (SI.58), and thus

in r̃c. Thus, we get

A = −36
L

3
2

N (lnN)
3
2

(
2 +

√
4− (cBA lnN)3

)
, B =

(
3

4

) 1
3 cBAL

N
2
3

a ≡
(

2 +

√
4− (cBA lnN)3

)
if: γ = 2 → r̃c =

6A
1
3

A
2
3 + 12B

= 36−
1
3 (lnN)

1
2

6a
1
3

a
2
3 + cBA

L−
1
2N

1
3 (SI.70)

4. Scale-free: 1 < γ < 2

This case is generally not of much interest for growing networks because its average degree

diverges as N →∞. We have

N
〈
k

3
2

〉
≈ γ − 1

5
2
− γ

(
kminN

1
γ−1

) 3
2

=
(2− γ)

3
2(

5
2
− γ
)

(γ − 1)
1
2

L
3
2 (SI.71)

Defining cγ =
(

5
2
− γ
)−1

(γ − 1)−
1
2 (2− γ)

3
2 and plugging (SI.71) into (SI.58) we find

A = −36
(
cγ +

√
c2
γ − c3

BA

) L 3
2

N
, B =

(
3

4

) 1
3 cBAL

N
2
3

c1 ≡ cγ +
√
c2
γ − c3

BA

if: 1 < γ < 2 → r̃c = 6
1
3

(
c

1
3
1 + cBAc

− 1
3

1

)
L−

1
2N

1
3 (SI.72)

To give an explicit example, using cBA = 3/4 for scale-free networks (shown below in sec. SI

10 D 2)

γ =
3

2
→ r̃c ≈ 2.15 · L−

1
2N

1
3 . (SI.73)

5. Erdös-Rényi Random Graphs

The degree distribution of Erdös-Rényi (ER) random graphs is a Poisson distribution

of the form p(k) = 〈k〉k e−〈k〉/k!. We may use the moment generating function of Poisson

distributions g(t) = exp[〈k〉 (et − 1)] to calculate
〈
k

3
2

〉
using 〈kn〉 = dng(t)

dtn

∣∣∣
t→0

. Since for
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n = 3/2 we have a fractional derivative, we can use the Laplace transform of the right hand

side to compute the moment, which can be further simplified to [36]

n0 ≡ n− bnc

〈kn〉 =
1

Γ(−n0)

∫ ∞
0

∂n0
t g(t− s)− ∂n0

t g(t)

sn0+1
ds

∣∣∣∣
t→0〈

k
3
2

〉
=
〈k〉

Γ
(
−1

2

) ∫ ∞
0

e−s exp [〈k〉 (e−s − 1)]− 1

s
3
2

ds (SI.74)

This integral cannot be written in closed form. But we note that when 〈k〉 � 1 the Poisson

distribution approaches a Gaussian distribution, with its skewness, equal to 〈k〉−1/2, becom-

ing very small. Therefore, for the purpose of approximating
〈
k

3
2

〉
we will replace the degree

distribution with

if: 〈k〉 � 1 → p(k) ≈ 1√
2π 〈k〉

exp

[
−(k − 〈k〉)2

2 〈k〉

]
(SI.75)

This yields

〈
k

3
2

〉
≈ Γ

(
5

4

)
〈k〉 e−

〈k〉
4

6
√
π

(
3(〈k〉+ 1)I− 1

4

(
〈k〉
4

)
Γ

(
3

4

)
+ 4(〈k〉+ 3)I 1

4

(
〈k〉
4

)
Γ

(
7

4

)

+ 3 〈k〉 I 3
4

(
〈k〉
4

)
Γ

(
3

4

)
+ 4 〈k〉 I 5

4

(
〈k〉
4

)
Γ

(
7

4

))
(SI.76)

Where Iα(x) are hyperbolic Bessel functions. For large x they satisfy

x� 1 → Iα(x) ≈ ex√
2πx

(
1−O

(
x−1
))
≈ ex√

2πx

Using this asymptotic behavior for 〈k〉 � 1 we get

〈
k

3
2

〉
≈Γ

(
5

4

)
Γ

(
3

4

)√
2 〈k〉(〈k〉+ 1)

π
≈ 0.89 · 〈k〉

3
2 (SI.77)
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In conclusion, when 〈k〉 � 1 in ER networks for A in (SI.58) we have

〈
k

3
2

〉2

≈ 〈k〉
3
2 ∝ L3

N3
= N−1O

(
B3
)

⇒ A ≈ −i(12B)
3
2 (SI.78)

resulting in the same scaling as (SI.64)

r̃c ≈
(

3

4

)− 1
6

c
− 1

2
ERL

− 1
2N

1
3 ≈ 1.46 · L−

1
2N

1
3 (SI.79)

where we used cER = 18/35 calculated in sec. SI 10 D 1. Taken together, we find that

independent of network topology (SF for γ > 2 and ER), we have r̃c ∼ L−
1
2N

1
3 . Using

L ∼ 〈k〉N , we obtain that all large networks have r̃c ∼ N−
1
6 , in other words for large

networks the weakly interacting regime disappears.

D. Average Link Length

In order to evaluate the weak to strong transition we need to estimate the average link

length RL in (SI.55). Note that we focus on a near optimal layout, based on our model with

short-range node repulsion. In some networks, such as geometric graphs and lattices, the

optimal layout consists of links that do not stretch to a length comparable to the layout radius

RN , but rather stay within a local region, or a few “unit cells” (the smallest sub-network

which is repeated to make the full network) in the case of lattices. In other networks, such

as scale-free and random networks, links may extend the whole layout such that the average

link length, RL, is comparable to the layout radius, RN .

1. Average Link Length in Erdös-Rényi Random Networks

Consider an Erdös-Rényi (ER) random network with N nodes and L links, where L > N .

In FDL, and in ELI/FUEL, any node may have a link to any other node in the layout.

Although the force layout pulls connected nodes close to each other, any node with degree

k > 1 may be connected to any two random nodes in the layout. Since in an ER network
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second neighbors are random and uncorrelated, FDL will pull each node with k > 1 towards

their neighbors, which may be at any random location in the layout. Therefore, we expect the

neighbors of a node in ER not to be in the close vicinity of the node, because the neighbors

are equally likely to be pulled towards any other node in the layout. As a result, the density

of the neighbors of any node i is expected to be uniformly distributed over the whole layout.

We will use this observation to calculate the average link length RL. The neighbors of each

node have uniform spatial density ρ(x) = L/VN . The layout is approximately spherical.

Take a node i that is at radius ri from the center of the layout. The length of a link from

node i to a node j at radius rj is

Rij =
√
r2
i + r2

j − 2rirj cos θij, (SI.80)

where θij is the angle between the vectors from the origin to nodes i and j. To find the

average length of links we need to integrate Rij once over its end-node j and then over the

position of node i, hence

RL =
1

2

∫
d3ri

∫
d3rjRij∫

d3ri
∫
d3rj

=
1

2

(
4π

3
R3
N

)−2

(2π)

∫ RN

d3ri

∫ RN

0

r2
jdrj

∫ π

0

sin θdθRij (SI.81)

where the 1/2 is because ri and rj both go over all nodes, thus double-counting the links,

the 2π is from the azimuthal integral dφ in the rj integral, and the node density drops out

because it is constant. The last part of the integral becomes

I0 ≡
∫ 0

π

d(cos θ)Rij =
1

3rirj

(
|ri + rj|3 − |ri − rj|3

)
(SI.82)

To integrate over rj, we break the integral down to rj ∈ [0, ri) and rj ∈ [ri, RN ] to get rid of

the absolute values, resulting in

I1 ≡
∫ RN

0

r2
jdrjI0 =

∫ ri

0

r2
jdrj

2

3ri

(
3r2

i + r2
j

)
+

∫ RN

ri

r2
jdrj

2

3rj

(
r2
i + 3r2

j

)
=
R4
N

2
+
R2
Nr

2
i

3
− r4

i

30
. (SI.83)
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Hub Hub

A B

FIG. SI.19. Location of hubs and value of elastic potential: In the weak phase, while the

repulsive forces derived from VNN and VLL avoid conflicts and are more or less the same for all

configurations, the elastic potential Vel depends greatly on the arrangement of the nodes. In scale-

free networks, hubs have significantly more links than most other nodes. The elastic potential is

approximately Vel ≈ k
2

∑
iR

2
Hi in the weak phase, where RHl = |~rH − ~ri| is the distance between

the hib position ~rH and the position ~ri of node i. Eq. (SI.86) shows that Vel ∝ 3r2
H + R2

N . Thus,

if the hub is placed at the center (A) the total elastic energy will be much smaller than when it is

placed off the center (B). Since the optimal layout is effectively minimizing the Vel, we can assume

that hubs are all close to the center with rH ≈ 0.

Finally, the integral over the position ~ri of node i yields

I2 ≡ 4π

∫ RN

0

r2
i driI1 =

16π

35
R7
N

⇒ RL =
1

2

(
4π

3
R3
N

)−2

(2π)I2 =
18

35
RN (SI.84)

Thus, for ER networks the coefficient cER relating the link length to layout radius RL =

cERRN is

cER =
18

35
Erdös-Rényi (SI.85)

2. Average Link Length in Scale-free Networks

For scale-free networks the considerable heterogeneity in the degrees means the location

of nodes within a spherical layout will affect the overall energy cost of the layout in our

model. To see this, consider a scale-free network with degree distribution p(k) ∝ k−γ. The

most connected nodes, hubs, will have its degree as k ∼ O
(
N1/(γ−1)

)
. For γ = 2 this means
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that this hub will be connected to O(N) of the nodes, or a finite fraction of all nodes. If a

hub is placed at radius rH in an approximately spherical layout, the contribution of the hub

to the elastic potential V Hub
el will be

V Hub
el =

kel
2

2πkH
L

∫ RN

0

r2
i dri

∫ 0

π

d(cos θ)
[
r2
i + r2

H − 2rirH cos θ
]

=
kel
2

4πkH
L

∫ RN

0

r2
i dri

(
r2
i + r2

H

)
=
kel
2

2πkH
3L

RN

(
3r2

H +R2
N

)
(SI.86)

where kel is the spring constant and kH is the hub degree. Eq. (SI.86) is minimized when

rH = 0, meaning that the optimal layout will have the biggest hubs near the center of the

layout. Since in a scale-free network most of the links are attached to hubs, this means that

to estimate the average link length we can approximately assume that all links originate

from the center of the sphere, where the hubs are, and remove the ri integral by putting the

density of hubs as δ(ri), which results in Rij = rj. This way the average link length becomes

RL ≈
∫
d3riδ

3(~ri)
∫
d3rjRij∫

d3riδ3(~ri)
∫
d3rj

=

(
4π

3
R3
N

)−1 ∫ RN

rjd
3rj =

3

4
RN (SI.87)

and the coefficient in RL = cSFRN becomes

cSF ≈
3

4
Scale-free (SI.88)

This should be a good approximation for γ ≥ 2 where the hubs are rare, while still accounting

for a significant portion of all links. In the extreme case of a star-shaped network (i.e. γ < 2

where the hub acquires the majority of links) the 3/4 factor becomes exact, as there is only

one hub and the optimal layout puts it at the center to minimize the elastic energy. In the

other extreme γ →∞ the hubs start disappearing, and all nodes have about the same degree

and the situation is similar to ER.
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FIG. SI.20. The predicted crossover behavior rcL/rN ≈ N1/3L−1/2, with and without the prefactor
√
α/c. As we can see,

including the prefactor makes the prediction of the transition point much more accurate.

3. Layout Transitions in Lattices and Random Geometric Graphs

The derivation of (SI.58) assumes that links of node i are not only extending to nodes

spatially close to i, but also to distant nodes. This assumption holds for random networks,

because any node pair has the same chance of being connected, as well as scale-free networks,

as most nodes are connected to hubs and thus links connecting to hubs may extend from

any part of the layout to the hub. However, it fails for lattices and random geometric graphs

(RGG), meaning networks that are formed inside a space via a local rule connecting nodes

that are close to each other. These networks are composed of identical sub-networks (such as

a unit cell in the lattice), or nearly identical sub-networks (as in RGG). In these cases, N,L

and RL in (SI.58) need to be replaced by their corresponding values for the repeated sub-

network. Also, increasing the size of these network won’t change the location of the transition

(Fig. SI.21), because it just increases the number of sub-units, which only interact with each

other at their boundaries. This implies that lattices with the same crystalline structure have

the same transition point, regardless of their size (for very small lattices, boundary effects

may slightly shift this). Fig. SI.21, bottom shows the unscaled curves of the order parameter

φ(rL) = d log 〈l〉 /d log rL for regular 3D lattices of various sizes, confirming that they all have

the same transition point, as well as the same width for the transition region.
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FIG. SI.21. Transition in Various Topologies: The quantity φ(rL) ≡ d log 〈l〉 /d log rL distinguishes well between the
two regimes (〈l〉 being the average link length and keeping rN constant.) φ(rL) is zero deep in the weak regime and it approaches
1 deep in the strongly interacting regime. While scale-free or random networks of various sizes network result in transitions
occurring at different values of rL/rN (Top, left), scaling by the predicted transition point r̃c = rcL/rN collapses the curves
well onto a single curve (Top, right). Lattice (Bottom) behave differently than random and scale-free networks. Lattice of all
sizes have the same transition point, because once the unit cell has a crossover the whole lattice udergoes a transition.

E. Location and properties of the roots

We want to understand the properties of the roots of (SI.57) to see which of its three

roots is relevant to the weak-strong transition. Eq. (SI.57) has the form

ρ3 − aρ+ b = 0 a =
c′

α
N−2/3L, b =

〈
k3/2

3α

〉
(SI.89)

with ρ ≡ rN/rL. Since the coefficient of ρ2 is zero, the sum of its roots is zero, meaning

that it has at least one positive and one negative root. Also, since the product of the three

roots is −b and since here b =
〈
k3/2

〉
/3 > 0, we definitely have two positive roots and one

negative root. Finally, −b = ρ−(ρ+ + ρ0) + ρ0ρ+ < 0, with (ρ−, ρ0, ρ+) being the three roots

in increasing order (ρ− < 0). This results in

1

ρ0

+
1

ρ+

>
1

−ρ−
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Since each node must have at least one link, the transition must occur at rN ≥ rL, as multiple

links may be fitted around a single node and before rL becomes as large as rN , the links will

collide. Thus, only the roots ρ > 1 are acceptable as a transition point. The root ρ+(k) can

be written out explicitly

ρ+(k) =
A

2
3 + 12a

6A
1
3

, A = −12
(

9b+
√

(9b)2 − 12a3
)

(SI.90)

with a, b given in (SI.89).

SI 11. NATURE OF THE TRANSITION

Above, we argued that below r̃c the layout is dominated by node repulsion (weak regime)

and above it by link repulsion (strong regime). Here, we wish to understand the nature

of this transition: is it best captured by a first or second order phase transition, or is it

best described by a crossover or glass transition? The hallmark of a phase transition is a

discontinuity in one of the derivatives of the free energy. Phase transitions are defined in the

thermodynamic limit, where the number of degrees of freedom goes to infinity. To establish

whether or not in a finite system, such as our networks, the observed change in behavior

constitutes a phase transition, a crossover or a glass transition, we must first perform a finite

size scaling analysis [9, 37]. Two large classes of behavior are expected:

• Phase Transition: If around the transition point some derivatives of the free energy, or

other order parameters, diverge when the system size is taken to infinity, that signals

the existence of a phase transition. The phase transition point should also become

sharp in the infinite size limit.

• Crossover and Glass Transition: Lacking a diverging behavior and sharpening of tran-

sition point with increased system size, the change in layout should be classified as a

crossover, representing a smooth change in behaviour from the weakly interacting to

the strongly interacting regime in the thermodynamic limit.

There exist a number of different smooth transitions classified as crossovers [37]. The kind

that seems relevant to our model is when a system switches from a mean-field behavior to
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a strongly interacting regime where fluctuations in the order parameter become dominant

[8]. As we elaborate below, we find that the weak regime of our model can be described

by a mean-field theory whereas the strong regime cannot. We have also established that

the layouts in the strong regime obey clear scaling laws. Indeed, the order parameter that

clearly shows this change from the weak to the strong regime around r̃c is the scaling exponent

φ ≡ d log 〈l〉 /d log rL, where 〈l〉 is the average link length.

A. Finite-size Scaling

We first check how the behaviour of the order parameter φ ≡ d log 〈l〉 /d log rL depends

on the network size. In particular, we wish to find out whether or not the smooth transition

seen in small networks becomes sharper as the network size is increased.

1. Scaling with N and L

To see if the predicted transition point behavior r̃c ∝ N1/3L−1/2 is accurate, we test it

on networks with fixed number of links L ≈ 1000 and varying number of nodes (Fig. SI.22,

top) and on networks with a fixed number of nodes, N = 50, but varying number of links

(Fig. SI.22, bottom). We verified that the curves of φ = d log 〈l〉 /d log rL indeed collapse

well when rL/rN is scaled by r̃c (Fig. SI.22).

In addition to verifying the location of the transition, we need to explore how the width

of the transition scales with N,L. As we see in Fig. SI.22, after rescaling by the transition

point r̃c, curves of the order parameter φ = d log 〈l〉 /d log rL for various N,L collapse onto a

single curve. This indicates that, the width does not decrease for larger L,N . In particular,

this means that the transition region does not become a sharp transition point as N,L are

taken to infinity. This is a strong indication that the change of behavior from the weak

regime to the strong regime represents a crossover behavior between a non-interacting to a

strongly coupled regime.
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FIG. SI.22. Behavior of the transition point for varying N (top) and L (bottom) separately. The plots on the left and right
column are before and after scaling by r̃c, respectively. The rescaling results in a good collapse of the curves.

2. Effect of other Parameters of the Potential

In addition to finite-size effects arising from the network size, we must make sure that

the smoothness of the order parameter φ = d log 〈l〉 /d log rL in the weak-strong transition

region does not arise from the choice of the model parameters.

Effect of the k/AL,N ratio: The model in Eq. (1) is a smooth approximation of a system

with hard-wall potentials for the repulsive forces. As such, the transition point exhibits some

dependence on the parameters of the potential, such as the ratio of the spring constant to the

repulsion amplitude, k/AL,N in links and nodes. This is because, with a smooth potential,

the average distance between adjacent nodes or links depends on the magnitude of forces

between them. For instance, in the weakly interacting regime, adjacent nodes will not be

exactly 2rN apart from each other, and the exact distance depends on the k/AN ratio. For

the node-node repulsion between two adjacent nodes i and j with distance rij from each

other we have

|FNN | = AN

(
rij

2rN

)p−1

exp[

[
−
(
rij

2rN

)p]
(SI.91)
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In a regular lattice, this force is offset by the elastic force 2rijk in the links in the weakly

interacting regime. Thus, the equilibrium distance between adjacent nodes is found by

solving (y ≡ rij/(2rN)

4rNk

AN
= y2−pe−y

p

(SI.92)

For example, if we choose p = 2, k/AN = 0.1 and rN = 1 the equilibrium distance satisfies

rij
2rN

=

√
− log

4rNk

AN
≈ 0.96

This would affect the location of the transition point. Unlike the node distance, which is

directly affected by the elastic forces in the links, the average link distance is only affected

deep in the strongly interacting regime. Thus, the choice of k/AN should be such that it

results in rij ≈ 2rN .

The shift in the transition point under varying k/AN stems from the average distance

between adjacent nodes being a function of k/AL ratio. Indeed, examining the lattice in

the weak regime reveals that the average size of the network changes with the k/AL ratio.

Scaling the rL/rN ratio by how much the size of the layout has changed results in an almost

perfect collapse of the order parameter for the lattice. To be precise, the “effective” scaling

of the network size can be found by measuring the ratio of the average link length to twice

the link thickness
reffL

rL
=
〈l(rL)〉

2rL

where rL is deep in the strong regime.

Effect of power in the repulsive potential: There doesn’t seem to be much depen-

dence on the steepness of the repulsive potential through the exponent p in the VNN =∑
n,mAN exp[|∆xmn/2rN |p (Fig. SI.25).

Number of Link Segments: The numerical simulations are done by discretizing the links

into a number of interlaced, interacting beads. This approximation will introduce finite-size

effects and the measured transition point does have some dependence on the number of link

segments (Fig. SI.26).
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FIG. SI.23. Collapsing the k/AL curves for lattice: the order parameter d log 〈Vel〉 /d log rL shows different transition
points for the same lattice with different values of k/AL. However, changing k/AL also changes the layout size, which indicates

that instead of rL the layouts have an “effective” reffL (k/AL). This reffL scales with 〈l〉1/2 and rescaling rL by this growth
ratio collapses the transition curves onto a standard error function.

B. The Nature of the Weak-Strong Transition

As we have shown in Fig. SI.22 and 2J,K, after rescaling rL/rN by r̃c, the width of the

smooth transition becomes the same for all networks across two orders of magnitude variation

in N and L. Additionally, as Figs. SI.23,SI.24,SI.25 and SI.26 indicate, the smoothness of

the transition is not due to a lucky choice of various model parameters, such as the elasticity

of links, the repulsion amplitudes, steepness of the repulsive potential and number of discrete

segments on the links. As a result we conclude that the weak-strong transition represents a

crossover from a non-interacting to a strongly interacting phase. There are many types of

crossover phenomena [8, 37] in which the system smoothly transitions from one behavior to

another. Next we explore their relevance to our system.
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FIG. SI.24. Collapsing the k/AL curves for ER: the order parameter d log 〈Vel〉 /d log rL for different values of k/AL
collapses slightly differently from the lattice. The effective reffL scales with the elastic potential 〈Vel〉1/4 and rescaling rL by
this growth ratio and r̃c collapses the transition curves onto a standard error function.

FIG. SI.25. The effect of node potential steepness: Simulation of the same lattice with different powers p in the
VNN =

∑
n,m AN exp [|∆xmn/2rN |p]. The values of p were 2, 3, 4, 6 for Lat-0,Lat-1,Lat-2,Lat-3, respectively. As we see, there

is no significant effect on the transition point arising from p.

1. Weak-strong transition as a crossover

Crossovers are generally discussed in the context of renormalization group (RG) flows [9],

where the system has multiple fixed points, with distinct scaling near each one. When the

parameters of the system are varied smoothly, they may move the system from the vicinity

of one fixed point to another, resulting in a “crosseover” from one scaling behavior to the
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FIG. SI.26. The effect of number of discrete link segments used in simulations. Increasing the number of segments slightly
reduces the with of the transition region, and makes the transition slightly sharper.

other.

A subclass of the crossover described above occurs when one of the fixed points corre-

sponds to a non-interacting or weakly interacting regime, well described by a mean-field

theory, and the other fixed point corresponds to a strongly interacting regime where the

mean-field approximation breaks down [8, 9]. In our model, in the weak regime, the inter-

actions between the links are weak and rare. Thus, the system in the weak regime is well

described by a mean-field theory, namely FDL which ignores link crossings. Since links rarely

cross each other in the weak regime, the effect of the crossing can be handled with pertur-

bation theory applied to FDL. This is true for both ELI and FUEL. In ELI the nodes are

fixed and so the perturbation caused by a link crossing will cause local bending on the links,

increasing the overall curvature of the links. In FUEL, the perturbation from link crossing

can be compensated for by both bending the link and moving the node and therefore, hence

the total link curvature increases by a smaller amount compared to ELI (Fig. 2).

In the strong regime, on the other hand, link interaction is so prevalent that it cannot be

handled with perturbation theory. Links interact strongly all along their length with multiple

other links in this regime, their trajectories deviating significantly from the non-interacting,

straight trajectories of FDL. Therefore, the strongly interacting regime represents a strongly

coupled system that can not be described by the mean-field FDL. The strong regime exhibits

a clear and distinct scaling behavior (Fig. 2B,C), with the average link length scaling linearly

with r̃ = rL/rN , the curvature scaling as r̃−1 and the elastic potential Vel as r̃2 (Fig. SI.20).

Since the macroscopic properties like the average link length, 〈l〉, and the curvature, 〈C〉,

obey these scaling rules, it seems that the layouts in the strong regime at different r̃ are
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self-similar.

We conclude that the weak regime is a fixed point at r̃ → 0 (where link exclusion is

irrelevant), described by FDL as the mean-field theory, and the strong regime represents

another fixed point at r̃ → ∞ (where node exclusion is irrelevant) where the layout obey

clear scaling in terms of r̃.

As the finite-size scaling of the previous section showed, the change from the mean-field

behaviour of the weak regime to the scaling behavior of the strong regime is a crossover

transition. With this interpretation, the quantity r̃c of sec. Sect. SI 10 should be interpreted

as the equivalent of the Ginzburg Temperature [8], representing the parameter value at which

fluctuations in the order parameter become important, beyond which point the mean-field

theory is not valid any more.
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