Table S2. Strains and plasmids used in this study.

Strains	Description	Reference
DH5a	F'/ endA1 hsdR17 (rk- mk+) supE44 thi-1 recA1 gyrA relA1 f80dlacZDM15 (lacZYA-argF) U169	Lab collection
X. oryzae pv. oryzae (BXO43)	WT rif-2; Rif ^r	Lab collection
$\Delta fliC$	In-frame deletion of <i>fliC</i> ; derivative of BXO43; Rif	This study
$\Delta mcp2$	In-frame deletion of <i>mcp2</i> ; derivative of BXO43; Rif ^e	This study
$\Delta mcp2(Mcp2^+)$	$\Delta mcp2$ mutant reconstituted with the wild type $mcp2$; Rif ^r	
$\Delta cheR1$	In-frame deletion of <i>cheR1</i> ; derivative of BXO43; Rif	This study
$\Delta cheR2$	In-frame deletion of <i>cheR2</i> ; derivative of BXO43; Rif ^e	This study
$\Delta cheR2$ (CheR2+)	$\Delta cheR2$ mutant reconstituted with the wild type <i>cheR2</i> ; Rif ^r	This study
$\Delta cheR3$	In-frame deletion of <i>cheR3</i> ; derivative of BXO43; Rif ^e	This study
$\Delta cheB1$	In-frame deletion of <i>cheB1</i> ; derivative of BXO43; Rif ^t	This study
$\Delta cheB2$	In-frame deletion of <i>cheB2</i> ; derivative of BXO43; Rif ^t	This study
$\Delta cheB2$ (CheB2+)	$\Delta cheB2$ mutant reconstituted with the wild type <i>cheB2</i> ; Rif ^r	This study
Δ <i>cheA1</i>	In-frame deletion of <i>cheA1</i> ; derivative of BXO43; Rif	This study
$\Delta cheA2$	In-frame deletion of <i>cheA2</i> ; derivative of BXO43; Rif ^t	This study
Δ <i>cheA2/</i> pCheA2	$\Delta cheA2$ mutant harbouring wild type cheA2 in plasmid; pCheA2; Spec ^r	This study
$\Delta cheA3$	In-frame deletion of <i>cheA3</i> ; derivative of BXO43; Rif	This study
$\Delta cheWl$	In-frame deletion of <i>cheW1</i> ; derivative of BXO43; Rif ^f	This study
$\Delta cheW2$	In-frame deletion of <i>cheW2</i> ; derivative of BXO43; Rif ^r	This study
$\Delta cheW2$ (CheW2+)	$\Delta cheW2$ mutant reconstituted with the wild type $cheW2$; Riff	This study
$\Delta cheW3$	In-frame deletion of <i>cheW3</i> ; derivative of BXO43; Rif	This study
ΔvieA	In-frame deletion of <i>vieA</i> ; derivative of BXO43; Rif ^r	This study
Δ <i>che</i> Y1	In-frame deletion of <i>cheY1</i> ; derivative of BXO43; Rif ^f	This study
$\Delta cheYl(CheY1+)$	$\Delta cheYI$ mutant reconstituted with the wild type $cheYI$; Rif ^f	This study
$\Delta cheY2$	In-frame deletion of <i>cheY2</i> ; derivative of BXO43; Rif ^f	This study
$\Delta cheV$	In-frame deletion of <i>cheV</i> ; derivative of BXO43; Rif ⁴	This study
$\Delta cheZ$	In-frame deletion of <i>cheZ</i> ; derivative of BXO43; Rif ^r	This study
ΔcheD	In-frame deletion of <i>cheD</i> ; derivative of BXO43; Rif ^r	This study
$\Delta p de A$	In-frame deletion of <i>pdeA</i> ; derivative of BXO43; Rif ^r	This study

Xoo PcheA2::gusA	Chromosomal gusA fusion with the cheA2 promoter in the	
	Xoo background; Kan', Amp ^r	This study
V D L D2 L	Chromosomal gusA fusion with the cheR2 promoter in the	
X00 PCneK2::gusA	Xoo background; Kan', Amp ^r	This study
Xoo PfliC::gusA	Chromosomal gusA fusion with the fliC promoter in the Xoo	
	background; Kan', Amp ^r	This study
N. D. 14	Chromosomal gusA fusion with the motA promoter in the Xoo	
Xoo PmotA::gusA	background; Kan ^r , Amp ^r	This study
Plasmids		
pK18mobsacB	Km ^r pUC18 derivative; $lacZ\alpha$ mobs site sacB	Schäfer et al., 1994
pVO155	pUC119 derivative carrying promoter less <i>gusA</i> ; Km ^r Amp ^r	
		Oke and Long, 1999
pK18mob		Pridmore <i>et al.</i> , 1987
	Km pOC18 derivative; $lacZ\alpha$ mods site	
pHM1		Innes at al. 1988
primi	Broad-host-range cosmid vector, pSa <i>ori</i> , Spec ^r	
pRKV1	pK18mobsacB with a 0.3kb PCR fragment of <i>rpfF</i> 5' end and	
	a 0.202kb PCR fragment of <i>rpfF</i> 3' end from the <i>Xoo</i>	This study
	genome; Km ^r	
pRKV2	pK18mobsacB with a 0.254kb PCR fragment cheR2 5' end	
	and a 0.326kb PCR fragment downstream of <i>cheR2</i> 3' end of	This study
	the Xoo genome; Km ^r	
	pK18mobsacB with a 0.275kb upstream PCR fragment	
pRKV3	including 6bp of <i>fliC</i> 5' end and a 0.401kb downstream	This study
	PCR fragment including 27bp of <i>fliC</i> 3' end of the <i>Xoo</i>	This study
	genome; Km ^r	
pRKV4	pK18mobsacB with a 0.373kb upstream PCR fragment	
	including 12bp of <i>cheD</i> 5' end and a 0.409kb downstream	This study
	PCR fragment including 9bp of cheD 3' end of the Xoo	

	genome; Km ^r	
pRKV5	pK18mobsacB with a 0.347kb upstream PCR fragment including 4bp of <i>cheB2</i> 5' end and a 0.327kb PCR fragment of <i>cheB2</i> 3' end of the <i>Xoo</i> genome; Km ^r	This study
pRKV6	pK18mobsacB with a 0.358kb upstream PCR fragment including 100bp of <i>cheW2</i> 5' end and a 0.223kb PCR fragment of <i>cheW2</i> 3'end of the <i>Xoo</i> genome; Km ^r	This study
pRKV7	pK18mobsacB with a 0.300kb PCR fragment of <i>cheA2</i> 5' end and a 0.259kb PCR fragment <i>cheA2</i> 3' end of the <i>Xoo</i> genome; Km ^r	This study
pRKV9	pK18mobsacB with a 0.422kb upstream PCR fragment including 12bp of <i>mcp2</i> 5' end and a 0.228kb downstream PCR fragment including 27bp of <i>mcp2</i> 3' end of the <i>Xoo</i> genome; Km ^r	This study
pRKV10	pK18mobsacB with a 0.264kb upstream PCR fragment including 99bp of <i>cheA3</i> 5' end and a 0.312kb downstream PCR fragment including 12bp of <i>cheA3</i> 3' end of the <i>Xoo</i> genome; Km ^r	This study
pRKV11	pK18mobsacB with a 0.513kb upstream PCR fragment including 9bp of <i>cheW3</i> 5' end and a 0.235kb downstream PCR fragment including 18bp of <i>cheW3</i> 3' end of the <i>Xoo</i> genome; Km ^r	This study
pRKV12	pK18mobsacB with a 0.332kb upstream PCR fragment including 15bp of <i>cheR3</i> 5' end and a 0.303kb downstream PCR fragment including 240 bases of <i>cheR3</i> 3' end of the <i>Xoo</i> genome; Km ^r	This study
pRKV13	pK18mobsacB with a 0.364kb upstream PCR fragment including 9bp of <i>cheV</i> 5' end and a 0.326kb downstream PCR fragment including 12 bases of <i>cheV</i> 3' end of the <i>Xoo</i> genome; Km ^r	This study
pRKV14	pK18mobsacB with a 0.269kb upstream PCR fragment including 6bp of <i>cheZ</i> 5' end and a 0.312kb downstream PCR fragment including 12 bases of <i>cheZ</i> 3' end of the <i>Xoo</i> genome; Km ^r	This study
pRKV15	pK18mobsacB with a 0.564kb upstream PCR fragment including 321bp of <i>cheA1</i> 5' end and a 0.323kb downstream	This study

	PCR fragment including 177 bases of cheAl 3' end of the	
	<i>Xoo</i> genome; Km ^r	
	pK18mobsacB with a 0.384kb upstream PCR fragment	
pRKV16	including 99bp of <i>cheR1</i> 5' end and a 0.311kb downstream	
	PCR fragment including 69 bases of cheR1 3' end of the Xoo	This study
	genome; Km ^r	
	pK18mobsacB with a 0.362kb upstream PCR fragment	
pRKV17	including 99bp of <i>cheB1</i> 5' end and a 0.285kb downstream	This study
-	PCR fragment including 78 bases of cheB1 3' end of the Xoo	
	genome; Km ^r	
	pK18mobsacB with a 0.350kb PCR fragment of vieA 5' end	
pRKV18	and a 0.302kb PCR fragment of vieA 3' end of the Xoo	This study
	genome; Km ^r	
	pK18mobsacB with a 0.376kb upstream PCR fragment	
pRKV19	including 99bp of <i>cheW1</i> 5' end and a 0.329kb downstream	This study
	PCR fragment including 69 bases of cheWl 3' end of the	
	Xoo genome; Km ^r	
pRKV20	W19mahaaaD with a 1 217kh DCD fragment including aboD2	
	ORE and 24/(a) have the set of the K and the K	This study
	OKF and 3460p downstream of the X00 genome; Km	
pRKV21	pK18mobsacB with a 1.420kb PCR fragment including 343bp	
	upstream and <i>cheB2</i> ORF of the <i>Xoo</i> genome; Km ^r	This study
ркк v 22	pK18mobsacB with a 1.306kb PCR fragment including 283bp	This study
	upstream and <i>cheW2</i> ORF of the <i>Xoo</i> genome; Km ^r	
pRKV23		
	pHM1:: <i>cheA2</i> ORF, Spec ^r	This study
	pK18mahsacR with a 0.354kh unstream DCD frogment	
pRKV24	including 150hp, of choVL 5' and and a 0.270kh downstream	
	DCD fragment including 00 bases of sheVL2' and of the Vac	This study
	reck nagment including 90 bases of <i>chell</i> 5 end of the X00	
	pK18mahsacR with a 0.225kh unstream DCD frogment	
pRKV25	present present including 72 hp. of $ahaV2.5^{\circ}$ and and a 0.162 hb downstream	
	DCD from the huding 20 because f_{1} and a 0.102 kb downstream	This study
	rek fragment including 39 bases of <i>che12</i> 3 end of the Xoo	
	genome; Km ⁻	

pRKV26	pK18mobsacB with a 0.785kb PCR fragment including 204bp	
	upstream, cheY1 ORF and 188bp downstream fragment of the	This study
	Xoo genome; Km ^r	
pRKV27	pK18mobsacB with a 2.712kb PCR fragment including 142bp	
	upstream, mcp1 ORF and 401bp downstream fragment of the	This study
	Xoo genome; Km ^r	
pRKV28	pK18mobsacB with a 2.873kb PCR fragment including 12bp	
	upstream, mcp2 ORF and 27bp downstream fragment of the	This study
	Xoo genome; Km ^r	
pRKV29	pK18mobsacB with a 2.712kb PCR fragment including 142bp	
	upstream, mcp1 ORF and 401bp downstream fragment of the	This study
	<i>Xoo</i> genome; Km ^r	
pRKV30	pV0155 with 443hn predicted promotor PCP frogment	
	profiss with 4450p predicted profiler reck fragment	This study
	upsitean of cherz in none of gush OKF, Kin Anip	
pRKV31	pVO155 with 584bp predicted promoter PCR fragment	
	upstream of <i>flhF</i> (<i>cheA2</i> containing operon) in front of <i>gusA</i>	This study
	ORF; Km ^r Amp ^r	
pRKV32		
	pV0155 with 476bp predicted promoter PCR fragment	This study
	upstream of <i>motA</i> in front of <i>gusA</i> ORF; Km ⁴ Amp ⁴	
pRKV33		
	pVO155 with 650bp predicted promoter PCR fragment	This study
	upstream of <i>fliC</i> in front of <i>gusA</i> ORF; Km ^t Amp ^r	
	pK18mobsacB with the wild type <i>mcp2</i> along with 0.422kb	
pRKV34	upstream and a 0.228kb downstream sequence flanking the	This study
	mcp2 ORF; Rif	

1

2 The rif^r Spec^r, Amp^r and Kan^r indicate resistance to rifampcin; spectinomycin, ampicilin and
3 kanamycin, respectively.

4 **References:**

5 Innes, R.W., Hirose, M.A., and Kuempel, P.L. (1988). Induction of nitrogen-fixing nodules on

6 clover requires only 32 kilobase pairs of DNA from Rhizobium trifolii symbiosis plasmid. J

2	Oke, V., and Long, S.R. (1999) Bacterial genes induced within the nodule during the Rhizobium
3	- legume symbiosis. <i>Mol Microbiol</i> 32 : 837–849.
4	Pridmore, R.D. (1987) New and versatile cloning vectors with kanamycin-resistance marker.
5	<i>Gene</i> 56 : 309-312.
6	Schäfer, A., Tauch, A., Jäger, W., Kalinowski, J., Thierbach, G., and Pühler, A. (1994) Small
7	mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and
8	pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene
9	145 : 69–73.
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
	9

Bacteriol 170: 3793–3802.