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Differential Roles of the Salience Network During Prediction  
Error Encoding and Facial Emotion Processing Among  

Female Adolescent Assault Victims 
 

Supplemental Information 
 

 

Reinforcement Learning Tasks 

 Participants completed a three-arm bandit task using either social or neutral stimuli 

(Supplemental Figure S1). During the social task, participants were directed to select among 

three mock people in which to invest $10, and the mock person either returned $20 or $0. The 

probabilities of positive returns were either 80%, 50%, or 20%, and probabilities across the 

mock people changed every 30 trials, for a total of 90 trials. The neutral task was structured 

identically, except participants selected between three houses with varying probabilities of being 

open (returning $20) or locked (no return on investment). Participants were told their study 

compensation would be proportional to their performance on the task. The decision-phase of the 

task presented the response options to participants and their current amount of winnings, and 

was displayed until participants made a button press. The interval/anticipation phase consisted 

of the chosen option then being indicted by a surrounding colored box for 1s, followed by a 

jittered fixation cross for 1.5-3s. The outcome phase then displayed the outcome of the trial for 

2s, followed by a jittered fixation cross for 1.5-3s. No participants needed to be removed from 

analyses due to poor performance (i.e., less than chance performance).  

Facial Emotion Processing Task 

The emotion processing task used here was identical to that used in prior research (1–

3). Participants made button presses indicating decisions related to the sex of the poser while 

viewing human faces taken from the NimStim facial stimuli set. The faces contained either 

neutral or fearful expressions, presented either overtly or covertly, in alternating blocks. There 
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were an equal number of female and male faces. Overt faces were presented for 500 ms, with a 

1200 ms inter-stimulus-interval displaying a blank screen with a fixation cross, in blocks of 8 

presentations for a total block length of ~17 s. Covert face blocks used a similar design but were 

presented for 33 ms followed immediately by a neutral facial expression mask for 166 ms from 

the same actor depicted in the covert image, and the ISI was 1500 ms. Rest blocks that 

displayed a blank screen with a fixation cross and lasted 10 s were additionally included. The 

task was presented in two runs, each lasting ~8 min, during which each block type was 

presented 5 times. There were 10 total blocks for each stimulus category. 

MRI Acquisition and Image Preprocessing 

At the Arkansas site, fMRI data were acquired on a Philips Achieva 3T X-series scanner 

using a 32-channel headcoil. T1-weighted anatomic images were acquired with a MP-RAGE 

sequence (matrix = 192 × 192, 160 sagittal slices, TR/TE/FA = 7.5/3.7/9°, FOV = 256, 256, 160, 

final resolution = 1 × 1 × 1 mm resolution). Echo planar imaging sequences were used to collect 

the functional images using the following sequence parameters: TR/TE/FA = 2000 ms/30 

ms/90°, FOV = 240 × 240 mm, matrix = 80 × 80, 37 axial slices (parallel to AC–PC plane to 

minimize OFC signal artifact), slice thickness = 2.5mm, and final resolution of 3 × 3 × 3 mm.  

At the UW-Madison site, fMRI data were acquired on a GE MR750 3T scanner using an 

8-channel headcoil. T1-weighted anatomic images were acquired with a MP-RAGE sequence 

(matrix = 256x256, 156 axial slices, TR/TE/FA = 8.2ms/3.2ms/12°, FOV = 25.6cm, final 

resolution = 1x1x1mm). EPI sequences used to collect the functional images used the following 

parameters: TR/TE/FA = 2000ms/ 25 ms/ 60, FOV = 24cm, matrix = 64 x 64, 40 sagittal slices, 

slice thickness = 4mm, original resolution was 4 x 3.75 x 3.75, and images were resampled to 

match the resolution of the UAMS data of 3x3x3mm.  

Image preprocessing followed standard steps and was completed using AFNI software. 

In the following order, images underwent despiking, slice timing correction, deobliquing, motion 
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correction using rigid body alignment, alignment to participant’s normalized anatomical images, 

spatial smoothing using a 8 mm FWHM Gaussian filter (AFNIs 3dBlurToFWHM that estimates 

the amount of smoothing to add to each dataset to result in the desired level of final smoothing), 

detrending, low frequency (128 s) bandpass filtering, and rescaling into percent signal change. 

Images were normalized using the MNI 152 template brain. Following recent recommendations 

(4, 5), we corrected for head motion related signal artifacts by using motion regressors derived 

from Volterra expansion, consisting of [R R2 Rt-1 R2t-1], where R refers to each of the 6 motion 

parameters, and separate regressors for mean signal in the CSF and WM. This step was 

implemented directly after motion correction and normalization of the EPI images in the image 

preprocessing stream. Additionally, we censored TRs from the first-level GLMs based on 

threshold of framewise displacement (FD) > 0.4. FD refers to the sum of the absolute value of 

temporal differences across the 6 motion parameters; thus, a cut-off of 0.4 results in censoring 

TRs where the participant moved, in total across the 6 parameters, more than ~0.4 mm plus the 

immediately following TR (to account for delayed effects of motion artifact). Additionally, we 

censored isolated TRs where the preceding and following TRs were censored, and we censored 

entire runs if more than 50% of TRs within that run were censored. This led to the removal of 1 

participant. There were no differences between assault groups in head motion, t(100)=-1.36, 

p=.18. 

Reinforcement Learning Model Fitting 

We modeled participant behavior during the RL tasks using a modified version of the 

Rescorla-Wagner (RW) reinforcement learning model (6, 7). This model takes the form of 

Vt+1=Vt+ δ * α, where V refers to expected value of a chosen action, δ is a prediction error 

(outcomet - Vt), and α is a learning rate that ranges from 0-1. The expected value of a chosen 

action changes from trial to trial based upon δ, such that a positive δ (i.e., receiving more than 

expected) increases expected value and a negative δ (i.e., receiving less than expected) 
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decreases expected value. The learning rate, α, controls the speed with which value 

expectations are updated, with higher learning rates leading to faster changes in expected 

value. We used a softmax function to transform value expectation into action probabilities 

through use of an exploration / exploitation parameter.  Consistent with prior research (8), we 

tested four different RW-based models that manipulated whether the model was risk-sensitive 

(i.e., used a separate learning rate for positive and negative prediction errors) and whether the 

model updated the expected value of the unchosen option (i.e., anticorrelated updating of value 

expectation) in a factorial design. One cell therefore was the basic RW model (described above) 

using a single alpha to update value expectations with prediction errors. Anticorrelated models 

updated the value expectation of the unchosen options in the opposite direction of the prediction 

error (9, 10). For example, if the house on the right was found to be unlocked in the previous 

trial, value expectations for the left house being unlocked were reduced and vice versa. Risk 

sensitive models (8, 11) used a separate learning rate for positive and negative prediction 

errors. The anticorrelated and risk sensitive model updated the value of the unchosen option 

using the learning rate based on the sign of the prediction error.  

The respective model’s free parameters were fit by maximizing the sum of the log 

likelihood of action probabilities. We searched through continuous parameter space, rather than 

discretizing the parameters, using MATLAB’s fmincon function, in which we constrained the 

searched parameter space for learning rates between 0-1 and for exploration/exploitation 

parameters between 0 and 15. We selected between different models, which had different 

numbers of free parameters, through likelihood ratio tests and calculating Akaike Information 

Criterion (AIC) correction on the sum of the log likelihoods. The value expectations and 

prediction errors of the best fitting model for each participant were carried forward to the fMRI 

analyses. 

Ruling out the competing explanations of outcome versus prediction error processing. Given 

that reward outcomes are highly collinear with signed PEs in fMRI designs (12) (i.e., positive 
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PEs only occur on win trials; negative PEs only occur on loss trials), we used a model 

comparison approach to demonstrate that salience network activity better reflects PE encoding 

rather than reward outcome processing (12). In this approach, we fit a separate model to all 

participant’s data in which the signed PE regressor was replaced with an outcome regressor 

indicating the direction of the outcome (1 = win; -1 = loss). We then compared the group-level 

distributions of β coefficients of salience network activity and adjusted R2 values of model fit 

between the signed PE model and outcome model. This comparison demonstrated that β 

coefficients of salience network activity to signed PEs was significantly larger than for outcomes, 

t(210)=3.58, p<.001, and that adjusted R2 values were significantly higher for the signed PE 

model versus the outcome only model, t(210)=2.34, p = .02. These analyses demonstrate that 

SN encoding best reflects the signed magnitude of the prediction error, rather than simple 

outcome processing.  

 

Ruling out confounds related to medication usage and scanning site. When the primary models 

were repeated including an additional covariate for psychotropic medication usage, all reported 

results above remained essentially identical: assault exposure severity associations with SN 

encoding of negative prediction errors, t(98)=-3.29, p=.001 and the group x facial expression x 

duration interaction in the FEP task, t(211)=2.57, p=.011 remained. Though all models used site 

as a covariate, when also separating the groups by site, the opposing salience network 

responses to negative PEs and facial emotion processing as a function of assault and CTQ 

scores were retained (Supplemental Figure S3A and S3B), demonstrating the overall effects are 

not an artifact of combining data across sites.  
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Supplemental Figures  
 

 

 

 

Supplemental Figure S1. Depiction of the three-arm bandit tasks using social (A) or neutral (i.e., 

non-social) (B) stimuli. Participants selected one of the three response options to earn points. 

The three options were associated with probabilities of reward of 80%, 50%, or 20%, and the 

probability associated with each arm changed every 30 trials. The choice phase continued until 

participants made a response. The chosen option was then highlighted with a colored box for 1s 

and then followed by the jittered interval/anticipation phase, which lasted for 1.5-3s. The 

outcome phase then presented the outcome of the trial for 2s followed by a jittered fixation cross 

for 1.5-3s.  
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Supplemental Figure S2. Histograms of task performance for both the social and non-social RL 

task for the assaulted (A) and control (B) participants. Task performance is defined as the 

proportion of reward trials. Random chance performance would be .33; thus, all participants 

performed above chance levels of performance. 
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Supplemental Figure S3. Graphical depiction of each of the functional networks identified with 

ICA. 
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Supplemental Figure S4. Depiction of relationship between assault exposure (A) and Childhood 

Trauma Questionnaire (CTQ) (B) and salience network (SN) encoding of negative prediction 

errors during social RL (where group-level effects were most robust) and facial emotion 

processing as a function of scanning site. UW = University of Wisconsin; UAMS = University of 

Arkansas for Medical Sciences. 
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