
S1 Appendix. The objective function used to verify the performance of the sensor com-
bines a detailed simulation of the skylight, the POL-unit processing, the CX compass model
that predicts the sun position, and the decoder of the output signal.

Sky simulation. To estimate the values of the photo-receptors we need to extract the intensity,
degree and angle of polarisation of the sky for the pointing directions of all the units. For that
reason we integrate a simulation of the sky in our objective function, which computes these
features given the sun position.

For the simulation of the sky, we follow [1], who uses the [2] sky-dome relative luminance
model, which is found to be more accurate than the widely cited CIE model [3]:

F(z, χ) = (1 +AeB/ sin(z))(1 + CeDχ + E cos2(χ))

where A, B, C, D and E are constant parameters that describe the sky features and rely
only on the turbidity of the atmosphere, TL. More specifically, A controls the darkening or
brightening of the horizon, B the luminance gradient near the horizon, C the relative intensity of
the circumsolar region, D the width of the circumsolar region, and E the relative backscattered
light. The parameters of the above function z and χ are the angular distance of the sky element
from the zenith point and the sun position respectively. For every element, j, in the sky-dome
with elevation, θjt , and azimuth, φjt , we can get its absolute luminance, Ljt (kcd/m2), using:

Ljt = Lz
F(θjt , γ

j
t )

F(θs, 0◦)
(1)

where γjt is the angular distance between the sky element j, tilted according to the tilting
orientation t, and the sun position s, and is given by the equation:

γjt = cos−1[sin
(
θjt

)
sin(θs) + cos

(
θjt

)
cos(θs) cos

(
φjt − φs

)
]

where θs and φs are the solar elevation and azimuth respectively. The zenith luminance, Lz
(kcd/m2), depends on the Linke’s turbidity factor (TL) and the distance of the sun from the
zenith point, θs, and is given by:

Lz = (4.8453 · TL − 4.9710) · tan

[(4

9
− TL

120

)
(180◦ − 2θs)

]
− 0.2155 · TL + 2.4192

The polarisation pattern is highly influenced by the sky intensity. To accurately model the
degree of polarisation we need to calculate this influence using:

Ijt =

[
1

F(θjt , γ
j
t )
− 1

F(θs, 0◦)

]
F(θs, 0

◦) · F(||θs − 90◦||, 90◦)

F(θs, 0◦)−F(||θs − 90◦||, 90◦)

Therefore, the degree of polarisation is:

P jt =
1

90◦
e−

TL−C1
C2

sin2(γjt )

1 + cos2(γjt )

[(
90◦ − θjt

)
sin
(
θjt

)
+ θjt I

j
t

]
(2)

where C1 = 0.6 and C2 = 4.0 are parameters that regulate the maximum degree of polarisation
according to the turbidity. The angle of polarisation depend only on the positions of the sun
and the observed element and is given by:

Ajt = tan−1
(xjt
yjt

)
(3)

where xjt and yjt are the Cartesian coordinates of the polarisation vector, the angle of which on
the (x, y) plane is parallel to the angle of polarisation, and their values are given by:
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xjt = cos
(
θjt

)
[sin
(
φjt

)
− 2 sin2(

θs
2

) sin(φs) cos
(
φs − φjt

)
]− sin

(
θjt

)
sin(θs) sin(φs)

yjt = cos
(
θjt

)
cos
(
φjt

)
[cos(θs) cos2(φs) + sin2(φs)]−

cos
(
θjt

)
sin
(
φjt

)
sin2(

θs
2

) sin(2φs)− sin
(
θjt

)
sin(θs) cos(φs)

Signal encoding. As described before, the output of the jth POL-OP unit, tilted by t, is
given by:

(
rjPOL

)
t

=

(
rj‖
)
t
−
(
rj⊥
)
t(

rj‖
)
t

+
(
rj⊥
)
t

(4)

where
(
rj‖
)
t

and
(
rj⊥
)
t

are the responses of the polarisation-opponent neurons of the model in

the position j on the sensor, while the sensor is tilted by the t pair of angles. Their values are
given by:

(
rj‖
)
t

=
√(

sj‖
)
t
,

(
sj‖
)
t

= Ljt ·
[

sin2(Ajt − α
j
t ) + cos2(Ajt − α

j
t )(1− P

j
t )

2]
(
rj⊥
)
t

=
√(

sj⊥
)
t
,

(
sj⊥
)
t

= Ljt ·
[

cos2(Ajt − α
j
t ) + sin2(Ajt − α

j
t )(1− P

j
t )

2]
where Ajt is the angle of polarisation, P jt is the degree of polarisation, and αjt = φjt − 90◦ is the
corresponding orientation of the jth unit. For the computational model that transforms the
POL-OP units responses into TCL responses, rkTCL, see methods.

Signal decoding. To decode the output of the computational model we use the Fast Fourier
Transform (FFT). Therefore, the vector that points towards the sun is given by:

R =

nTCL∑
k=1

rkTCLe
−i·360◦(k−1)/nTCL

Figure 1. Visual representation of the parameters of the objective function. (A) Parameters
extracted from the sun and element position on the sky-dome. (B) Tiling angles; maximum
tilting angle: 60◦; total number of tilting directions: 17.
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where R ∈ C. The angle of this complex number gives the solar azimuth, φ′s, while the magnitude
imply the confidence of this prediction, τs = 1

σs
:

φ′s = Φ(θ1t , ..., θ
n
t , φ

1
t , ..., φ

n
t , α

1
t , ..., α

n
t ,W, θs, φs) = 360◦ − tan−1

[
Im(R)

Re(R)

]
τs = Θ(θ1t , ..., θ

n
t , φ

1
t , ..., φ

n
t , α

1
t , ..., α

n
t ,W, θs, φs) = ||R||

(5)

Objective function. We calculate the performance of a specific design and model using
the angular error between the original and the predicted solar azimuth. In order to make the
objective function invariant to the sun position, we compute the error over 500 sun positions
homogeneously distributed in the sky-dome, i.e. using the Fibonacci spherical distribution, and
17 different tilting orientations. The total cost will then be the average value among these errors
weighted by the confidence of the prediction. Hence,

J(θ1, ..., θn, φ1, ..., φn, α1, ..., αn,W) =
1

8500

17∑
t=1

500∑
s=1

||[(φs − φ′s + 180◦) mod 360◦]− 180◦||

gives an estimation of the angular error of the given design and computational model.
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