
S1 Appendix: Technical details

Derivation of approximation formula (7) in the main

text

Preliminary

Here we derive the approximation formula (7) in the main text. We have n samples

with phenotypic value (binary, numeric value, or a factor) denoted by y1, . . . , yn, and

L genetic variants, gl = (gl,1, . . . , gl,n)
T for l = 1, . . . , L, which are to be tested for

association with the phenotype. The tested variables at the lth locus are generically

denoted as wT
l,i = (wl,i1, . . . , wl,ip), with p variables including the effect of gl itself or

an interaction between gl and an environment variable. We also have q covariates (e.g.

sex or age) zTi = (zi1, . . . , ziq) to be adjusted in common for all L tests. We consider L

hypothesis tests of the null hypothesis H0l : βl = 0 under the following regression

model for the conditional mean of yi with transformation,

ηi = η{E(yi|wT
l,i, z

T
i )} = wT

l,iβl + zTi γl, (S1)

for i = 1, . . . , n, where η is a monotone increasing function, and βT
l = (βl,1, . . . , βl,p)

and γTl = (γl,1, . . . , γl,q) are the regression coefficients. The above model reduces to

the ordinary linear regression model if η is the identity function and yi follows a

Gaussian distribution. The model reduces to the logistic regression model if η is the

logit function and yi follows a Bernoulli distribution.

We consider the lth genetic variant gl separately for l = 1, . . . , L, where n is the

sample size. Let Egl
denote the expectation with respect to the marginal distribution

of gl. The assumption is that, for a given l, genotypes gl,1, . . . , gl,n identically and

independently follow a distribution whose all moments are finite, where the jth

moment is denoted by µl,j = Egl
(gjl,i).
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As shown in section “Influence of centering gl,i and coding of xi” of this S1

Appendix, substracting any constant from gl,i does not change the score test for

testing βl = 0. Thus, without loss of generality, we can assume that

µl,1 = Egl
(gl,i) = 0 by subtracting the mean. We also denote the variance by

µl,2 = σ2
l . Let u = (ui), Wl = (wl,ia) with wl,ia = gl,ixia (a = 1, . . . , p), and Z = (zic)

(c = 1, . . . , q), in which i = 1, . . . , n, where u depends on phenotype y1, . . . , yn, xia is

the ath environment variable for ith subject, and zic is the cth covariate for ith

subject. We denote W̃l = Ω1/2Wl, Z̃ = Ω1/2Z, X̃ = Ω1/2X, Ω = diag(ω1, . . . , ωn),

the ωis are positive values specific to the regression model. Then, w̃l,ia = gl,ix̃ia

(a = 1, . . . , p). Let QZ̃ = I−PZ̃, where PZ̃ = Z̃(Z̃T Z̃)−1Z̃T is the projection onto Z̃.

For the following arguments, we make assumptions that maxi,a |x̃ia| <∞ and

maxi |ui| <∞ as n→ ∞. We denote the equality by ignoring O(n−1) terms by ‘≈’.

Let Aab
l and Bl,ab represent the (a, b)-element of matrixes A−1

l and Bl, where

Al = W̃T
l QZ̃W̃l and Bl = W̃T

l rr
TW̃l,

respectively, in which

r = QZ̃u.

Now we study the test statistic (1) in the main text,

tl = uT (QZ̃W̃l)(W̃
T
l QZ̃W̃l)

−1(QZ̃W̃l)
Tu

= tr{(W̃T
l QZ̃W̃l)

−1(QZ̃W̃l)
TuuT (QZ̃W̃l)}

= tr{(W̃T
l QZ̃W̃l)

−1(W̃T
l rr

TW̃l)}

= tr(A−1
l Bl)

=

p∑
a=1

p∑
b=1

Aab
l Bl,ab.

Since we assumed that gl,i is centered such that µl = 0,

Egl
(Al) = Egl

(W̃T
l QZ̃W̃l) = Egl


n∑

i=1

n∑
j=1

gl,igl,jx̃ix̃
T
j (QZ̃)ij

 = σ2
l

n∑
i=1

x̃ix̃
T
i (QZ̃)ii
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and

Egl
(Bl) = Egl

{(QZ̃W̃l)
TuuT (QZ̃W̃l)} = Egl


n∑

i=1

n∑
j=1

gl,igl,jx̃ix̃
T
j (QZ̃u)i(QZ̃u)j


= σ2

l

n∑
i=1

x̃ix̃
T
i (QZ̃u)

2
i .

Therefore, if the approximation

Egl
(tl) ≈ tr[{Egl

(Al)}−1Egl
(Bl)}] (S2)

holds, the approximation formula (7) in the main text is derived.

In what follows, we verify eq. (S2). To this end, Let Āl = Egl
(Al) and

B̄l = Egl
(Bl). Then,

Egl
(tl) = Egl

{tr(A−1
l Bl)}

= Egl
(tr[{Āl − (Āl −Al)}−1Bl])

= Egl
(tr[Ā

−1/2
l {I− Ā

−1/2
l (Āl −Al)Ā

−1/2
l }−1Ā

−1/2
l Bl])

= Egl
[tr{(I−Ml)

−1Nl}]

= Egl
[tr{(I+

∞∑
m=1

Mm
l )Nl}]

= Egl
{tr(Nl)}+

∞∑
m=1

Egl
{tr(Mm

l Nl)} (S3)

where

Ml = I− Ll, Ll = Ā
−1/2
l AlĀ

−1/2
l and Nl = Ā

−1/2
l BlĀ

−1/2
l .

Also, define

L̄l = Egl
(Ll) = Ā

−1/2
l ĀlĀ

−1/2
l and N̄l = Egl

(Nl) = Ā
−1/2
l B̄lĀ

−1/2
l .
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We express Al,ab = (Al)ab and Bl,ab = (Bl)ab in detail as follows.

Al,ab = (W̃T
l QZ̃W̃l)ab =

n∑
i=1

n∑
j=1

w̃l,iaw̃l,jb(QZ̃)ij

=

n∑
i=1

n∑
j=1

gl,igl,j x̃l,iax̃l,jb(QZ̃)ij =

n∑
i=1

n∑
j=1

gl,igl,jGl,ab,ij ,

Bl,ab = (W̃T
l rr

TW̃l)ab =

n∑
i=1

n∑
j=1

w̃l,iaw̃l,jb(rr
T )ij

=

n∑
i=1

n∑
j=1

gl,igl,j x̃iax̃jb(rr
T )ij =

n∑
i=1

n∑
j=1

gl,igl,jFl,ab,ij ,

in which

Gl,ab,ij = x̃l,iax̃l,jb(QZ̃)ij and Fl,ab,ij = x̃l,iax̃l,jb(rr
T )ij .

Because gl,is are identically and independently distributed with mean zero and

variance σ2
l , we have

Āl,ab =

n∑
i=1

n∑
j=1

Egl
(gl,igl,j)Gl,ab,ij = σ2

l

n∑
i=1

Gl,ab,ii = σ2
l

n∑
i=1

x̃iax̃ib(QZ̃)ii, (S4)

B̄l,ab =

n∑
i=1

n∑
j=1

Egl
(gl,igl,j)Fl,ab,ij = σ2

l

n∑
i=1

Fl,ab,ii = σ2
l

n∑
i=1

x̃iax̃ib(rr
T )ii. (S5)

From the assumption that maxi,a |x̃ia| <∞,

|
n∑

i=1

Gl,ab,ii| ≤ max
i,a

|x̃ia|2
n∑

i=1

(QZ̃)ii = max
i,a

|x̃ia|2(n− q) = O(n),

which implies that Āl = O(n), and hence, Ā
−1/2
l = O(n−1/2). Similarly, by

maxi |ui| <∞,

|
n∑

i=1

Fl,ab,ii| ≤ max
i,a

|x̃ia|2||r||2 = max
i,a

|x̃ia|2||QZ̃u||
2

≤ max
i,a

|x̃ia|2||u||2 ≤ max
i,a

|x̃ia|2 max
i

|ui|2n = O(n),

which implies that B̄l = O(n).

Define x̃∗ia =
∑p

c=1(Ā
−1/2
l )acx̃ic. By the assumption that maxi,a |x̃ia| <∞ as well
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as that Ā
−1/2
l = O(n−1/2), we have

max
i,a

|x̃∗ia| = O(n−1/2). (S6)

Then, let

G∗
l,ab,ij =

p∑
c=1

p∑
d=1

(Ā
−1/2
l )ac(Ā

−1/2
l )bdGl,cd,ij = x̃∗iax̃

∗
jb(QZ̃)ij ,

F ∗
l,ab,ij =

p∑
c=1

p∑
d=1

(Ā
−1/2
l )ac(Ā

−1/2
l )bdFl,cd,ij = x̃∗iax̃

∗
jb(rr

T )ij ,

and then,

Ll,ab = (Ā
−1/2
l AlĀ

−1/2
l )ab =

n∑
i=1

n∑
j=1

gl,igl,jG
∗
l,ab,ij ,

Nl,ab = (Ā
−1/2
l BlĀ

−1/2
l )ab =

n∑
i=1

n∑
j=1

gl,igl,jF
∗
l,ab,ij .

Therefore, we have

L̄l,ab = σ2
l

n∑
i=1

G∗
l,ab,ii and N̄l,ab = σ2

l

n∑
i=1

F ∗
l,ab,ii, (S7)

both of which are of order O(1) by the similar arguments above:

|
n∑

i=1

G∗
l,ab,ii| ≤ max

i,a
|x̃∗ia|2O(n) = O(1),

and

|
n∑

i=1

F ∗
l,ab,ii| ≤ max

i,a
|x̃∗ia|2O(n) = O(1).

Derivation

Now recall eq. (S3),

Egl
(tl) = Egl

{tr(Nl)}+
∞∑

m=1

Egl
{tr(Mm

l Nl)}.
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We will show that the first term is the dominant term being of order O(1), and,

consequently,

Egl
(tl) ≈ Egl

{tr(Nl)},

which is of order O(1).

The first term: We immediately have that

Egl
{tr(Nl)} = tr(N̄l) = tr(Ā

−1/2
l B̄lĀ

−1/2
l ) = tr(Ā−1

l B̄l),

the order of which is O(1) as shown in (S7) below.

The second term: In what follows, we use induction to show that

Egl
{tr(Mm

l Nl)} ≈ 0

for any m ≥ 1, which implies that the second term is negligible. As the induction step,

first, we show that Egl
{tr(Mm

l Nl)} ≈ 0 for m = 1 and 2. Subsequently, assuming that

Egl
{tr(Ms

lNl)} ≈ 0 is true for any s < m, we show that Egl
{tr(Mm

l Nl) ≈ 0 holds.

For m = 1: We have that

Egl
{tr(MlNl)} = tr(N̄l)− Egl

{tr(LlNl)}.

Because gl,is are independently and identically distributed random variables with zero

mean and finite variance, for given coefficients ξi,j , we have

n∑
i=1

n∑
j=1

ξi,jEgl
(gl,igl,j) =

n∑
i=1

n∑
j=1

σ2
l ξi,j1{i=j} = σ2

l

n∑
i=1

ξi,i.
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Similarly, for given coefficients ξi,j and ψi,j , we have

n∑
i1=1

n∑
j1=1

n∑
i=1

n∑
j=1

ξi1,j1ψi,jEgl
(gl,i1gl,j1gl,igl,j)

=

n∑
i1=1

n∑
j1=1

n∑
i=1

n∑
j=1

ξi1,j1ψi,j{µl,41{i1=j1=i=j} + σ4
l (1{i1=j1 ̸=i=j} + 1{i1=i̸=j1=j} + 1{i1=j ̸=j1=i})}

= µl,4

n∑
i=1

ξi,iψi,i + σ4
l

n∑
i=1

n∑
j=1,i̸=i1

(ξi1,i1ψi,i + ξi1,iψi1,i + ξi1,iψi,i1). (S8)

The second term is expressed as

Egl
{tr(LlNl)}

=

p∑
a=1

p∑
b=1

Egl

 n∑
i1=1

n∑
j1=1

n∑
i=1

n∑
j=1

gl,i1gl,j1gl,igl,jG
∗
l,ab,i1j1F

∗
l,ab,ij


≈

p∑
a=1

p∑
b=1

Egl

( ∑
i1=j1 ̸=i=j

gl,i1gl,j1gl,igl,jG
∗
l,ab,i1j1F

∗
l,ab,ij

+
∑

i1=i ̸=j1=j

gl,i1gl,j1gl,igl,jG
∗
l,ab,i1j1F

∗
l,ab,ij +

∑
i1=j ̸=j1=i

gl,i1gl,j1gl,igl,jG
∗
l,ab,i1j1F

∗
l,ab,ij

)

≈ σ4
l

p∑
a=1

p∑
b=1

 n∑
i=1

G∗
l,ab,ii

n∑
i=1

F ∗
l,ab,ii +

n∑
i=1

n∑
j=1

G∗
l,ab,ijF

∗
l,ab,ij +

n∑
i=1

n∑
j=1

G∗
l,ab,ijF

∗
l,ab,ji


≈ σ4

l

p∑
a=1

p∑
b=1

n∑
i=1

G∗
l,ab,ii

n∑
i=1

F ∗
l,ab,ii

=

p∑
a=1

p∑
b=1

L̄l,abN̄l,ab

= tr(L̄lN̄l)

= tr(Ā
−1/2
l ĀlĀ

−1/2
l Ā

−1/2
l B̄lĀ

−1/2
l )

= tr(Ā
−1/2
l B̄lĀ

−1/2
l )

= tr(N̄l).

In the above, the approximations in the second and third line is due to (S8) with

ξi1,j1 = G∗
l,ab,i1j1

and ψi,j = F ∗
l,ab,ij , µl,4 <∞ and

n∑
i=1

G∗
l,ab,iiF

∗
l,cd,ii = O(n−1), (S9)
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for any a, b, c, d. (S9) is the special case of (S15) when s = 1 given in the following

subsection. The approximation in the fourth line is due to

n∑
i=1

n∑
j=1

G∗
l,ab,ijF

∗
l,cd,ij = O(n−1), (S10)

for any a, b, c, d, which is shown in the following subsection. Therefore,

Egl
{tr(MlNl)} ≈ tr(N̄l)− tr(N̄l) = 0.

For m = 2: We have that

Egl
{tr(M2

lNl)} = Egl
[tr{(I− Ll)

2Nl}] = Egl
[tr{(I− 2Ll + L2

l )Nl}]

= tr(N̄l)− 2Egl
{tr(LlNl)}+ Egl

{tr(L2
lNl)}

≈ −tr(N̄l) + Egl
{tr(L2

lNl)},

where we used the previous result Egl
{tr(LlNl)} ≈ tr(N̄l).

Let F2,m,n be the set of all partitions in which any pairing of two indexes is equal

among 2m+ 2 indexes (i1, j1, i2, j2, . . . , im, jm, i, j) ∈ {1, 2, . . . , n}2(m+1) but different

pairs are distinct, which is equivalent to making m+ 1 unordered subset of 2 elements

from 2m+ 2 elements. For example,

F2,1,n

= {(i1, j1, i, j) ∈ {1, 2, . . . , n}4 : {i1 = j1 ̸= i = j} ∪ {i1 = i ̸= j1 = j} ∪ {i1 = j ̸= j1 = i}},

which corresponds to the index set appearing in summation in the second line of (S8),
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and

F2,2,n

= {(i1, j1, i2, j2, i, j) ∈ {1, 2, . . . , n}6 :

{i1 = j1 ̸= i2 = j2 ̸= i = j} ∪ {i1 = j1 ̸= i2 = i ̸= j2 = j} ∪ {i1 = j1 ̸= i2 = j ̸= j2 = i}∪

{i1 = j ̸= i2 = j2 ̸= i = j1} ∪ {i1 = j ̸= i2 = i ̸= j2 = j1} ∪ {i1 = j ̸= i2 = j1 ̸= j2 = i}∪

{i1 = j2 ̸= i2 = j1 ̸= i = j} ∪ {i1 = j2 ̸= i2 = i ̸= j1 = j} ∪ {i1 = j2 ̸= i2 = j ̸= j1 = i}∪

{i1 = i ̸= i2 = j2 ̸= j1 = j} ∪ {i1 = i ̸= i2 = j1 ̸= j2 = j} ∪ {i1 = i ̸= i2 = j ̸= j2 = j1}∪

{i1 = i2 ̸= i = j2 ̸= j1 = j} ∪ {i1 = i2 ̸= i = j1 ̸= j2 = j} ∪ {i1 = i2 ̸= i = j ̸= j2 = j1}}.

(S11)

Analogous to (S8), for given coefficients ξi,j , ψi,j and ϕi,j , we have

n∑
i1=1

n∑
j1=1

n∑
i2=1

n∑
j2=1

n∑
i=1

n∑
j=1

ξi1,j1ψi2,j2ϕi,jEgl
(gl,i1gl,j1gl,i2gl,j2gl,igl,j)

=

n∑
i1=1

n∑
j1=1

n∑
i2=1

n∑
j2=1

n∑
i=1

n∑
j=1

ξi1,j1ψi2,j2ϕi,j{µl,61{i1=j1=i2=j2=i=j}

+ σ2
l µl,4(1{i1=j1 ̸=i2=j2=i=j} + 1{i1=j2 ̸=i2=j=j1=i} + 1{i1=j ̸=i2=j2=i=j1} + 1{i1=i2 ̸=j1=j2=i=j}

+ 1{i1=i̸=i2=j2=i=j1} + 1{i2=i̸=i1=j1=j2=j} + 1{i2=j1 ̸=i1=j2=i=j} + 1{i2=j2 ̸=i1=j=j1=i}

+ 1{i2=j ̸=i1=j2=i=j1} + 1{i=j1 ̸=i2=j2=i1=j} + 1{i=j2 ̸=i2=j1=i1=j} + 1{i=j ̸=i2=j1=i1=j2}

+ 1{j1=j2 ̸=i2=i1=i=j} + 1{j1=j ̸=i2=i1=i=j2} + 1{j2=j ̸=i2=i1=i=j1})

+ σ6
l (1{i1=j1 ̸=i2=j2 ̸=i=j} + 1{i1=j1 ̸=i2=i ̸=j2=j} + 1{i1=j1 ̸=i2=j ̸=j2=i}

+ 1{i1=j ̸=i2=j2 ̸=i=j1} + 1{i1=j ̸=i2=i ̸=j2=j1} + 1{i1=j ̸=i2=j1 ̸=j2=i}

+ 1{i1=j2 ̸=i2=j1 ̸=i=j} + 1{i1=j2 ̸=i2=i ̸=j1=j} + 1{i1=j2 ̸=i2=j ̸=j1=i}

+ 1{i1=i̸=i2=j2 ̸=j1=j} + 1{i1=i̸=i2=j1 ̸=j2=j} + 1{i1=i ̸=i2=j ̸=j2=j1}

+ 1{i1=i2 ̸=i=j2 ̸=j1=j} + 1{i1=i2 ̸=i=j1 ̸=j2=j} + 1{i1=i2 ̸=i=j ̸=j2=j1})}. (S12)

July 7, 2019 9/18



Using (S12) and (S11), the second term is expressed as

Egl
{tr(L2

lNl)}

=

p∑
a=1

p∑
b=1

p∑
c=1

Egl

 n∑
i1=1

n∑
j1=1

n∑
i2=1

n∑
j2=1

n∑
i=1

n∑
j=1

gl,i1gl,j1gl,i2gl,j2gl,igl,jG
∗
l,ab,i1j1G

∗
l,bc,i2j2F

∗
l,ca,ij


≈

p∑
a=1

p∑
b=1

p∑
c=1

Egl

 ∑
(i1,j1,i2,j2,i,j)∈F2,2,n

gl,i1gl,j1gl,i2gl,j2gl,igl,jG
∗
l,ab,i1j1G

∗
l,bc,i2j2F

∗
l,ca,ij


≈ σ6

l

p∑
a=1

p∑
b=1

p∑
c=1

n∑
i1=1

n∑
i2=1

n∑
i=1

G∗
l,ab,i1i1G

∗
l,bc,i2i2F

∗
l,ca,ii

= tr(L̄2
l N̄l)

= tr(Ā
−1/2
l ĀlĀ

−1/2
l Ā

−1/2
l ĀlĀ

−1/2
l N̄l)

= tr(L̄lN̄l)

= tr(N̄l).

For the approximation in the second line, we used (S8), (S9) and (S15) when s = 2, i.e.

n∑
i=1

G∗
l,ab,iiG

∗
l,bc,iiF

∗
l,ca,ii = O(n−2), (S13)

combined with µl,6 <∞. Also, in the third line, we used (S10) and

n∑
i=1

n∑
j=1

G∗
l,ab,ijG

∗
l,cd,ij = O(n−1), (S14)

which is shown in the following subsection, making the summations over the

constraints in F2,2,n being of O(n−1) except for the set

{(i1, j1, i2, j2, i, j) : i1 = j1 ̸= i2 = j2 ̸= i = j}. Therefore,

Egl
{tr(M2

lNl)} ≈ −tr(N̄l) + tr(N̄l) = 0.

For general m: For induction, assume that

Egl
{tr(Ls

lNl)} ≈ tr(N̄l)
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is true for any s < m. Then, by the above induction assumption,

Egl
{tr(Mm

l Nl)} = Egl
[tr{(I− Ll)

mNl}]

= Egl

[
tr

{
m∑
s=0

(−1)sLs
lNl

}]

=

m−1∑
s=0

(−1)sEgl
{tr(Ls

lNl)}+ (−1)mEgl
{tr(Lm

l Nl)}

≈
m−1∑
s=0

(−1)str(N̄l) + (−1)mEgl
{tr(Lm

l Nl)}.

Then, by letting P = {1, . . . , p} and N = {1, . . . , n},

Egl
{tr(Lm

l Nl)}

=
∑

(a,a1,a2,...,am)∈Pm+1

Egl

( ∑
(i1,j1,i2,j2,...,im,jm,i,j)∈N 2m+2

gl,i1gl,j1gl,i2gl,j2 · · · gl,imgl,jmgl,igl,j

×G∗
l,aa1,i1j1G

∗
l,a1a2,i2j2 · · ·G

∗
l,am−1am,imjmF

∗
l,ama,ij

)

≈
∑

(a,a1,a2,...,am)∈Pm+1

Egl

( ∑
(i1,j1,i2,j2,...,im,jm,i,j)∈F2,m,n

gl,i1gl,j1gl,i2gl,j2 · · · gl,imgl,jmgl,igl,j

×G∗
l,aa1,i1j1G

∗
l,a1a2,i2j2 · · ·G

∗
l,am−1am,imjmF

∗
l,ama,ij

)

≈
∑

(a,a1,a2,...,am)∈Pm+1

σ
2(m+1)
l

∑
(i1,i2,...,im,i)∈Nm+1

G∗
l,aa1,i1i1G

∗
l,a1a2,i2i2 · · ·G

∗
l,am−1am,imimF

∗
l,ama,ii

= tr(L̄m
l N̄l)

= tr(N̄l),

in which we used (S10) and (S14) as in the case of m = 2. Therefore, for any m, we

have that Egl
{tr(Lm

l Nl)} ≈ tr(N̄l), and that

Egl
{tr(Mm

l Nl)} ≈

{
m−1∑
s=0

(−1)s + (−1)m1

}
tr(N̄l) = (1− 1)mtr(N̄l) = 0.

Finally, it follows from (S3) that

Egl
(tl) ≈ tr(N̄l) = tr(Ā−1

l B̄l) = tr(Ā−1
l,(0)B̄l,(0)),
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where the last equality is due to (S4) and (S5), and the elements of Al,(0) and Bl,(0)

are defined by

(Āl,(0))ab =

n∑
i=1

x̃iax̃ib(QZ̃)ii and (B̄l,(0))ab =

n∑
i=1

x̃iax̃ib(QZ̃u)
2
i ,

giving the approximation formula (7) in the main text.

Technical results

For any s ≥ 1, because (QZ̃)ii = 1− (PZ̃)ii ∈ [0, 1] and hence (QZ̃)
s
ii ≤ 1,

|
n∑

i=1

G∗
l,a1b1,ii · · ·G

∗
l,asbs,ii · F

∗
l,cd,ii| = |

n∑
i=1

{x̃∗ia1
x̃∗ib1(QZ̃)ii} · · · {x̃

∗
ias
x̃∗ibs(QZ̃)ii} · (x̃

∗
icx̃

∗
idr

2
i )|

≤ max
i,a

|x̃∗ia|2s+2
n∑

i=1

(QZ̃)
s
iir

2
i

≤ max
i,a

|x̃∗ia|2s+2||r||2

= O(n−s−1)O(n) = O(n−s). (S15)

Derivation of (S10) To see that (S10) holds, letting viac = x̃∗iax̃
∗
icri, by the

Cauchy–Schwarz inequality,

|
n∑

i=1

n∑
j=1

G∗
ab,ijF

∗
cd,ij | = |

n∑
i=1

n∑
j=1

(x̃∗iax
∗
icri)(x̃

∗
jbx̃

∗
jdrj)(QZ̃)ij |

= |vT
acQZ̃vbd|

= |(QZ̃vac)
T (QZ̃vbd)|

≤ ||QZ̃vac||||QZ̃vbd||.

Here,

||QZ̃vac||2 ≤ ||vac||2 =

n∑
i=1

(x̃∗iax̃
∗
icri)

2

≤ max
i,a

|x̃∗ia|4||r||2 = max
i,a

|x̃∗ia|4||QZ̃u||
2

≤ max
i,a

|x̃∗ia|4||u||2 = O(n−2)O(n) = O(n−1).
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Thus,
n∑

i=1

n∑
j=1

G∗
l,ab,ijF

∗
l,cd,ij = O(n−1)

which is (S10).

Derivation of (S14) To see that (S14) holds,

|
n∑

i=1

n∑
j=1

G∗
l,ab,ijG

∗
l,cd,ij | = |

n∑
i=1

n∑
j=1

(x̃∗iax̃
∗
ic)(x̃

∗
jbx̃

∗
jd)(QZ̃)

2
ij |

≤
n∑

i=1

n∑
j=1

|(x̃∗iax̃∗ic)(x̃∗jbx̃∗jd)|(QZ̃)
2
ij

≤ max
i,a

|x̃∗ia|4
n∑

i=1

n∑
j=1

(QZ̃)
2
ij = max

i,a
|x̃∗ia|4tr(Q2

Z̃
)

= max
i,a

|x̃∗ia|4tr(QZ̃) ≤ O(n−2)O(n) = O(n−1).

Consequently,
n∑

i=1

n∑
j=1

G∗
l,ab,ijG

∗
l,cd,ij = O(n−1)

which is (S14).

lapprox is close to one under correct null model

Consider the score statistic tl under the loglikelihood function ℓ = ℓ(η1, . . . , ηn) and

ui = (∂/∂ηi)ℓ/ω
1/2
i with ωi = −(∂2/∂2ηi)ℓ. If the model is correct and n is large, by

the Bartlett identity, E[{(∂/∂ηi)ℓ}{(∂/∂ηi′)ℓ}] = −E{(∂2/∂2ηi)ℓ}1i=i′ = ωi1i=i′ ,

then,
∑n

i=1 x̃ix̃
T
i (QZ̃u)

2
i ≈

∑n
i=1 x̃ix̃

T
i {QZ̃E(uuT )QZ̃}ii =

∑n
i=1 x̃ix̃

T
i (QZ̃IQZ̃)ii =∑n

i=1 x̃ix̃
T
i (QZ̃)ii. Hence, tapprox approximates p, and lapprox is close to one if the

model is correct.

Marginal association test

If xi = 1 for all i and p = 1, the test reduces to the marginal association test. Then,

tapprox = lapprox = tr[{
∑n

i=1(QZ̃)ii}
−1
∑n

i=1(QZ̃u)
2
i ] =

tr[tr(QZ̃)}
−1{
∑n

i=1(QZ̃u)
2
i }] = ||QZ̃u||

2/(n− q). For Gaussian linear model,

lapprox = Tapprox = {||QZ̃u||
2/(n− q)}/[{||QZ̃y||

2 − ||QZ̃u||
2/(n− q)}/n] =
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{||QZ̃y||
2/(n− q)/[{||QZ̃y||

2 − ||QZ̃y||
2/(n− q)}/n]} ≈ 1. Thus, the mean of the test

statistics is approximately one irrespective of what null model is used.

Influence of centering gl,i and coding of xi

Our model is wl,iβl + ziγl where wl,i = gl,ixi. Recall that

zi = (z(1:p),i, z(1+p):q,i) = (xi, z(1+p):q,i). Then, for any constant c,

wl,iβl + ziγl = gl,ixiβl + xiγl,1:p + z(1+p):q,iγl,(1+p):q =

(gl,i–c)xiβl + xi(cβl + γl,1:p) + z(1+p):q,iγl,(1+p):q, which implies that subtracting c from

gl,i does not alter the regression coefficients βl. Consequently, the score test for testing

βl = 0 does not change if gl,i is centered. The influence is absorbed into the regression

coefficients of xi.

Next, we consider the influence of coding of xi. For any invertible matrix T of size

p× p, denoting its inverse by T−1, we have that

wl,iβl + ziγl = gl,ixiβl + xiγl,1:p + z(1+p):q,iγl,(1+p):q =

gl,i(xiT)(T−1βl) + (xiT)(T−1γl,1:p) + z(1+p):q,iγl,(1+p):q. Then, βl = 0 is equivalent to

T−1βl = 0 since T is invertible. Therefore, for any invertible matrix T of size p× p,

replacing environment variables xi by xiT does not alter the hypothesis test.

Technical details of simulation studies

Here, we describe the technical details of simulation studies in the main text.

Simulation scheme common to all scenarios

Phenotypic value yi (i = 1, . . . , n) is modeled by the regression model eq. (1) in “The

approximation formula” section of the main text or eq. (S1), with a given environment

variable xi, q covariates zi = (z1,i, . . . , zq,i)
T and each variant gl,i (l = 1, . . . , L). We

set xi = (1, z1,i) (i.e. the first covariate is the environment variable) and used additive

coding for gl,i for each l.

For genotype data, we simulated n samples with L = 2000 variants consisting of 20

independent blocks, each of which had 100 SNPs made by summing two

100-dimensional binary (0 or 1) random variables so that each element takes a value in
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{0, 1, 2} (i.e. minor allele count). The 100-dimensional binary random variables were

created by thresholding correlated normal random variables using bindata package for

R with a given correlation matrix whose diagonal and off-diagonal elements are one

and ρ, respectively. That is, the correlation between any pair of genetic variants is

always the same value of ρ. Minor allele frequency at each variant was generated from

a pre-specified distribution (see below).

Given three effect size parameters bG, bGE and bZ as input, we generated

phenotypic value, yi, from the following model having the transformed conditional

mean,

η∗i = τ(g1000,i)bG + τ(g1000,i)z1,ibGE +

q∑
j=1

zj,i(bZ/q), (S16)

in which τ denotes a given genotype coding of the causal variant, g1000,i, i.e. 1000th

genetic variant. We considered quantitative and binary phenotypes. For quantitative

phenotype, Gaussian linear regression model η∗i + ϵi was considered, where

ϵi ∼ N(0, 1). For binary phenotype, logistic regression model with success probability

1/(1 + e−η∗
i ) was considered.

The simulations are carried out for two sample sizes, n = 1000 and 10000, and for

three effect size scenarios, bG = 0, bZ = 0, bGE = 0, bG = 0, bZ = 1, bGE = 0, and

bG = 0, bZ = 0, bGE = 1. For the scenarios where genotypic effect exists, i.e. when

(bG, bZ , bGE) = (0, 1, 0) and (0, 0, 1), we considered three genotype codings, additive,

recessive, or dominant. We repeated the simulations 200 times to compare lapprox with

lmean.

In the following, we provide the technical details of the simulation scenarios

described in Table 1 in the main text.

Baseline scenario

Base. This is the baseline scenario. It is used to make other scenarios by a slight

modification. The true model is the linear model in (S1) with q = 2 and given

(bG, bGE , bZ) including one normally distributed covariate variable z2,i. Environment

variable z1,i, covariate variable z2,i and genotypes are independent, where z1,i and z2,i

are independent standard normal random variables. Genotypes are in linkage

equilibrium (ρ = 0 where ρ is the off-diagonal element of correlation matrix among 100
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SNPs in each of 20 independent blocks) with uniformly distributed minor allele

frequencies in [0.05, 0.5]. The null model for all tests is correctly specified.

Other scenarios are created by the baseline scenario with modifications described

below while other settings are unchanged.

Association among environment, covariate variables and/or

genotypes

1a. Covariate is associated with genotypes by generating independent standard

normal random variables z1,i (environment variable) and z∗2,i, and the covarite variable

z2,i is set as z2,i = z∗2,i/50 + L−1
∑L

l=1 gl,i.

1b. Environment variable is associated with genotypes by generating two

independent standard normal random variables z∗1,i and z2,i (covariate variable), and

the environment variable z1,i is set as z1,i = z∗1,i/50 + L−1
∑L

l=1 gl,i.

1c. Covariate and environment variables are associated with genotypes by generating

two independent standard normal random variables z∗1,i and z
∗
2,i, the environment

variable z1,i is set as z1,i = z∗1,i/50 + L−1
∑L

l=1 gl,i, and the covariate variable z2,i is

set as z2,i = z∗2,i/50 + L−1
∑L

l=1 gl,i.

1d. Covariate is associated with environment variable by generating environment

variable z1,i and covariate variable z2,i from a bivariate normal distribution with mean

zero, variance one and correlation 0.5.

Misspecified null model

2a. Covariate associated with genotypes is missed. The data is generated in the

same way as scenario 1a, but the covariate z1,i is ignored in the null model.

2b. Covariate associated with genotypes and environment variable is missed. The

data is generated in the same way as scenario 1c, but the covariate z1,i is ignored in

the null model.

July 7, 2019 16/18



2c. Linear null model is incorrectly specified. Given (bG, bGE , bZ), data is generated

from the quadratic conditional mean model,

η∗i = τ(g1000,i)bG + τ(g1000,i)z1,ibGE +
∑2

j=1 zj,i(bZ/2)− z21,i rather than the linear

model (S1).

2d. One outlier is involved. It is in the first index taking a value of 99, while the

other data is generated from the linear model (S1) for q = 2 and given (bG, bGE , bZ).

2e. Ten outliers are involved. These are in the first ten indexes taking a value of 99,

while the other data is generated from the linear model (S1) for q = 2 and given

(bG, bGE , bZ).

Environment/covariate variable distribution

3a. Environment variable z1,i and five covariates z2,i, . . . , z6,i are independent

standard normal random variables.

3b. Environment variable z1,i and one covariate z2,i are uniformly distributed in

[0, 5].

3c. Environment variable z1,i and one covariate z2,i are binary variables from

independent Bernoulli distribution with success probability 0.5.

3d. Environment variable z1,i and one covariate z2,i are ordinal variable from

independent binomial random variables with success probability 0.5 with number of

trials 3.

Genotype distribution

4a. Genotypes are in linkage disequilibrium (ρ = 0.5 where ρ is the off-diagonal

element of correlation matrix among 100 SNPs in each of 20 independent blocks) with

uniformly distributed minor allele frequencies in [0.05, 0.5].

4b. Genotypes are in linkage equilibrium (ρ = 0) with minor allele frequencies from

Beta(1,10) distribution where values outside of [0.05, 0.5] are truncated at the limit.
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4c. Genotypes are in linkage disequilibrium (ρ = 0.5) with minor allele frequencies

from Beta(1,10) distribution where values outside of [0.05, 0.5] are truncated at the

limit.
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