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Supplementary Material  

A. Full derivation of Adaptive filtering derivative 

The results shown in this section are taken from Anagnostopoulos et al. (2012). 
 

The log-likelihood for unseen observation, 𝑋"#$ is given by: 
ℒ"#$ = 	ℒ(𝑋";	�̅�", 𝑆"	) = 	−

$
/
log det 𝑆"	 −	

$
/
	(𝑋"#$ − �̅�")6𝑆"7$(𝑋"#$ − �̅�"). 

The approach taken here is to approximate the derivative of ℒ"#$ with respect to adaptive forgetting factor 𝑟" by 
calculating the exact derivative of ℒ"#$ with respect to a fixed forgetting factor r. Then under the assumption that 
changes in 𝑟" occur sufficiently slowly, this will serve as a good approximation to the derivative of ℒ"#$ with 
respect to 𝑟". 

We begin by noting the following results from Petersen and Pedersen (2008):  
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Moreover, we note that we do not need to explicitly invert 𝑆". By noting that 𝑆" is a rank one update of 𝑆"7$ we 
are able to directly obtain 𝑆"7$ using the Sherman-Woodbury formula. 

Further, from equations (2), (4), (5) and (10) we can see that:  
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where once again we have used the notation A' to denote the derivative of a vector or matrix A with respect to r. 
Using the results from the above equations we can directly differentiate the ℒ"#$ to obtain equation (7). 

B.  Optimization algorithm for rt-SINGLE algorithm 
In this section we provide further details regarding the optimization of the rt-SINGLE objective funciton. 
Equations (12)-(13) clearly expose the separable nature of the objective, which can be expressed as the sum of two 
sub-functions. It is precisely this property which is exploited in the original SINGLE algorithm by employing an 
Alternating Directions Method of Multipliers (ADMM) algorithm (Boyd et al., 2010). The ADMM is a form of 
augmented Lagrangian algorithm that is particularly well suited to addressing this class of separable and highly 
structured minimization problems. Formally, such an algorithm proceeds by iteratively minimizing each of the 
sub-functions together with an additional Lagrangian penalty term. As we demonstrate below, each of these 
minimization problems will either have a closed form solution or can be efficiently solved. 

As in the SINGLE algorithm, we proceed by introducing an auxiliary variable 𝑍 ∈ ℝX	×X. Here 𝑍 corresponds 
directly to 𝐾 and we require 𝑍 = 𝐾 for convergence. Minimizing equation (11) can subsequently be cast as the 
following constrained optimization problem:  

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒`,b c	− log det𝐾 + trace(𝑆"𝐾) + 𝜆$e|𝑍|e$ +	𝜆/e|𝑍 − 𝐾"7$|e$	g 		subject	to	K=Z (14) 
We note that 𝐾 is now only involved in the likelihood component while Z is involved exclusively in the penalty 
component. Thus, by introducing Z we have decoupled the initial objective function — allowing us to take 
advantage of the individual structure associated with each term. 

We formulate the augmented Lagrangian corresponding to equation (14), which is defined as:  
ℒn(𝐾, 𝑍, 𝑈) = 	− log det 𝐾 + trace	(𝑆"𝐾) + 𝜆$e|𝑍|e$ + 	𝜆/e|𝑍 − 𝐾"7$|e$ +

$
/
(e|𝐾 − 𝑍 + 𝑈|e

/
/ − e|𝑈|e

/
/) (15) 

where 𝑈 ∈ ℝX	×X is the (scaled) Lagrange multiplier. Equation (15) corresponds to the Lagrangian together with 
an additional quadratic penalty term which serves to both increase the robustness of the proposed method 
(Bertsekas, 1982) as well as greatly simplify the resulting computations, as we describe below. The proposed 
estimation algorithm works by iteratively minimizing equation (15) with respect to 𝐾 and Z. In this manner, the 
proposed algorithm is able to decouple the objective function of equation (11), leading to simple sub-problems.  

B.1 Burn-in period 
It is common for real-time algorithms to incorporate a brief burn-in phase a when they are initialized. This involves 
collecting the first 𝑁qrCsts observations and using these to collectively obtain the first estimate. Many times such 
an approach is motivated by the need to ensure sample statistics are well-defined, however due to the presence of 
regularization the proposed method does not require a burn-in per se. That said the use of a burn-in phase can 
improve initial network estimates and thereby result in improved network estimation initially. As a result, the first 
𝑁qrCsts observations are collected and used to estimate the corresponding precision matrices by directly applying 
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the offline SINGLE algorithm. This involves solving equation (Error! Reference source not found.0). From then 
onward, new estimates of the precision matrix are obtained as described previously. 

C. Additional information regarding simulation study setting 

C.1 Simulation settings 

In each simulation we produce simulated time series data giving rise to a number of connectivity patterns and 
properties which reflect those reported in real fMRI data. The objective is then to measure whether our proposed 
algorithm is able recover the underlying patterns in real-time. We are primarily interested in studying the 
performance of the proposed methods in two ways; first we wish to study the quality of the estimated covariance 
matrices over time. That is to say, we study how accurately our sample covariances represent the true underlying 
covariance structure. Second, we are also interested in the correct estimation of the presence or absence of edges. 
 

There are two main properties of fMRI data which we wish to recreate in the simulation study. The first is the 
high autocorrelation which is typically present in fMRI data (Poldrack et al., 2011). The second and main property 
we wish to recreate is the structure of the connectivity networks themselves. It is widely reported that brain 
networks have a small-world topology as well as highly connected hub nodes (Bullmore and Sporns, 2009) and 
we therefore look to enforce these properties in our simulated data. 
 

C.1.1. Autocorrelation 
Vector Autoregressive (VAR) processes are well suited to the task of producing autocorrelated multivariate 

time series as they are capable of encoding autocorrelations within components as well as cross correlations across 
components (Cribben et al., 2012). The focus of these simulations is to study the performance of the proposed 
method in the presence of non-stationary data. As a result the simulated datasets are only locally stationary. This 
is achieved by concatenating multiple VAR process which are simulated independently — this results in abrupt 
changes which are representative of the typical block structure of task-based fMRI experiments. Formally, data is 
generated as follows: for each block the covariance structure graph is randomly sampled. This is subsequently 
employed to simulate data from a VAR model which enforces cross-correlations of the simulated graph. This 
results in highly autocorrelated data which exhibits the conditional independence structure of the simulated graph.  
 

C.1.2 Grap theoretical properties 
Moreover, when simulating connectivity structures we study the performance of the proposed algorithm using 

two types of random graphs; scale-free random graphs obtained by using the preferential attachment model of 
Barabási and Albert (1999) and small-world random graphs obtained using the Watts and Strogatz (1998) model. 
The use of each of these types of networks is motivated by the fact that they are each known to each resemble 
different aspects of fMRI networks.  

 
 

Throughout each of the simulations, first the network architecture was simulated using either of the 
aforementioned methods. Then edge strength was uniformly sampled from u− $

/
, − $

v
w ∪ u$

v
	 , $
/
w This introduced 

further variability into the simulated networks, increasing the difficulty of each task.  
 

C.1.3 Parameter tuning 
 
The parameters for the offline SINGLE algorithm where determined as described in Monti et al. (2014). That is, 
the choice of kernel width was obtained by maximizing leave-one-out log-likelihood while the choice of 
regularization parameters where chosen by minimizing AIC. In the case of the real-time algorithms the parameters 
where chosen as follows. The sliding window length and fixed forgetting factor were selected in order to have 
approximately equal sample size (provided in equation (16)). As such, a window length of 40 was employed and 
the fixed forgetting factor was set to be r=0.975. While in the case of adaptive forgetting η=0.005 was chosen. All 
real-time algorithms employed a burn-in of 15 observations. Regularization parameters where chosen to minimize 
AIC over the burn-in period.  
 

C.2 Performance measures 
 
As alluded to previously, we wish to evaluate the performance of the proposed method in two distinct ways. First, 
we wish to study the reliability with which we can track changes in covariance structure using either a fixed 
forgetting factor or an adaptive forgetting factor. In order to quantify the difference between the true covariance 
structure and our estimated covariance we consider the distance defined by the trace inner product:  
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𝑑(∑, 𝑆) = trace(∑7$𝑆)  
 
It follows that if the estimated sample covariance, S, is a good estimate of the true covariance, ∑, we will have that 
𝑑(∑, 𝑆) ≈ 𝑝. However, if S is a poor estimate, the distance d will be large. Moreover, since both ∑ and S are 
positive definite we have that 𝑑(∑, 𝑆) will always be positive.  

 
Second, we wish to consider the estimated functional connectivity networks at each point in time. In this 

application we are particularly interested in correctly identifying the non-zero entries in estimated precision 
matrices, 𝐾}", at each i=1,…,T. An edge is assumed to be present between the jth and kth nodes if ~𝐾"���,� ≠ 0. At 
the ith observation we define the set of all reported edges as 𝐷� = {(𝑗, 𝑘) ∶ ~𝐾}���,� ≠ 0} . We define the 
corresponding set of true edges as 𝑇� = {(𝑗, 𝑘) ∶ (𝐾�)�,� ≠ 0}.  where we write 𝐾�  to denote the true precision 
matrix at the ith observation. Given 𝐷� and 𝑇� we consider a number of performance measures at each observation.  

 
1. (1) We measure the precision, 𝑃� . This measures the percentage of reported edges which are actually 

present (i.e., true edges). Formally, the precision is given by:  𝑃� = 	
|��∩6�|
|��|

.  
2. we also calculate the recall, 𝑅�, formally defined as:  
 	

𝑅� = 	
|𝐷� ∩ 𝑇�|
|𝑇�|

. 

This measures the percentage of true edges which were reported by each algorithm. Ideally we would like 
to have both precision and recall as close to one as possible.  

 
 
3.   Finally, the 𝐹� score, defined as: 

𝐹� = 2	
𝑃�𝑅�
𝑃� + 𝑅�

, 

summarizes both the precision and recall by taking their harmonic mean. It follows that 𝐹� will lie on the 
interval [0,1] with 𝐹� = 1 indicating perfect performance. 
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Supplementary Tables 
 
Table 1: Eleven regions of interest and corresponing MNI coordinates (center of gravity) used in the study of HCP 
data described in Section 4.1 

Name of ROI   Right hemisphere      Left hemisphere 
Lateral Occipital 31 -84 1  -29 -87 1 
Inferior Parietal 43 -62 30  -39 -68 30 
Superior Parietal 22 -62 48  -21 -64 47 
Precuneus 11 -56 37  -10 -57 37 
Fusiform 34 -39 -20  -34 -43 -19 
Lingual 15 -66 -3  -14 -67 -3 
Inferior Temporal 49 -26 -25  -49 -31 -23 
Middle Temporal 57 -22 -14  -56 -27 -12 
Precentral 39 -8 43  -38 -9 43 
Postcentral 42 -21 44  -42 -23 44 
Paracentral 9 -26 58  -8 -28 59 

Table 2: Summary graph statistics (sd) for networks estimated using the offline and real-time SINGLE algorithms 
respectively. Graph statistics are provided for task positive and task negative networks (correspond to red and blue 
edges in Figure [6] respectively) in order to allow for a detailed study of graph properties across both algorithms. 

 Offline SINGLE Real-time SINGLE 
Graph Statistic Task positive Task negative Task positive Task negative 
Degree centrality 0.29 (0.10) 0.09 (0.05) 0.27 (0.11) 0.07 (0.04) 
Betweenness centrality 0.07 (0.02) 0.01 (0.01) 0.1 (0.03) 0.02 (0.01) 
Transitivity 0.24 0.06 0.22 0.06 

Table 3: Summary graph statistics (sd) for networks estimated using the real-time SINGLE algorithm across the 
cohort of subjects. Graph statistics are provided for task positive and task negative networks (correspond to red 
and blue edges in Figure [7] respectively) in order to allow for a detailed study of the robust nature of graph 
statistics across all subjects. 

 Estimated value across subjects 
Graph Statistic Task positive Task negative 
Degree centrality 0.31 (0.05) 0.11 (0.06) 
Betweenness centrality 0.06 (0.01) 0.01 (0.01) 
Transitivity 0.27 (0.06) 0.08 (0.04) 

Table 4: Fourteen regions of interest and corresponing MNI coordinates used in the real-time fMRI study 
described in Section 4.2 

Name of ROI MNI coordinates 
Right middle frontal gyrus (RMFG) 33 22 37 
Right frontal eye fields (RFEF) 24 13 52 
Left inferior frontal gyrus (LIFG) -45 32 15 
Right inferior frontal gyrus (RIFG) 49 20 19 
Right superior parietal lobe (RSPL) 30 -65 49 
Left superior parietal lobe (LSPL) -23 -67 46 
Left occipital fusiform -10 -83 -23 
Right occipital fusiform 29 -91 -17 
Left frontal pole -41 53 -1 
Right inferior temporal gyrus (RITG) 58 -52 -18 
Right middle temporal gyrus 62 -37 -8 
Superior parietal lobe 23 -65 48 
Frontal eye fields 32 -10 48 
Middle frontal gyrus 46 6 42 
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Table 5: Summary graph statistics (sd) for networks estimated using the real-time SINGLE algorithm across the 
cohort of subjects. Graph statistics are provided for networks associated with attentive visual search and passive 
viewing respectively (correspond to red and blue edges in Figure [8] respectively).  
 

 Estimated value across subjects 
Graph Statistic Attentive visual search Passive viewing 
Degree centrality 0.39 (0.11) 0.18 (0.06) 
Betweenness centrality 0.07 (0.02) 0.02 (0.01) 
Transitivity 0.5 (0.08) 0.06 (0.03) 
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Supplementary Figures 
 
 
 
 

 
 
 
 
Figure 1: Description of the eleven bilateral ROIs used in the study of HCP data described in Section 4.1 
 
 
 


