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Supplementary Figure 1 Schematic illustration of device fabrication steps. (1) First, the Si/SiO2 

substrate is patterned with Ag as the bottom electrode for our self-selective memory cells by using e-

beam lithography and lift-off processes (see details in Methods: Device fabrication). Then, we prepare 

a polydimethylsiloxane (PDMS) substrate with a pre-exfoliated h-BN layer on it and transfer the 

suitable h-BN layer on the pre-pattern Ag electrode, assisted by optical microscopy. (2) Using the same 

methods, another graphene layer is transferred onto the pre-transferred h-BN layer. The alignment 

during the transfer processes is assisted by optical microscopy. (3) Another h-BN layer with a small 

thickness is transferred on top of the structure discussed above. (4) Etching the area of the 2D layered 

materials without the Ag electrode support, as shown in the figure above. (5) Finally, the Au electrode 

is patterned, forming a cross bar shape relative to the bottom Ag electrode. This schematic is viable 

for only the memory cell array measurement. For the measurement of a single device, the etching step 

shown above was omitted (Figure 1 and Supplementary Figure 2).  
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Supplementary Figure 2 Material characterization of van der Waals structures. a, Optical image of 

the fabricated 2×2 self-selective memory. We selected one of them as a single device to measure the 

I-V curve. In this image, the narrow electrode is Ag while the wide electrode is Au. The areas marked 

using yellow, white and blue dashed lines represent the bottom h-BN, graphene and top h-BN layers, 

respectively. The scale bar is 10 μm. b and c Raman mapping images integrated with the Raman peaks 

from G bands in h-BN and G band in graphene, respectively. The scale bar is 10 μm.  
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Supplementary Figure 3 Typical I-V curve using thin h-BN layer (~5nm), with a clearly decreased 

Vth.  
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Supplementary Figure 4 Cross-sectional TEM image of our self-selective devices. From top to 

bottom, there are five layers: Au, thin h-BN, graphene, thick h-BN and Ag layers.   
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Supplementary Figure 5 The EDX mapping for all involved elements, including the van der Waals 

structures and electrodes. The clear silver particles are shown near the interface between graphene and 

bottom the h-BN layer, but there are no sliver particles observed between the Au and top h-BN layer, 

which is consistent with the discussion in the main text. 
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Supplementary Figure 6 The observed defective path in the h-BN layer stacked between the Au and 

graphene layers, which functions as NVM, as shown by the dashed line in the right zoomed-in figure. 

 

 

 

 

 

 

 

 

Au

h-BN

Graphene

h-BN10 nm 5 nm



 

Supplementary Figure 7 The fitted curve for simulation and two bias voltage schemes used in this 

work. a, the simulated DC I-V curve (solid straight line) based on a single self-selective memory cell 

from the SPICE simulation. b, 1/2 voltage bias scheme; c, 1/3 voltage bias scheme. For a detailed 

description of the difference between these two kinds of bias scheme, please refer to the Methods.  
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Supplementary Figure 8 The electroforming processes for the self-selective memory cells. Three 

typical cycles during switching are shown. 
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Supplementary Figure 9 Device-to-device variations of HRS and LRS tested on 144 devices.  
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Supplementary Figure 10 Cumulative probability and histogram of threshold and holding voltage. 

Once the device is formed (as shown in Supplementary Figure 7a), our devices show a reliable 

threshold and holding voltage. 
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Supplementary Figure 11 Readout margin for three different wire resistances between neighboring 

cells simulated by using SPICE modelling. A one-third voltage scheme was used for this simulation 

showing a similar result to that obtained using a one-half voltage scheme (Figure 2c). The red, purple 

and black curves indicates wire resistances of 0 Ω, 1 Ω, 10 Ω, respectively.  
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Supplementary Figure 12 Optical image of a flexible device on a PET substrate. a, an optical image 

of a device fabricated on flexible substrate. b, the top view and side vide of set-up for measurement. 

A typical device characteristic curve on the bent substrate is shown in Figure 4c (main text). 
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Structure ON/OFF ratio Rectification 

ratio 

Off current Endurance Retention Polarity Ref 

Cu/HfO2/n-Si 104 @1 V 104 @±1V 1 nA@1V 50 (DC) 2000 s@85°C unipolar 1 

Pt/NbOx/TiOy/NbOx/TiN 102 @3V 105 1 pA  @3V 5000 (DC) 10 yrs  bipolar 2 

p-Si/SiO2/n-Si >104 @1.5 V 105 @±1.5 V 10 nA @2 V >100 (DC) >2×105 s @ 300°C unipolar 3 

W/Al2O3/TaOx/TiN >10 >5000 1 nA @0.65 

V 

108  >900h@ 85°C bipolar 4 

Pt/Ta2O5/HfO2/TiN 103 @6 V 104 @6 V >10 pA@±5V 103 (DC) 10^46@85°C bipolar 5 

Pd/HfO2/WOx/W >10 100 @0.35 V 100 nA@-1 V 109 104 s @85°C bipolar 6 

Ti/SiOxNy/AIN/Pt 80 102 200 nA  

@±2 V 

103 105 s bipolar 7 

Ni/HfO2/n
+-Si 104 @0.1 V 103 @ 1V >10 pA 

@±0.5 V 

100 (DC) >2×104 s @ 125°C unipolar 8–10 

Si/a-Si core/Ag 

nanowires 

104 106 @±1.5V 1 pA @±1.5 

V 

104 >2 weeks bipolar 11 

Pt/Ti/Ta2O5-x/TaO2-x/ Pt 10 105 @±0.7  10 μA @-1 V 109 NA bipolar 12 

Ag/h-BN/Graphene/ 

h-BN/Au 

104 1010 10 fA 

@±1.5V 

104 106 s bipolar This 

work 

 

Structure Off current On/off ratio selectivity Two-terminal ref 

Pt/Ag/SiOx:Ag/Pt/Pd/Ta/Ta2O5:Ag/Ru 10 pA >10 107 no 13 

Ag/Defect graphene/SiO2/Pt/HfO2/Cu 1 pA >100 109 no 14 

Mg/MgO/W/Ag/MgO/Ag/W 10 pA >100 107 no 15 

Pt/HfOx/Ag/W/NbOx/W 1 pA 100 107 no 16 

Ti/ZrO2/Pt/Ag/ZrO2:Ag/Pt 1 nA 10 105 no 17 

Pt/Ag/HfOx/Ag/Pd/TaOx/Ta2O5/Pd >1 pA 10 107 no 18 

Ag/h-BN/graphene/h-BN/Au 10 fA 104 1010 yes This work 

Supplementary Table 1 Comparison of the performance of previously reported NVM devices, 

including self-rectifying memristors (top table) and non-self-rectifying memristors (bottom table). It 

is clearly shown that compared with that of non-self-rectifying cells, the operation performance of self-

rectifying memory cells is usually poor, although their device structure is relatively simple. However, 

the complex device structure, fabrication processes, and the three-terminal architectures for non-self-

rectifying memory cells hinder their application for 3D integration. Our new self-selective memory 

cells possess the advantages of both self- and non-self-rectifying memory cells. 
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