Co-option of neurotransmitter signaling for inter-organismal communication in *C. elegans*

Chute et al.

Supplementary Figure 1. A) Attenuation of osas#9 avoidance response by *E. coli* OP50. Animals reintroduced to *E. coli* OP50 for two hours exhibited an reduced avoidance response to osas#9, with complete attenuation at four hours, $n \ge 3$ trials. **B)** osas#9 exhibits avoidance response over a broad range of concentrations (fM - μ M) in YA wild type animals, $n \ge 3$ trials. Data presented as mean ± S.E.M; * *p* < 0.05, ** *p* < 0.01, *** *p* < 0.001, one factor ANOVA with Sidak's multiple comparison posttest. Asterisks displayed without bar depict compared osas#9 avoidance to respective solvent control within groups.

Supplementary Figure 2. A-B) *tyra-2* RNAi knockdown results in loss of avoidance to osas#9. Animals cultured at 15 °C and fed *tyra-2* RNAi clones were defective in response to osas#9 in two different RNAi sensitive backgrounds A) *nre-1(hd20);lin-15B(hd126)*. n ≥ 10. B) *sid-1(pk3321)*. n ≥ 3. Data presented as mean ± S.E.M; *** p < 0.001. Asterisks depict comparison between test solution and respective solvent control. '+' signs represent same p-value as asterisks, but representing difference between response of a strain/conditions in comparison to wild type.</p>

Supplementary Figure 3. Role of different sensory neurons in osas#9 avoidance behavior. **A-C)** Genetically ablated ASH, ASI, and ASE neurons were tested for their response to various concentration of osas#9: **A)** 10 μ M, **B)** 1 μ M, and **C)** 1 pM. n \geq 3 trials. **D)** Sensory neurons not required for osas#9 avoidance. Note that ADL is not required for osas#9 avoidance. All ablated animals were tested with at least 10 animals with the exception of ADF, for which 7 animals were tested. **E,F)** ASH neurons exhibit significant calcium transients upon 1 μ M osas#9 stimulation in both *unc-13* and *unc-31* mutant background. However, the dynamics of the calcium change in both mutant backgrounds are distinct from wild type animals in both magnitude and OFF response upon stimulus removal. **G)** ASH calcium transients are osas#9 specific. Exposure to an unrelated ascaroside, 1 μ M ascr#3 (black), does not elicit calcium transients in the ASH neuron (exposure, gray-shaded region), n = 19 animals. **H)** Maximum fluorescence intensity in transgenic worms before (solvent control) and during exposure to 1 μ M ascr#3. Data presented as mean ± S.E.M; * p < 0.05, ** p < 0.01, *** p < 0.001, one factor ANOVA with Sidak's multiple comparison posttest.

Asterisks depict comparison between test solution and respective solvent control. '+' signs represent same p value as asterisks but representing difference between response of a strain/conditions in comparison to wild type.

Supplementary Figure 4. Octopamine elicits avoidance at high concentrations. **A)** Animals do not avoid 1 μ M octopamine but does avoid 1 mM octopamine. n ≥ 3 trials. **B)** Calcium dynamics in ASH sensory neurons upon exposure (gray-shaded region) to 1 μ M (red) and 1 M (black) octopamine. n ≥ 10 animals. **C)** Maximum fluorescence intensity in transgenic worms before (solvent control) and during exposure to octopamine. **D)** Wild type and *tyra-2*(tm1846) animals were exposed to mixtures of tyramine and osas#9. In each mixture, the concentration of osas#9 was consistent at 1 μ M. Tyramine was added in increasing rations of 0:1 (no tyramine), 1:1 (1 μ M tyramine), and 1000:1 (1 mM tyramine). Wild type animals avoided every ratio mixture of cues, while *tyra-2*(tm1846) animals only avoided 1000:1. N = 5 trials, Tyramine:osas#9 avoidances were compared against paired solvent control values via a Student's t-test. Data presented as mean ± S.E.M; * *p* < 0.05, ** *p* < 0.01, *** *p* < 0.001, Student's t-test. Asterisks depict compared solution of interest to the solvent control.

Supplementary Figure 5. Ectopic expression of *tyra-2* in AWA neurons does not affect AWA-specific behaviors. **A)** Chemotaxis to 10^{-2} diacetyl was unaffected by AWA::*tyra-2*. n \ge 7. **B)** Locomotory behaviors were unaltered in AWA::*tyra-2* animals. Wild type, *tyra-2* lof, and AWA::*tyra-2* speeds are not statistically different. n \ge 3 trials. Data presented as mean \pm S.E.M. Panel S6A, Student's t-test, Panel S6B, one factor ANOVA with Sidak's multiple comparison posttest. **C)** AWA::GCaMP2.2b animals (black) and AWA::*tyra-2*::GCaMP2.2b animals (red) show depolarization when exposed to 10^{-2} diacetyl in a microfluidic olfactory chip. Shaded gray region depicts time when animals were subjected to the stimulus, n \ge 8 animals. **D)** Maximum peak fluorescence before (solvent control) and during exposure to 10^{-2} diacetyl. Data presented as mean \pm S.E.M; *P<0.05, **P<0.01, ****P<0.0001. Asterisks displayed without bar depict compared osas#9 avoidance response to the solvent control.

Supplementary Figure 6. Leaving rates for animals expressing *tyra-2* ectopically in AWA neurons are slower than both wild type and *tyra-2 lof* animals at 10 pM osas#9. **A)** Wild type. $n \ge 3$ trials. **B)** *tyra-2*. n = 6 trials. **C,D)** Two different lines of AWA::*tyra-2* display slower leaving rates at 10 pM osas#9. $n \ge 6$ trials Line 1, and $n \ge 7$ trials Line 2. **E)** Comparison of solvent control for all strains in leaving assay. None of the animals varied in their response. $n \ge 3$ trials. Data presented as mean \pm S.E.M; * *p* < 0.05, one factor ANOVA with Sidak's multiple comparison posttest.

Source	Strain	Genotype (allele)	Avoid osas#9?
CGC	CB1489	<i>him-8</i> (e1489)	yes
Komuniecki	FX01846	<i>tyra</i> -2 (tm1846)	no
Komuniecki	OH313	<i>ser-2</i> (pk1357)	yes
Suo	VN280	<i>ser-6</i> (2146)	yes
Alkema	QW569	<i>octr-1</i> (ok371)	yes
Komuniecki	DA1774	<i>ser-3</i> (ad1774)	yes
Chase	LX702	<i>dop-2</i> (vs105)	yes
Chase	LX703	<i>dop-3</i> (vs106)	yes
Alkema	QW284	<i>tdc-1</i> (n3420)	yes
Alkema	CX11839	<i>tyra-3</i> (ok325)	yes
Ambros	NL3321	<i>sid-1</i> (pk3321)	yes
Sternberg	PT839	osm-9(ky10); him-5(e1490)	no
Bargmann	CX7265	osm-9(ky10) IV;yzEx53 [osm-10::osm-9, elt-2::gfp]	yes
Srinivasan	JSR19	<i>tyra-2</i> (tm1846);worEx12[pLR306_p <i>nhr-79_tyra-2</i>]	yes
Srinivasan	JSR23	N2;worEx13[ptyra-2::tyra-2::GFP]	n.d.
Alkema	QW1853	<i>tyra-</i> 2 (tm1846);worEx14[p <i>tyra-</i> 2:: <i>tyra-</i> 2::GFP @ 1ng/µL]	yes
Srinivasan	JSR45	<i>tyra-2</i> (tm1846);worEx15[pLR305_p <i>odr-10_tyra-2</i>]	no
Srinivasan	JSR47	<i>tyra-2</i> (tm1846);worEx15[pLR305_p <i>odr-10_tyra-2</i>]	no
Srinivasan	JSR50	<i>tyra-2</i> (tm1846) ;KyEx2865 [p <i>sra-6</i> ::GCAMP3 @ 100 ng/μL])	n.d.
Srinivasan	JSR51	JSR45;kyls598 [<i>gpa-6</i> ::GCaMP2.2b 50 ng/µL]	n.d.
Srinivasan	JSR100	<i>tyra-2</i> (tm1846);KyEx2865 [p <i>sra-6</i> ::GCAMP3 @ 100 ng/μL])	n.d.
Srinivasan	JSR104	JSR100;(<i>tyra-2</i> (tm1846);worEx12[pLR306_pnhr-79_tyra-2]	n.d.
Srinivasan	JSR105	unc-13(e51);KyEx2865[psra-6::GCAMP3]	n.d.
Srinivasan	JSR106	unc-31(e928);KyEx2865[psra-6::GCAMP3]	n.d.
Bargmann	CX10979	N2;KyEx2865 [p <i>sra-</i> 6::GCAMP3 @ 100 ng/µL])	n.d.
Albrecht	CX14887	N2;kyls598 [<i>gpa-6</i> ::GCaMP2.2b 50 ng/µL]	n.d.

Supplementary Table 1. List of Strains used in this study

Source	Construct	Notes
Fire vector kit	pPD95_75	GFP
Rene Garcia	pLR305	destination vector
Rene Garcia	pLR306	destination vector
Rene Garcia	pLR304	destination vector
Srinivasan	JSR#CDC8	gpa-6 entry clone
Srinivasan	JSR#CDC9	ASH:: GPA-6
Srinivasan	JSR#CDC2	<i>tyra-2</i> entry clone
Srinivasan	JSR#CDC1	p <i>nhr-</i> 79 entry clone
Srinivasan	JSR#CDC4	p <i>odr-10</i> entry clone
Srinivasan	JSR#CDC3	ASH::TYRA-2
Srinivasan	JSR#CDC6	AWA::TYRA-2
Srinivasan	JSR#CDC24	pgpa-6::gpa-6::RFP::unc-54
Vidal Library	F01E11.5	<i>tyra-2</i> RNAi clone
Vidal Library	F14D12.6	octr-1 RNAi clone
Vidal Library	pL4440	Empty RNAi clone

Supplementary Table 2. List of Plasmids used in this study

Purpose	Gene	Primer	Sequence
tyra-2 ASH rescue	tyra-2 (from genomic)	F	attB5 <i>ggcttatccgttgtgga</i> gaa
construct		R	attB2 <i>ttggcccttccttttctctt</i>
tura_2ASH rescue	pphr 70 (from gonomic)	F	attB1 <i>gtgcaatgcatggaa</i> aattg
lyra-z ASITTescue	phill-19 (Ironi genomic)	R	attB5ratacacttcccacgc accat
		F	atgttttcacaagtttcaccac a
	<i>tyra-2</i> (from genomic)	F nested	ttcacaagtttcaccacattac aa
<i>tyra-2</i> translational fusion (PCR)		R (w overhang in caps)	AGTCGACCTGCAGG CATGCAAGCT gacacgagaagttgagctg ggtttc
	<i>GFP</i> (pPD95_75)	as found on wormbook chapter: reporter gene fusion	
AWA tyra-2	podr-10 (from genomic)	F	attB1ctcgctaaccactcgg tcat
misexpression		R	attB5rgtcaactagggtaat ccacaattc
	ama 1	F	GGAGATTAAACGCA TGTCAGTG
	anna- i	R	ATGTCATGCATCTTC CACGA
	tura-2	F	GAGGAGGAAGAAGA TAGCGAAAG
	tyra-z	R	TGTGATCATCTCGC TTTTCA
		F	attB5 cgtctctttcgtttcaggtgtat
gpa-6 ASH rescue	<i>gpa-6</i> (from genomic)	R	attB2 tattttcaaagcgaaacaaa aa
	p <i>gpa-6::gpa-6</i> (from genomic)	F	acatctggtacccctcaatttc ccacgatct
ana-6 translational		R	acatctaccggtctcatgtaat ccagcagacc
fusion (plasmid)	unc-122::RFP	F	acatctaccggtATGGTG CGCTCCTCCAAG
		R	ttaataggtaccTGGTCA TAGCTGTTTCCTGT G

Supplementary Table 3. List of Primers used in this study