
Reviewers' comments:  
 
Reviewer #1 (Remarks to the Author):  
 
In the manuscript entitled “Empirical mean-noise fitness landscapes reveal the fitness impact of 
gene expression noise”, Schmiedel and co-authors investigate the effect of gene expression noise 
of 33 genes on the fitness of budding yeast. To achieve this, the authors construct the fitness 
landscapes of these genes in mean-noise expression space which allows the uncoupling of the 
effects of mean expression and expression noise on fitness. Doing so, the authors find that 
expression noise can be as detrimental to organismal fitness as deviations from optimal mean 
expression. Finally, they perform evolutionary simulations within mean-noise space to explore the 
concomitant optimization of both expression mean and noise. Although, it is known that 
expression noise can have non-trivial effects on fitness and is consequently likely under selection, 
the quantitative approach used in this study provides a deeper understanding of the relationship 
between expression noise, expression mean and fitness in an evolutionary framework. As such, 
this study represents an important step forward and provides clear hypotheses for future 
experimental research.  
 
Overall, the manuscript is well-written and clearly structured and presented. The methods are 
sound and the results convincing. The study can make an important contribution and therefore 
may be suitable for Nature communications. However, I do have a few comments, which I would 
like to see addressed first.  
 
In the first section of the results, the authors go to great lengths to discuss quality control and 
their rationale behind obtaining their final dataset. Although the detailed description is much 
appreciated, I still felt compelled to read the studies that originally obtained this data, which I 
eventually did. To facilitate the reader, the authors could perhaps concisely describe the specific 
experiments from which their data was obtained in the supplemental methods.  
 
The authors indicate that about half of the genes in the panel exhibit significant noise intolerance 
and/or expression sensitivity. However, I am more surprised that half of the genes are noise 
tolerant and/or expression insensitive. Is this an artefact of the data being not sensitive enough to 
significantly detect subtle intolerance or sensitivity? Or do these genes represent a specific class 
which are less sensitive? If so, for these genes minimization of noise (even optimization of 
expression) would not be beneficial for organismal fitness. This should be addressed by the 
authors?  
 
Regarding the evolutionary simulations, I find it difficult to think about noise minimization in the 
context of an adaptive walk (i.e. through positive selection). The phenotypic result of expression 
noise in the context of a population would be having a phenotypically heterogenous population. As 
such, negative selection would play a crucial role in reducing the negative impacts of high 
expression noise rather than selecting for individuals with an intrinsic low expression noise. The 
authors should address the role of negative and positive (neutral) selection in the evolution of 
noise minimization.  
 
The authors refer several times to noise as short-lived fluctuations in expression. What do they 
exactly mean with short-lived? What is the timescale of these short-lived fluctuations and is it 
different to long-lived stochastic on-off fluctuations?  
 
 
 
Reviewer #2 (Remarks to the Author):  
 
In this study, Schmiedel et al. characterized an expression-noise fitness landscape for 33 genes in 
the budding yeast. This is a big improvement since previous fitness landscapes were largely 



characterized as a function of expression level. They analyzed the data quite smart, the results are 
beautiful, and the presentation is clear. Overall I think it is a nice piece of work. I do have some 
suggestions that the authors should consider.  
 
Major comments:  
1. It is not clear to me why noise was not measured in Fig. 2b. If the flow cytometry data for each 
promoter are available, the authors should be able to quantify noise here.  
2. Rather, the authors measured expression level and noise with another library (Fig. 2c). It is not 
clear how the copy number variation in plasmid would affect the measurement. It is also unclear 
how the mean expression levels are combined from two different strategies (fig. 2b and 2c) since 
the 120 synthetic promoters were measured twice.  
3. The Tub2 landscape in fig. 3d is somewhat unexpected. To my knowledge, the overexpression 
of tub2 to 2-fold is either lethal or very sick. But in fig. 3d it several variants seem to survive very 
well.  
4. The above observation makes me start to worry about the data quality. And I then want to 
know if the results were replicable.  
5. In fig. 2d it is also a bit unexpected that noise and expression levels are not correlated since we 
know that many mutations affect burst frequency.  
6. Figure 6 of the paper looks too speculative. The simulation has several big assumptions. For 
example, do they consider the effect of each genuine point mutation during the simulation? Some 
phenotypes may not exist at all in the genotypes space. In other words, the density of genotypes 
in the landscape should be considered. To conclude noise funnel, an experimental evolution should 
be performed. I would suggest the authors remove this section as a whole (at least move to the 
discussion) during revision.  
 
Minor comments:  
1. The question mark after the word “fitness” in figure 1b is a bit confusing. Only the question 
mark after “evolution” should be enough.  
2. Page 12 line 266, fig. 4b?  
3. Although the authors attempted to explain the observation of RAP1, I am not very much 
convinced. But I don’t know how to explain either. It looks like an outlier (experimental error?) to 
me. Again, is the result of RAP1 replicable?  
 
 
Reviewer #3 (Remarks to the Author):  
 
In this study, Schmiedel and colleagues investigate the fitness effect associated with variations in 
expression level and expression noise. They find that, in their setup, optimal fitness is reached 
when genes are expressed at their optimal level and with minimal noise. In addition, they also 
predict that evolution of expression levels follow a more or less defined trajectory, with first 
optimization of mean expression followed by minimizing noise in a “funnel” towards the optimal 
state.  
 
Overall, this is an extremely interesting and solid study that expands our understanding of the 
fitness effects of variations in expression and expression noise. To me, the most interesting facet 
is the quantification of the effect of both these parameters.  
 
Perhaps the most important restriction of the study is that the researchers use data from cells 
growing in stable lab conditions in rich medium. It is perhaps not surprising that in these 
circumstances, optimal fitness is reached when genes are expressed at their optimal level with 
zero noise (i.e. all cells in the population express each gene at exactly the optimal level, all the 
time). However, theory predicts that noise may be beneficial in variable and unpredictable 
environments. While I think that investigating how the findings would hold in more variable (and 
perhaps more realistic) environments would go well beyond the scope of this study, I would 
suggest that the authors discuss the restriction of stable conditions more explicitly and in more 



detail.  
 
Figure 2. Would it make sense to use bootstrapping to measure and report the accuracy of the 
predicted, smoothed fitness landscapes (by repeated cycles of leaving out one datapoint, making 
the landscape and then testing the accuracy of the predicted values for the one datapoint)?  
 
Figure 3. The noise and mean expression of the genes at the top of the figure seem to not show 
any influence on fitness. Are these genes that are not needed in glucose growth (and thus 
expressed at very low levels in WT strains), but also not overly detrimental or costly to express?  
 
The authors find that high noise is as detrimental as deviations from optimal expression. Yet, in 
the fitness landscapes, the color seems to vary more intensely with the horizontal axis (mean 
expression) and in Figur3 4B, most datapoints seem to lie below the 45 degree line (and thus 
show higher sensitivity to expression variability compared to noise)…  
 
 
Minor comments  
Throughout text, italicize gene names (ABC1)  
 
Abstract, lines 27-30 (Sensitivity to both….noise minimisation”). This sentence is unclear without 
having read the paper and thus perhaps not ideal for an abstract. Consider revising and 
simplifying.  
 
Intro, line 54: expression distribution across individuals, or across time, or …?  
 
Intro lines 106-108: this sentence is not clear; consider revising.  
 
Results line 150- “moments” ?  
 
Line 175: remove one “,”  
 
Line 364: is it possible that for RAP1, the promotor used for strong overexpression is simply not 
strong enough to go over the optimum? What is the normal expression level of RAP1?  
 
Lines 399 and further. Is it really a “noise funnel” or rather a “mean expression funnel”? The 
funnel is restricted by mean expression, not by noise, right?  
 
Line 526: I would argue that the more important caveat is the use of stable conditions, see major 
comment #1.  



Please note: Tracked text changes in the manuscript are highlighted in red 
(insertions or deletions) or blue (moved sections). Below, referee comments 
have been numbered for structural clarity and our responses are highlighted in 
green. 

 

Reviewer #1 (Remarks to the Author): 
 
In the manuscript entitled “Empirical mean-noise fitness landscapes reveal the 
fitness impact of gene expression noise”, Schmiedel and co-authors investigate 
the effect of gene expression noise of 33 genes on the fitness of budding yeast. 
To achieve this, the authors construct the fitness landscapes of these genes in 
mean-noise expression space which allows the uncoupling of the effects of 
mean expression and expression noise on fitness. Doing so, the authors find 
that expression noise can be as detrimental to organismal fitness as deviations 
from optimal mean expression. Finally, they perform evolutionary simulations 
within mean-noise space to explore the concomitant optimization of both 
expression mean and noise. Although, it is known that expression noise can 
have non-trivial effects on fitness and is consequently likely under selection, the 
quantitative approach used in this study provides a deeper understanding of the 
relationship between expression noise, expression mean and fitness in an 
evolutionary framework. As such, this study represents an important step 
forward and provides clear hypotheses for future experimental research. 
Overall, the manuscript is well-written and clearly structured and presented. The 
methods are sound and the results convincing. The study can make an 
important contribution and therefore may be suitable for Nature 
communications. 
 
We thank the reviewer for this positive assessment of our work. 
 
However, I do have a few comments, which I would like to see addressed first. 
 
1.1. In the first section of the results, the authors go to great lengths to 

discuss quality control and their rationale behind obtaining their final dataset. 
Although the detailed description is much appreciated, I still felt compelled to 
read the studies that originally obtained this data, which I eventually did. To 
facilitate the reader, the authors could perhaps concisely describe the 
specific experiments from which their data was obtained in the supplemental 
methods. 

 
These experiments are described in some detail in the first paragraphs of the 
results (now extended): 
 
‘We obtained data on the fitness of yeast strains where in each strain one of a 
panel of 85 genes is driven by one of a panel of 120 synthetic promoters 23. 
Here, in one set of experiments, the library of 120 synthetic promoters was 
cloned upstream of each of 85 open reading frames, replacing the endogenous 
promoter (Fig. 2a). All constructed strains were pooled and their fitness (growth 
rate in glucose) was measured in competitive growth experiments. In a second 



set of experiments, the synthetic promoters as well as the endogenous 
promoters of all investigated genes were cloned in front of YFP in the HIS3 
locus and flow cytometry was used to determine their relative mean expression 
strength (Fig. 2b). Together, this allowed the authors to analyze the fitness 
effects of mean expression changes relative to the wild-type expression of 
genes23. 
 
In addition to this dataset, we also obtained data from an earlier study37 from 
the same group of authors that measured both mean and cell-to-cell variation 
(‘noise’, coefficient of variation, i.e. the standard deviation divided by the mean) 
in the expression of the same set of synthetic promoters driving YFP on a 
plasmid (Fig. 2c). This was achieved by sorting cells along the overall 
expression distribution, reconstructing individual promoter expression 
distributions from deep sequencing of sorted cell populations and quantifying 
their mean and noise. 
When combined, these data allow us to not only assess how the mean but also 
the shape (as quantified here by mean and noise) of protein abundance 
distributions affects fitness by comparing strains in which different promoters 
drive the same gene.’ 
 
1.2. The authors indicate that about half of the genes in the panel exhibit 

significant noise intolerance and/or expression sensitivity. However, I am 
more surprised that half of the genes are noise tolerant and/or expression 
insensitive. Is this an artefact of the data being not sensitive enough to 
significantly detect subtle intolerance or sensitivity? Or do these genes 
represent a specific class which are less sensitive? If so, for these genes 
minimization of noise (even optimization of expression) would not be 
beneficial for organismal fitness. This should be addressed by the authors? 

 
The FDR 10% cutoff that we chose to categorize genes as expression sensitive 
or noise intolerant lies at slightly below 1% fitness effect for a two-fold 
change/increase in mean expression or noise. However, much smaller fitness 
defects are likely to be selected against in natural yeast populations (estimated 
as selection coefficients of ~10-7 (Wagner, Mol. Biol. Evol. 2005).  Therefore, 
even smaller fitness defects due to noise are likely selected against in natural 
populations. 
 
Moreover, as shown in Supplementary Figure 4b of our initial manuscript, 
expression-sensitivity as determine from our fitness landscapes is associated 
with essentiality and over-expression sensitivity measures from previous large-
scale studies, such that genes determined to be neither essential nor over-
expression sensitive have lower expression-sensitivity (area under the curve 
(AUC) = 0.76, p = 0.016, one-sided Wilcoxon rank sum test).  
We have now added the same comparison for noise-intolerance to 
Supplementary Figure 4b, which shows the same trend: genes previously 
determined to be neither essential nor over-expression-sensitive are more 
tolerant to high noise (AUC = 0.72, p = 0.032, one-sided Wilcoxon rank sum 
test). 
 
 



1.3. Regarding the evolutionary simulations, I find it difficult to think about 
noise minimization in the context of an adaptive walk (i.e. through positive 
selection). The phenotypic result of expression noise in the context of a 
population would be having a phenotypically heterogenous population. As 
such, negative selection would play a crucial role in reducing the negative 
impacts of high expression noise rather than selecting for individuals with an 
intrinsic low expression noise. The authors should address the role of 
negative and positive (neutral) selection in the evolution of noise 
minimization. 

 
The evolutionary simulations concern an adaptive walk from low to high fitness.  
Therefore, the changes in both mean and noise in expression are due to 
positive selection acting on mutations that give higher fitness.  We acknowledge 
that there are many assumptions and simplifications in these simulations – as 
stated in the text – but they are meant to illustrate how these empirical 
measurements of the fitness effects of changes in mean and noise expression 
can result in rather unexpected evolutionary dynamics. 
 
1.4. The authors refer several times to noise as short-lived fluctuations in 

expression. What do they exactly mean with short-lived? What is the 
timescale of these short-lived fluctuations and is it different to long-lived 
stochastic on-off fluctuations? 

 
Decay rates for stochastic fluctuations have been found to be on the time-scale 
of one to two cell cycles, as now noted in the introduction (Sigal2006). 
  



Reviewer #2 (Remarks to the Author): 
 
In this study, Schmiedel et al. characterized an expression-noise fitness 
landscape for 33 genes in the budding yeast. This is a big improvement since 
previous fitness landscapes were largely characterized as a function of 
expression level. They analyzed the data quite smart, the results are beautiful, 
and the presentation is clear. Overall I think it is a nice piece of work.  
 
We thank the reviewer for this positive assessment of our work. 
 
I do have some suggestions that the authors should consider. 
 
Major comments: 
2.1. It is not clear to me why noise was not measured in Fig. 2b. If the flow 

cytometry data for each promoter are available, the authors should be able 
to quantify noise here. 

 
The data used in this study have been published by another lab. The focus of 
the Keren et al., 2016 study was on how mean expression of genes affects 
organismal fitness and the authors unfortunately did not report noise data in this 
context. 
 
2.2. Rather, the authors measured expression level and noise with another 

library (Fig. 2c). It is not clear how the copy number variation in plasmid 
would affect the measurement. It is also unclear how the mean expression 
levels are combined from two different strategies (fig. 2b and 2c) since the 
120 synthetic promoters were measured twice. 

 
The noise data from Sharon et al., 2014, have been corrected for extrinsic 
variations (e.g. copy number variation) by computing expression noise from the 
ratio of intensities of two fluorescent proteins expressed from the same plasmid, 
one driven by the promoter of interest, the other one driven by a generic 
promoter to report on cell-specific expression potency (e.g. due to cell state or 
number of plasmids present per cell). 
As shown in Supplementary Figure 1a, relative mean expression levels across 
the synthetic promoters between the two studies are nearly identical (R2 = 0.99 
for the promoters used in our study). Because our study is only concerned with 
relative mean expression levels on an arbitrary log-scale, measurements from 
the two studies are interchangeable. 
 
2.3. The Tub2 landscape in fig. 3d is somewhat unexpected. To my 

knowledge, the overexpression of tub2 to 2-fold is either lethal or very sick. 
But in fig. 3d it several variants seem to survive very well. 
The above observation makes me start to worry about the data quality. And I 
then want to know if the results were replicable. 

 
Fig. 3d shows that, at low noise levels, overexpression of Tub2 does indeed 
incur a substantial fitness cost, consistent with the literature. 
 



Concerning the data quality, the measurements from individual strains 
(individual data points) are subject to uncertainty: on average 6% relative error 
in fitness measurements (including a generic 5% error term that we added 
during pre-processing in order to account for not reported replicate error), 5% 
relative error in mean expression direction and 11% relative error in expression 
noise direction (see Supplementary Figure 1b,e,f). These unavoidable errors in 
individual measurements are one of the reasons why we computed the fitness 
landscapes, in order to have reliable estimates of fitness aggregated from a 
multitude of individual measurements. 
 
Each expression-fitness landscape is the result of a weighted averaging over 
~78 data points (with weighting according to the experimental errors of mean, 
noise and fitness measurements); the resulting fitness landscapes therefore 
have lower error in the fitness dimension than individual measurements. This is 
shown in the data presented in Supplementary Figure 3, were we had re-
calculated each expression-fitness landscape one hundred times by drawing 
each strain’s mean, noise and fitness values from normal distributions 
according to their experimental estimates and associated errors. We then 
calculated the standard deviation of fitness values at each grid point on the 
landscapes (their uncertainty). In response to a request by Referee 3 we have 
further included a bootstrapping procedure into this resampling (therefore 
adding more uncertainty to our estimates), where we draw in each resampling 
79 promoters with replacement that are then used to calculate the fitness 
landscape. 
 
The results show that the average uncertainty of fitness values on landscapes 
is about 1% (measured by the standard deviation of fitness values upon 
resampling), in accordance with our power to detect expression-sensitivity and 
noise intolerance at slightly below 1% for two-fold changes of mean or noise (at 
10% false discovery rate). 
 
The majority of landscapes, however, shows systematic variation of fitness 
levels that are greater than this 1% uncertainty, thus showing that our results 
are reliable and robust to measurement uncertainty in individual strains and that 
we can detect systematic differences between fitness landscapes using our 
approach (Supplementary Figure 3). 
 
 
2.4. In fig. 2d it is also a bit unexpected that noise and expression levels are 

not correlated since we know that many mutations affect burst frequency. 
 
It is true that single mutations affect expression and noise in a correlated 
manner, as stated in our manuscript. The synthetic promoters assayed here, 
however, were deliberately designed to systematically vary in 'affinity, location, 
spacing and number of several different regulatory elements' (Sharon et al., 
Nature Biotechnology, 2012, Sharon et al., Genome Research, 2014). In the 
entire set of promoters, any individual pair will differ from each other by many 
alterations, enough to break this mechanistic coupling.  
 



2.5. Figure 6 of the paper looks too speculative. The simulation has several 
big assumptions. For example, do they consider the effect of each genuine 
point mutation during the simulation? Some phenotypes may not exist at all 
in the genotypes space. In other words, the density of genotypes in the 
landscape should be considered. To conclude noise funnel, an experimental 
evolution should be performed. I would suggest the authors remove this 
section as a whole (at least move to the discussion) during revision. 

 
We have better explained the caveats of these simulations in the revised 
manuscript.  However, we don’t think it is journal policy to present data only in 
the Discussion section. 
The corresponding Result section paragraph describing the nature of the 
simulations performed now reads: 
"To explore whether the transcriptional process restricts evolutionary 
trajectories in mean-noise space we simulated adaptive walks on the principal 
topology landscapes (and their combination). For simplicity, we abstracted 
adaptive walks such that only steps consistent with the primary cis-regulatory 
changes found in promoter regions are allowed (Fig. 6a), steps have unit size, 
their likelihood depends on the potential fitness gain and each grid-point on a 
fitness landscape represents an accessible genotype (see Methods)." 
 
Minor comments: 
2.6. The question mark after the word “fitness” in figure 1b is a bit confusing. 

Only the question mark after “evolution” should be enough. 
 
Changed. 
 
2.7. Page 12 line 266, fig. 4b? 
 
Thank you, changed. 
 
2.8. Although the authors attempted to explain the observation of RAP1, I am 

not very much convinced. But I don’t know how to explain either. It looks like 
an outlier (experimental error?) to me. Again, is the result of RAP1 
replicable? 

 
We agree that the RAP1 results warrant further experimental investigation and 
due to the likelihood of this being an experimental error, and similar concerns by 
Referee 3, we have moved discussion of the RAP1 results to a Supplementary 
Note. 
  



Reviewer #3 (Remarks to the Author): 
 
In this study, Schmiedel and colleagues investigate the fitness effect associated 
with variations in expression level and expression noise. They find that, in their 
setup, optimal fitness is reached when genes are expressed at their optimal 
level and with minimal noise. In addition, they also predict that evolution of 
expression levels follow a more or less defined trajectory, with first optimization 
of mean expression followed by minimizing noise in a “funnel” towards the 
optimal state. 
 
Overall, this is an extremely interesting and solid study that expands our 
understanding of the fitness effects of variations in expression and expression 
noise. To me, the most interesting facet is the quantification of the effect of both 
these parameters. 
 
We thank the reviewer for this positive assessment of our work. 
 
3.1. Perhaps the most important restriction of the study is that the 

researchers use data from cells growing in stable lab conditions in rich 
medium. It is perhaps not surprising that in these circumstances, optimal 
fitness is reached when genes are expressed at their optimal level with zero 
noise (i.e. all cells in the population express each gene at exactly the 
optimal level, all the time). However, theory predicts that noise may be 
beneficial in variable and unpredictable environments. While I think that 
investigating how the findings would hold in more variable (and perhaps 
more realistic) environments would go well beyond the scope of this study, I 
would suggest that the authors discuss the restriction of stable conditions 
more explicitly and in more detail. 

 
We agree with the reviewer that stable lab conditions represent a simplified 
environment compared to the more variable and unpredictable natural 
environments that yeast will encounter in the wild.  This will transform the static 
fitness landscapes to dynamic fitness ‘seascapes’ (Mustonen & Lässig, Trends 
in Genetics, 2009), i.e. fitness landscapes that change across conditions and 
time for certain genes, e.g. stress-related genes that create phenotypic diversity 
that can preempt sudden environmental changes ('bet-hedging', as also 
discussed in the Introduction of our manuscript). 
 
With respect to 'bet-hedging', in our manuscript we discussed how two genes, 
which are expressed far below their optimal wild-type expression, show 
increased fitness when they are variably expressed (Supplementary Figure 7).  
The genes for which we reconstructed fitness landscapes are, however, 
strongly biased to cellular core components (ribosomal subunits, proteasome, 
cytoskeleton, trafficking, metabolism, transcription factors). Previous findings 
that cellular core genes, but not stress-related genes, have low expression 
noise (Fraser et al., PLoS Biology, 2004; Newman et al., Nature, 2006; Bar-
Even et al., Nature Genetics, 2006;  Batada&Hurst, Nature Genetics, 2007; 
Lehner, MSB, 2008), as well as that promoter polymorphisms increasing noise 
in the expression of the gene TDH3 (Metzger et al., Nature, 2015) have been 



selected against, suggest that, even in natural (variable) environments, core 
genes have to be precisely expressed for cells to be fit. 
We therefore expected that for most genes assayed here, the results derived 
from stable lab conditions should largely translate to more variable 
environments.  
We have discussed this as a potential caveat in the Discussion section. 
 
3.2. Figure 2. Would it make sense to use bootstrapping to measure and 

report the accuracy of the predicted, smoothed fitness landscapes (by 
repeated cycles of leaving out one datapoint, making the landscape and 
then testing the accuracy of the predicted values for the one datapoint)? 

 
In our initial submission of the manuscript, results for such an analysis were 
shown in Supplementary Figure 3. Here, we re-sampled fitness landscapes 100 
times where in each run mean, noise and fitness of each strain measurement 
for each gene were drawn from a normal distribution with standard deviation 
according to the determined experimental error interval.  
 
We have now updated this analysis to also incorporate promoter bootstrapping 
(i.e. sample with replacement the ~78 promoters to build the landscape, which 
introduces more variation than leave-one-out sampling). The results show that 
the average uncertainty of fitness values on landscapes is about 1% (measured 
by the standard deviation of fitness values upon resampling), in accordance 
with our power to detect expression-sensitivity and noise intolerance at slightly 
below 1% for two-fold changes of mean or noise (at 10% false discovery rate). 
 
The majority of landscapes, however, show systematic variation of fitness levels 
that are greater than this 1% uncertainty, thus showing that we can detect 
systematic differences between fitness landscapes using our approach 
(Supplementary Figure 3). 
 
3.3. Figure 3. The noise and mean expression of the genes at the top of the 

figure seem to not show any influence on fitness. Are these genes that are 
not needed in glucose growth (and thus expressed at very low levels in WT 
strains), but also not overly detrimental or costly to express? 

 
Indeed, as shown in Supplementary Figure 4b of our initial manuscript, 
expression-sensitivity as determine from our fitness landscapes is associated 
with essentiality and over-expression sensitivity measures from previous large-
scale studies, such that genes determined to be neither essential nor over-
expression sensitive have lower expression-sensitivity (area under the curve 
(AUC) = 0.76, p = 0.016, one-sided Wilcoxon rank sum test).  
We have now added the same comparison for noise-intolerance to 
Supplementary Figure 4b, which shows the same trend: genes previously 
determined to be neither essential nor over-expression-sensitive have lower 
noise intolerance (AUC = 0.72, p = 0.032, one-sided Wilcoxon rank sum test). 
 
However, this does not mean these genes are lowly expressed. The wild-type 
mean expression level of all genes investigated in our study is restricted to a 
four-fold mean expression window (Supplementary Figure 1d) and we found no 



significant relationship between wild-type expression level of genes and their 
expression-sensitivity (Pearson’s R = -0.12, p = 0.5) or noise intolerance 
(Pearson’s R = 0.08, p = 0.6). 
 
3.4. The authors find that high noise is as detrimental as deviations from 

optimal expression. Yet, in the fitness landscapes, the color seems to vary 
more intensely with the horizontal axis (mean expression) and in Figur3 4B, 
most datapoints seem to lie below the 45 degree line (and thus show higher 
sensitivity to expression variability compared to noise) … 

 
The fact that color varies more intensely along the horizontal than the vertical 
axis is in part because the ranges are different: 8-fold on the horizontal 'mean'-
axis, only 4-fold on the vertical 'noise'-axis. 
 
That said, sensitivity to mean expression deviations is on average slightly larger 
than intolerance of high noise. Our general statement is therefore that these two 
quantities are of 'similar magnitude', and we have qualified this now by stating 
that noise intolerance is 'nearly as detrimental' as expression sensitivity in the 
Result section of the manuscript. 
 
 
Minor comments 
 
3.5. Throughout text, italicize gene names (ABC1) 
 
Changed. 
 
3.6. Abstract, lines 27-30 (Sensitivity to both….noise minimisation”). This 

sentence is unclear without having read the paper and thus perhaps not 
ideal for an abstract. Consider revising and simplifying. 

  
Thank you, we revised this only stating that certain types of fitness landscapes 
can break the mechanistic coupling between mean and noise, thus promoting 
their independent optimization. 
 
3.7. Intro, line 54: expression distribution across individuals, or across time, 

or …? 
 
Across time and individuals in an isogenic population, as mentioned in the 
preceding, first paragraph of the Introduction. We simplified this paragraph to 
focus on the description of protein abundance distributions and the coupling 
between mean and noise. 
 
3.8. Intro lines 106-108: this sentence is not clear; consider revising. 
 
Thank you, we simplified this sentence. 
 
"We further use the expression-fitness landscapes to explore how mean and 
noise can evolve, given their mechanistic coupling imposed by the 
transcriptional process. We find that on landscapes of genes sensitive to both 



protein shortage and surplus the mechanistic coupling between mean and noise 
is broken, therefore allowing for the independent minimization of noise levels." 
 
3.9. Results line 150- “moments” ? 
 
We have simplified this to "these data allow us to not only assess how the mean 
but also the shape (as quantified here by mean and noise) of protein 
abundance distributions". 
 
3.10. Line 175: remove one “,” 
 
Thanks. 
 
3.11. Line 364: is it possible that for RAP1, the promotor used for strong 

overexpression is simply not strong enough to go over the optimum? What is 
the normal expression level of RAP1? 

 
The estimated wild-type mean expression level of RAP1 is the center of the 
displayed mean expression region (for all genes, the expression-fitness 
landscapes are centered on the respective wild-type mean expression). Due to 
similarity of the RAP1 fitness landscapes with the two fitness landscapes of 
ENO2 and RPL3, which do indeed have wild-type mean expression higher than 
the range covered by our fitness landscapes, it is likely that RAP1 wild-type 
expression was misestimated or that specific experimental conditions result in 
disagreement between wild-type expression and optimal expression levels. 
Given the likelihood that the RAP1 results are experimental errors and similar 
concerns by Referee 2, we have decided to move the discussion of RAP1 to a 
Supplementary Note. 
 
3.12. Lines 399 and further. Is it really a “noise funnel” or rather a “mean 

expression funnel”? The funnel is restricted by mean expression, not by 
noise, right? 

 
The funnel is ‘funneling noise’ i.e. ‘funneling changes in noise’ so we think the 
term is appropriate. 
 
3.13. Line 526: I would argue that the more important caveat is the use of 

stable conditions, see major comment #1. 
 
We agree and now discuss this caveat as well. 



REVIEWERS' COMMENTS:  
 
Reviewer #1 (Remarks to the Author):  
 
Response to revisions: “Empirical mean-noise fitness landscapes reveal the fitness impact of gene 
expression noise".  
The authors have satisfactorily responded to all my concerns and made the necessary changes 
throughout the manuscript.  
 
Concerning the evolutionary simulations, although I still feel that this section is rather speculative 
I do understand the authors perspective of including this into the manuscript. As an 
experimentalist, simulations will always feel as oversimplifications (which they objectively are), 
however they do provide important insights as in this case the noise funnel model. So given the 
authors’ changes of this section further acknowledging the simplicity of their simulations and 
thusly the conclusions drawn therefrom, I feel this section does add value to the manuscript.  
 
 
 
Reviewer #2 (Remarks to the Author):  
 
I am satisfied with the revision and response.  
 
 
Reviewer #3 (Remarks to the Author):  
 
The authors have addressed all my concerns and answered all questions. I would like to 
congratulate them on a nice piece of work.  
 



REVIEWERS' COMMENTS: 
Reviewer #1 (Remarks to the Author): 
Response to revisions: “Empirical mean-noise fitness landscapes reveal the fitness impact 
of gene expression noise". 
The authors have satisfactorily responded to all my concerns and made the necessary 
changes throughout the manuscript.  
Concerning the evolutionary simulations, although I still feel that this section is rather 
speculative I do understand the authors perspective of including this into the manuscript. 
As an experimentalist, simulations will always feel as oversimplifications (which they 
objectively are), however they do provide important insights as in this case the noise 
funnel model. So given the authors’ changes of this section further acknowledging the 
simplicity of their simulations and thusly the conclusions drawn therefrom, I feel this 
section does add value to the manuscript. 
 
Reviewer #2 (Remarks to the Author): 
I am satisfied with the revision and response. 
 
Reviewer #3 (Remarks to the Author): 
The authors have addressed all my concerns and answered all questions. I would like to 
congratulate them on a nice piece of work. 
 
Authors response: 
We thank all three Referees for their effort and the constructive review process. 
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