585 Supplementary Material

Supplementary figures

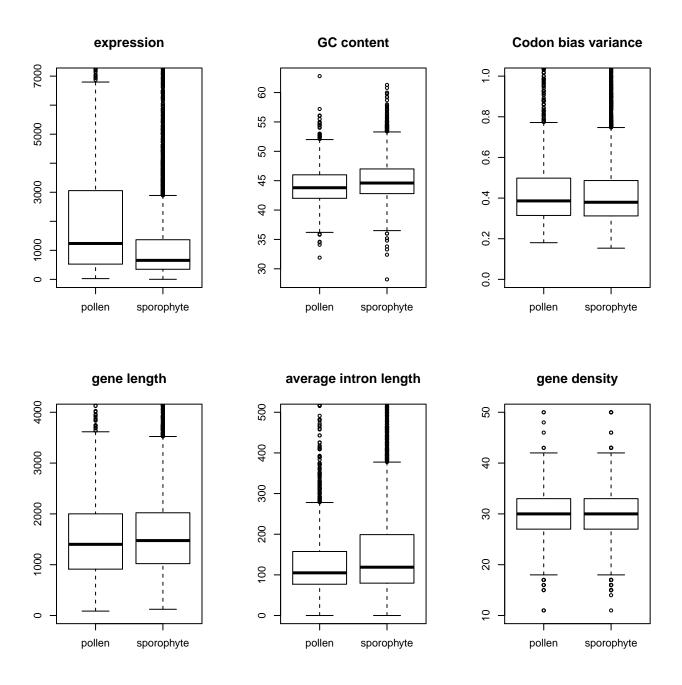


Figure S1: Genomic features of pollen- and sporophyte specific genes.

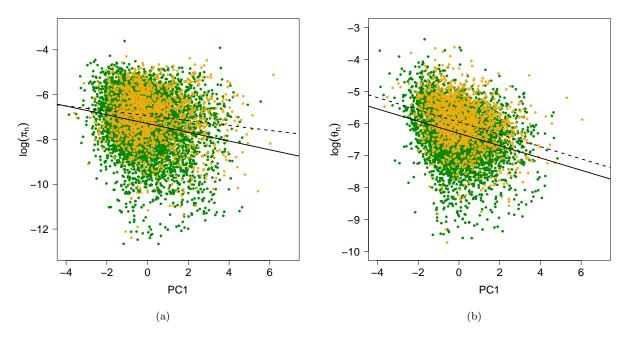


Figure S2: ANCOVA analysis with PC1 (6 genomic variables) as continuous variable reveals both higher π_n (a) and higher θ_n (b) among pollen-specific (dark grey points and dashed line) than sporophyte-specific genes (light grey points and solid line).

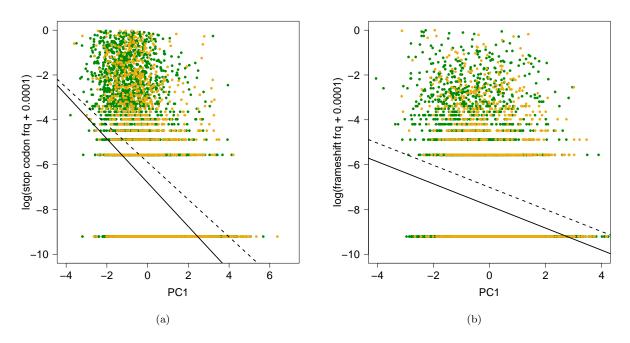


Figure S3: ANCOVA analysis with PC1 (6 genomic variables) as continuous variable reveals significantly higher frequency of stop codon mutations (a) and frameshift mutations (b) among pollen-specific (dark grey points and dashed line) than sporophyte-specific genes (light grey points and solid line).

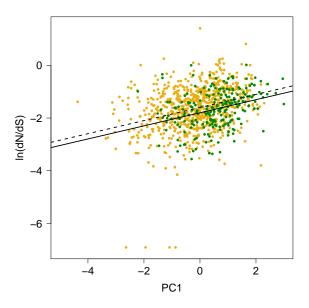


Figure S4: ANCOVA analysis of dN/dS within pollen-specific (yellow points and dashed line) and tissue specific, sporophyte genes (green points and solid line) with PC1 (expression and GC content) as the continuous variable .

figure 10

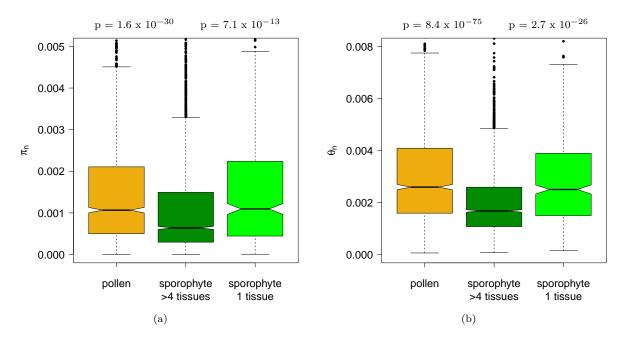


Figure S5: Non-synonymous nucleotide diversity (a) and non-synonymous Watterson's theta (b) within pollen-specific genes, broadly expressed sporophyte-specific genes and genes specific to guard cells, xylem or root hair.

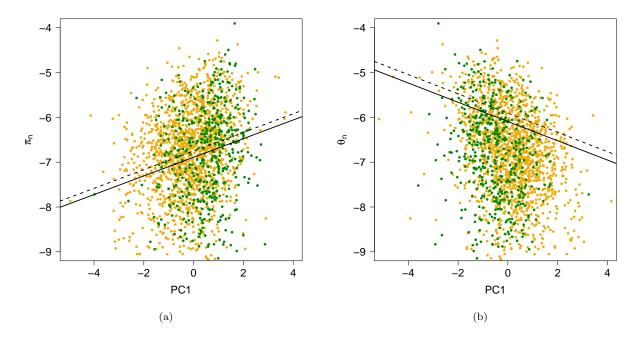


Figure S6: ANCOVAS comparing π_n (a) and θ_n (b) within pollen-limited genes (yellow points and dashed line) to tissue-specific, sporophytic genes (green points and solid line) while controlling for the first PC of a PCR.

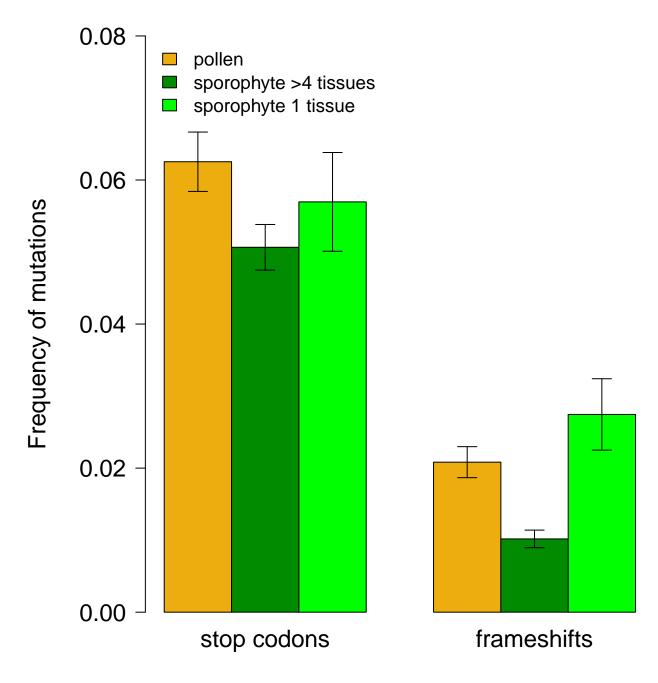


Figure S7: Frequency of stop codon and frameshift mutations within pollen-specific genes, broadly expressed sporophytic genes (at least 5 tissues) and tissue specific genes (expression restricted to guard cell, xylem or root hair tissues). Shown are means and standard error.

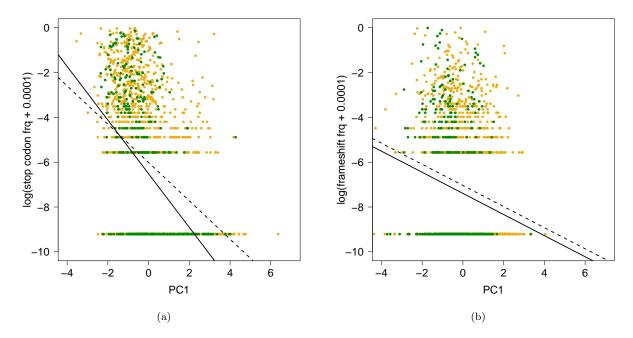


Figure S8: ANCOVAS comparing the frequency of stop codon mutations (a) and frameshift mutations (b) within pollen-limited genes (yellow points and dashed line) to tissue-specific, sporophytic genes (green points and solid line) while controlling for the first PC of a PCR.

Supplementary tables

Table S1: Expression data sets.

	Dataset	Description	Chips	Original source
Haploid	UNM	Uninucleate microspore	2	Honys & Twell, 2004
	BCP	Bicellular pollen	2	Honys & Twell, 2004
	TCP	Tricellular Pollen	2	Honys & Twell, 2004
	MPG	Mature Pollen	2	Honys & Twell, 2004
	GP^*	Pollen Tube Grouped	6	Qin et al., 2009; Wang et al., 2008
	PT4*	Pollen Tube Grouped	6	Qin et al., 2009; Wang et al., 2008
	SPC	Sperm Cell	3	Borges et al., 2008
Diploid	SL	Silique	30	NASC
•	$_{ m LF}$	Leaves	36	NASC
	GC	Guard Cell	3	NASC
	PT^{**}	Petiole	3	NASC
	ST	Stems	2	NASC
	HP	Hypocotyl	8	NASC
	XL	Xylem	3	NASC
	CR	Cork	3	NASC
	RT	Roots	11	NASC
	RH	Root hair elongation zone	3	NASC

NASC: Nottingham Arabidopsis Stock Centre.

Table S2: Comparison of chromosomal positions of pollen and sporophyte genes. Mann Whitney U test.

Chromosome	W	p
1	2.79×10^{5}	0.137
2	1.00×10^{5}	0.071
3	1.72×10^{5}	0.315
4	8.54×10^4	0.267
5	2.31×10^5	0.241

Table S3: dN/dS between A. thaliana, A. lyrata and C. rubella. Values are means (and medians); p-values denote significance of difference in dN/dS between pollen and sporophyte genes on each branch; significance was tested with Mann Whitney U test; p-values are Bonferroni corrected for multiple testing.

	Pollen	Sporophyte	p value
A. thaliana vs. A. lyrata A. thaliana vs. C. rubella A. lyrata vs. C. rubella	$0.2409 \ (0.2036)$	$0.1801 \ (0.1567)$	8.8×10^{-22}

Table S4: Nonsynonymous pi within 5 equal bins along the PC1 axis. Shown are medians (means).

	< 20%		20% - 40%		40% - 60%		60%	- 80%	> 80%	
Pollen	$1.0 \text{x} 10^{-3}$	$(1.7x10^{-3})$	$1.1 \text{x} 10^{-3}$	$(1.7x10^{-3})$	$1.1 \text{x} 10^{-3}$	$(1.7x10^{-3})$	$1.1 \text{x} 10^{-3}$	$(1.6x10^{-3})$	$8.4 \text{x} 10^{-4}$	$(1.5x10^{-3})$
Sporophyte	$1.0 \text{x} 10^{-3}$	$(1.7x10^{-3})$	8.6×10^{-4}	$(1.4x10^{-3})$	7.2×10^{-4}	$(1.2x10^{-3})$	$6.7 \text{x} 10^{-4}$	$(1.1x10^{-3})$	$6.0 \text{x} 10^{-4}$	$(1.0x10^{-3})$
p	ns		1.1×10^{-3}		1.1×10^{-8}		5.83	$\kappa 10^{-6}$	$1.0 \text{x} 10^{-5}$	

^{*} GP and PT4 were combined to one data set called PT, selecting the highest expression level of the two for each gene.

^{**} Renamed PET

Table S5: Frequency of stop codons within 5 equal bins along the PC1 axis. Shown are medians (means).

	<	20%	20%	- 40%	40%	- 60%	60	% - 80%)	> 80%
Pollen	0.028	(0.113)	0.011	(0.111)	0.004	(0.056)	0	(0.033)	0	(0.015)
Sporophyte								(0.022)		
p	p non significant		5.7×10^{-6}		1.1×10^{-5}		6.3×10^{-8}		8.3	$\times 10^{-11}$

Table S6: Differences in 6 genomic variables between pollen-specific genes and genes limited to one of three sporophytic tissues. Values are means \pm standard error of the mean; significance was tested with Mann Whitney U test; p-values are Bonferroni corrected for multiple testing.

	Pollen-sp	ecific genes		guard cell	p	
Expression level	2,562.30	$\pm \ 86.49$	>	446.24	$\pm \ 26.82$	1.0×10^{-77}
GC content (%)	44.20	$\pm~0.08$	<	44.80	± 0.17	4.5×10^{-3}
Codon bias variance	0.46	± 0.01	>	0.39	$\pm \ 0.01$	2.2×10^{-6}
gene length	$1,\!570.30$	$\pm~24.41$	=	$1,\!561.71$	$\pm \ 36.20$	not significant
average intron length	124.44	± 3.23	=	152.49	$\pm \ 9.14$	not significant
gene density (per 100kb)	29.99	± 0.12	=	29.48	$\pm \ 0.30$	not significant