Supporting Information:

Surfactant-mediated One-pot Method to Prepare Pd-CeO₂ Colloidal Assembled Spheres and Its Enhanced Catalytic Performance for CO oxidation

Chenhao Du¹, Guanzhong Lu¹,* Yun Guo¹, Yanglong Guo¹, and Xue-qing Gong¹

¹Key Laboratory for Advanced Materials and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China. *E-mail: gzhlu@ecust.edu.cn; Fax: +86 21 6425 2923

Figure S1. Size distribution of as-synthesized and calcined Pd-CeO₂ CASs at 600 °C.

Figure S2. FT-IR spectrum of the sample after 1.5 h of the synthesis reaction. IR (KBr, cm⁻¹): 3340 v(O-H), 2942 and 2895 v(C-H) C_2H_4 , 1562 v(OCO), 1425 v(C-C) as, 1057 v(C-O), 661 v(-(CH₂)₃-) PVP.

Figure S3. XRD pattern of the sample prepared at 130 °C for 15 h without adding NH₄OH.

Figure S4. TEM image of the sample prepared at 130 °C for 15 h with 0.8 mL NH₄OH.

Figure S5. TEM image and XRD pattern of the sample prepared at 130 °C for 15 h without adding acetic acid and $N(CH_3)_4OH$.

Figure S6. Pt 4f XPS spectrum of Pt-CeO₂ CASs. The peak at BE= 73 eV is corresponding to the ionic Pd^{2+} species.¹ This result showed that the exposed Pt species on the Pt-CeO₂ CASs existed in the form of ionic Pt^{2+} , which is caused by the strong interaction between Pt and CeO₂ during the synthesis process.

Figure S7. XRD patterns of as-synthesized and calcined (Cu, Co, Mn)-CeO₂ CASs at 500 °C.

Figure S8. EDS spectra of M (Cu, Co, Mn)-CeO₂ CASs calcined at 500 °C. As shown in Figures S7 and S8, the Cu, Co, Mn-CeO₂ CASs samples exhibit the characteristic diffraction peaks of CeO₂, indicating the successful incorporation of transition metal elements in the CeO₂ CASs.

Figure S9. TEM image of Pd-CeO₂ CASs after cycling testing 3 times in CO oxidation.

Figure S10. TEM image of Pd-CeO₂ CASs/Al₂O₃.

Figure S11. N₂ adsorption/desorption isotherms of Al_2O_3 and Pd-CeO₂ CASs/ Al_2O_3 . The BET surface areas of Al_2O_3 and Pd-CeO₂ CASs/ Al_2O_3 are 233 m²/g and 144 m²/g respectively.

Figure S12. Catalytic activities of Pt-CeO₂ CASs and supported Pt-CeO₂ CASs/Al₂O₃ for CO oxidation.

Table S1. The composition of the sample after 1.5 h of reaction*

Wt.(%)	С	Н	0	Ν	Ce	Pd
	27.4	3.8	35.6	1.1	31	1.1

^{*} The C, H, N contents were measured by element analysis; Pd, Ce contents were measured by ICP. The O content was balanced by the weight ratio.

Reference

 Bruix, A.; Lykhach, Y.; Matolínová, I.; Neitzel, A.; Skála, T.; Tsud, N.; Vorokhta, M.; Stetsovych, V.; Ševčíková, K.; Mysliveček, J.; Fiala, R.; Václavů, M.; Prince, K. C.; Bruyère, S.; Potin, V.; Illas, F.; Matolín, V.; Libuda, J.; Neyman, K. M. Maximum Noble-Metal Efficiency in Catalytic Materials: Atomically Dispersed Surface Platinum. *Angew. Chem. Int. Ed.*, **2014**, *53*, 10525-10530.