Supporting Information

Copper Bispidines Complexes – Synthesis and Complex Stability Study

Aleksei V. Medved'ko, Bayirta V. Egorova, Alina A. Komarova, Rustem D. Rakhimov, Dmitry P. Krut'ko, Stepan N. Kalmykov, Sergey Z. Vatsadze

Contents

Titration curves for ligand 1c	S2
Titration curves for ligand 2a	S 3
Titration curves for ligand 2c	S4
Titration curves for ligand 3b	S 5
Titration curves for ligand 3c	S6
Stoichiometry of complex Cu^{2+} : 1c determination by UV-vis spectrometry	S8
NMR spectra	S9
ATR-FTIR spectra of compounds 3b and 5b, 3c and 5c	S22
UV-vis spectrum of compound 4b	S23
HRMS-ESI of copper complexes 4b and 4c	S23
CV curves for complexes 4b and 5c	S24

Protonation of Ligand 1c

Figure S1. Titration curve of 1c (0.001M) acidified by excess of $HClO_4$ (0.004M), I=0.1 M KNO₃

Figure S2. Species distribution for **1c** (0.001M), I=0.1 M KNO₃

Figure S3. Titration curves: A- 1c (0.001M) acidified by excess of $HClO_4$ (0.004M), B- 1a (0.001M) with Cu²⁺ (0.0005M) acidified by excess of $HClO_4$ (0.004M), I=0.1M KNO₃

Figure S4. Species distribution in the system: **1c** (0.001M) and Cu^{2+} (0.0005M), I=0.1M KNO₃

Figure S5. Titration curve of the 2a (0.001M) acidified by excess of $HClO_4$ (0.004M), I=0.1 M KNO₃

Figure S6. Species distribution for **2a** (0.001M), I=0.1 M KNO₃

Figure S7. Titration curves of (A) the **2a** (0.001M) acidified by excess of HClO₄ (0.004M) and (B) the **2a** (0.001M) with Cu²⁺ (0.001M) acidified by excess of HClO₄ (0.004M), I=0.1M KNO₃

Figure S8. Species distribution in the system: **2a** (0.001M) and Cu²⁺ (0.001M), I=0.1M KNO₃

Figure S9. Titration curve of the 2c (0.001M) acidified by excess of HClO₄ (0.004M), I=0.1 M KNO₃

Figure S10. Species distribution for **2c** (0.001M), I=0.1 M KNO₃

Figure S11. Titration curves of (A) the **2c** (0.001M) acidified by excess of HClO₄ (0.004M) and (B) the **2c** (0.001M) with Cu²⁺ (0.001M) acidified by excess of HClO₄ (0.004M), I=0.1M KNO₃

Figure S12. Species distribution curves in the system: **2c** (0.001M) and Cu^{2+} (0.001M), I=0.1M KNO₃

Figure S13. Titration curve of the 3b (0.001M) acidified by excess of $HClO_4$ (0.004M), I=0.1 M KNO₃

Figure S14. Species distribution for **3b** (0.001M), I=0.1 M KNO₃

Figure S15. Titration curves of (A) the **3b** (0.001M) acidified by excess of $HClO_4$ (0.004M) and (B) the **3b** (0.001M) with Cu^{2+} (0.001M) acidified by excess of $HClO_4$ (0.004M), I=0.1M KNO₃

Figure S16. Species distribution curves in the system: **3b** (0.001M) and Cu^{2+} (0.001M), I=0.1M KNO₃

Figure S17. Titration curve of the 3c (0.001M) acidified by excess of HClO₄ (0.004M), I=0.1 M KNO₃

Figure S18. Species distribution for **3c** (0.001M), I=0.1 M KNO₃

12

Figure S19. Titration curves of (A) the **3c** (0.001M) acidified by excess of HClO₄ (0.004M) and (B) the **3c** (0.001M) with Cu²⁺ (0.001M) acidified by excess of HClO₄ (0.004M), I=0.1M KNO₃

Figure S20. Species distribution curves in the system: 3c (0.001M) and $Cu^{2+} (0.001M)$, I=0.1M KNO₃

Stoichiometry of complex Cu²⁺:1c: determination by UV-vis spectrophotometry

Figure S21. Evolution of absorption spectra upon addition of Cu^{2+} and absorption maximum shift with Cu^{2+}/L variation (inset), L=1c

Figure S22. Absorption maximum shift with Cu²⁺/L variation, L=1c

Figure S23. ¹H-NMR spectrum of 1,5-dimethyl-9-oxo-3,7-diazabicyclo[3.3.1]nonane (**1b**) in chloroform-d1.

Figure S24. ¹³C-NMR spectrum of 1,5-dimethyl-9-oxo-3,7-diazabicyclo[3.3.1]nonane (**1b**) in chloroform-d1.

Figure S25. ¹H-NMR spectrum of 1,5-dimethyl-9-hydroxy-3,7-diazabicyclo[3.3.1]nonane (**1c**) in water-d2.

Figure S26. ¹³C-NMR spectrum of 1,5-dimethyl-9-hydroxy-3,7-diazabicyclo[3.3.1]nonane (**1c**) in water-d2.

Figure S27. ¹H-NMR spectrum of 2,2'-(1,5-dimethyl-3,7-diazabicyclo[3.3.1]nonane-3,7-diyl)diacetic acid (**2a**) in water-d2.

Figure S28. ¹H-NMR spectrum of 2,2'-(1,5-dimethyl-9-oxo-3,7-diazabicyclo[3.3.1]nonane-3,7-diyl)diacetic acid (**2b**) in water-d2.

diyl)diacetic acid (**2b**) in water-d2.

Figure S30. ¹H-NMR spectrum of 2,2'-(1,5-dimethyl-9-oxo-3,7-diazabicyclo[3.3.1]nonane-3,7-diyl)dipropionic acid (**3b**) in water-d2.

Figure S31. ¹³C-NMR spectrum of 2,2'-(1,5-dimethyl-9-oxo-3,7-diazabicyclo[3.3.1]nonane-3,7-diyl)dipropionic acid (**3b**) in water-d2.

Figure S32. ¹H-NMR spectrum of 2,2'-(1,5-dimethyl-9-hydroxy-3,7-diazabicyclo[3.3.1]nonane-3,7-diyl)diacetic acid (**2c**) in water-d2.

Figure S33. ¹³C-NMR spectrum of 2,2'-(1,5-dimethyl-9-hydroxy-3,7-diazabicyclo[3.3.1]nonane-3,7-diyl)diacetic acid (**2c**) in water-d2.

Figure S34. ¹H-NMR spectrum of 2,2'-(1,5-dimethyl-9-hydroxy-3,7-diazabicyclo[3.3.1]nonane-3,7-diyl)dipropionic acid (**3c**) in water-d2.

Figure S35. ¹³C-NMR spectrum of 2,2'-(1,5-dimethyl-9-hydroxy-3,7-diazabicyclo[3.3.1]nonane-3,7-diyl)dipropionic acid (**3c**) in water-d2.

Figure S37. UV-vis spectrum of compound **4b** in methanol:water 1:1 solution. Concentration $5.34 \cdot 10^{-4}$ mol/l.

Figure S38. HRMS-ESI of copper complexes 4b (a) and 4c (b).

Figure S39. Cyclic voltammogram oxidation of complex **4c** (Pt electrode, DMF, Bu₄NBF₄, Ag/AgCl/KCl (sat.), 20 °C

Figure S40. Cyclic voltammogram oxidation of complex **5c** (5 scan potential) (Pt electrode, DMF, Bu₄NBF₄, Ag/AgCl/KCl (sat.), 20 °C