In-situ surface engineering of mesoporous silica generates interfacial activity and catalytic acceleration effect

Fengwei Zhang ^{a*}, Juan Li ^a, Xincheng Li ^b, Mengqi Yang ^b, Hengquan Yang ^{a,b*} and

Xian-Ming Zhang ^{a*}

^a Institute of crystalline materials, Shanxi University, Taiyuan 030006, P. R. China

^b School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan
030006, P. R. China

Figure S1. The HRTEM image of MS-PAP-20 microsphere.

Figure S2. The TEM images of (a) Pd/MS, (b) Pd/MS-PAP-20, (c) and (d) the corresponding size distribution of Pd NPs.

Figure S3. (a) The hydrophilic MS microsphere and (b) the relatively hydrophobic MS-PAP-20 microsphere in deionized water.

 $\textbf{Table S1.} \ Results \ of \ N_2 \ adsorption-desorption \ of \ the \ prepared \ mesoporous \ materials.$

Sample	BET $(m^2 \cdot g^{-1})$	Pore volume (cm $^3 \cdot g^{-1}$)	Pore size (nm)
MS	882	0.625	3.2
Pd/MS	715	0.599	3.1
MS-PAP-20	593	0.402	2.8
Pd/MS-PAP-20	244	0.264	2.5