A Thermally Crosslinked Functionalized Polydicyclopentadiene (fPDCPD) with a High T_g and Tunable Surface Energy

Jun Chen, Fraser P. Burns, Matthew G. Moffitt, and Jeremy E. Wulff*

Department of Chemistry, University of Victoria, Victoria, British Columbia, Canada V8W 3V6

Supporting Information

Index

Figure S1A. GPC traces of a freshly-prepared (~4-hour-old) sample of polymer 5 .	S2
Figure S1B. GPC refractive index trace of a 2-day-old sample of polymer 5.	S3
Figure S2. Comparison between freshly prepared polymer 5 solution and 3-day-old suspension	S3
Table S1. Measured Contact Angles for <i>f</i> PDCPD and PDCPD.	S4
Figure S3. Apparatus used for the preparation of slides half coated with polymer 6 and half with polymer 7	S4
Figure S4. ¹ H NMR spectrum for compounds 3 and 4 (prepared as a mixture).	S5
Figure S5. ¹³ C NMR spectrum for compounds 3 and 4 (prepared as a mixture).	S5
Figure S6. ¹ H NMR spectrum for partially purified compound 3 .	S6
Figure S7. ¹ H NMR spectrum for partially purified compound 4.	S6
Figure S8. ¹ H NMR spectrum for linear polymer 5 .	S7
Figure S9. ¹³ C NMR spectrum for linear polymer 5.	S7
Figure S10. HSQC spectrum for linear polymer 5.	S8
Figure S11. COSY spectrum for linear polymer 5.	S9
Figure S12. Estimated molecular weight of 5 by NMR (in CD ₂ Cl ₂).	S10

Figure S1A. GPC traces of a freshly-prepared (~4-hour-old) sample of polymer **5**. Top trace: refractive index detection. Bottom trace: low angle light scattering detection. Calculated data: 1 mg/mL sample: Mw = 94445 Da, Mn = 39824 Da, PDI = 2.37, dn/dc = 0.103; 2 mg/mL Sample: Mw = 93290 Da, Mn = 47684 Da, PDI = 1.96, dn/dc = 0.108.

Figure S1B. GPC refractive index trace of a 2-day-old sample of polymer **5**. The peak at 10 mL elution volume corresponds to M_w and M_n values of 30036272 and 29802748 Da, respectively. The calculated PDI is $M_w/M_n = 1.008$, but this number is not particularly meaningful given the amount of oxidative crosslinking that the sample has evidently experienced prior to analysis.

Day 1

Day 3

Figure S2. Comparison between freshly prepared polymer **5** solution and 3-day-old suspension. We attribute the appearance of cloudiness to the precipitation of oxidatively crosslinked polymer.

polymer	left (°)	right (°)	overall (°)
methyl ester (H ₂ O)	87.0 ± 1.1	87.4 ± 0.8	87.2 ± 0.9
carboxylate salt (H_2O)	63.3 ± 3.0	63.9 ± 2.2	63.6 ± 2.5
carboxylic acid (H ₂ O)	28.8 ± 1.1	29.2 ± 1.2	29.0 ± 1.1
methyl ester (CH ₂ I ₂)	46.0 ± 0.8	45.6 ± 1.0	45.8 ± 0.9
carboxylate salt (CH_2I_2)	46.1 ± 1.7	46.6 ± 1.5	46.4 ± 1.5
carboxylic acid (CH ₂ I ₂)	52.0 ± 1.6	52.4 ± 1.3	52.2 ± 1.4
PDCPD (H ₂ O)	119.4 ± 1.2	120.1 ± 1.5	119.8 ± 1.3

 Table S1. Measured Contact Angles for fPDCPD and PDCPD.

Figure S3. Apparatus used for the preparation of slides half coated with polymer **6** and half with polymer **7**. Glass cover slips were first spin coated with linear polymer **5**, then incubated in a 180 °C oven under vacuum overnight to provide crosslinked polymer **6**. The slides were then supported by clips and partially immersed in a solution of methanolic NaOH to facilitate (partial) hydrolysis of surface ester groups.

Figure S5. ¹³C NMR spectrum for compounds 3 and 4 (prepared as a mixture).

Figure S6. ¹H NMR spectrum for partially purified compound **3**.

(recovered ether supernatant from the synthesis of polymer **5**; contains solvent impurity)

Figure S7. ¹H NMR spectrum for partially purified compound **4**. (from conjugate addition of benzyl amine to the mixture of **3** and **4**; contains minor impurities)

Figure S8. ¹H NMR spectrum for linear polymer **5**.

Figure S9. ¹³C NMR spectrum for linear polymer 5.

Figure S10. HSQC spectrum for linear polymer 5.

Figure S11. COSY spectrum for linear polymer 5.

Figure S12. Estimated molecular weight of 5 by NMR (in CD_2Cl_2).

