Supporting Information

Synergistically Enhanced Electrocatalytic Performance of N-Doped Graphene Quantum Dots Decorated Three-Dimensional MoS₂-Graphene Nanohybrid for Oxygen Reduction Reaction

Ramalingam Vinoth,[†] Indrajit M. Patil, [†] Alagarsamy Pandikumar,[†] Bhalchandra A. Kakade,[†] Huang Nay Ming,[‡] Dionysios D. Dionysiou[§] and Bernaurdshaw Neppolian^{†,*}

^{†,*}SRM Research Institute, SRM University, Kattankulathur, Kancheepuram 603203 (D.t.), Tamil Nadu, India.

[‡]Low Dimensional Materials Research Centre, Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia.

[§]Environmental Engineering and Science Program, Department of Biomedical, Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221-0012, USA.

Figure S1. FE-SEM image of (a) GO and (b) MoS_2 .

Figure S2. EDX spectrum of N-GQDs/MoS₂-rGO nanohybrid.

Figure S3. Disk current (I_d) and the corresponding ring current (I_r) for 3D N-GQDs/MoS₂-rGO nanohybrid using RRDE in the presence of O₂ saturated 0.1 M KOH at 1600 rpm with the scan rate of 10 mV/s.

Figure S4. LSV comparison of N-GQDs/MoS₂-rGO nanohybrid with commercial Pt/C catalyst in the presence of O_2 saturated 0.1M KOH at 1600 rpm with the scan rate of 10 mV/s.

Table S1. Comparison on the electrocatalytic performance of some carbonaceous nanomaterials

 based electrocatalysts toward oxygen reduction reaction.

Electrocatalyst	Method	Electrolyte	Current density at 1600 rpm (mA/cm ²)	Onset potential (V) vs. RHE	Ref.
MoS ₂ NDs/NGr	Thermal annealing	0.1M KOH	4.7	0.93	1
MoS ₂ /N doped graphene	Hydrothermal	0.1M KOH	4	0.88	2
B,N-GQD/Graphene	CVD	0.1M KOH	4.5	0.99	3
N, P, S co-doped graphene	Thermal annealing	0.1M KOH	NA	0.68	4
Co(OH) ₂ -MoS ₂ /rGO	Hydrothermal	0.1M KOH	NA	0.85	5
N doped carbon dots	Sovothermal	0.1M KOH	NA	0.83	6
3D N doped graphene	Thermal annealing	0.1M KOH	NA	0.83	7
3D crumpled graphene –cobalt oxide	Thermal annealing	1 M KOH	NA	0.90	8
3D Fe ₃ O ₄ -N doped graphene aerogel	Hydrothermal	0.1M KOH	NA	0.80	9
3D rGO/BN composite	Hydrothermal	0.1M KOH	3.0	0.79	10
3D N-GQDs/ MoS ₂ - rGO nanohybrid	Hydrothermal	0.1M KOH	2.56	0.81	This work

Note: The potential conversion of Ag/AgCl and SCE into RHE was calculated using the standard conversion factor

References

(1) Du, C.; Huang, H.; Feng, X.; Wu, S.; Song, W. Confining MoS₂ Nanodots in 3D Porous Nitrogen-Doped Graphene with Amendable ORR Performance. *J. Mater. Chem. A* **2015**, *3*, 7616-7622.

(2) Zhao, K.; Gu, W.; Zhao, L.; Zhang, C.; Peng, W.; Xian, Y. MoS₂/Nitrogen-Doped Graphene as Efficient Electrocatalyst for Oxygen Reduction Reaction. *Electrochim. Acta* 2015, *169*, 142-149.

(3) Fei, H.; Ye, R.; Ye, G.; Gong, Y.; Peng, Z.; Fan, X.; Samuel, E. L.; Ajayan, P. M.; Tour, J.
M. Boron-and Nitrogen-Doped Graphene Quantum Dots/Graphene Hybrid Nanoplatelets as
Efficient Electrocatalysts for Oxygen Reduction. *ACS Nano* 2014, *8*, 10837-10843.

(4) Ma, Y.; Zhang, L.; Li, J.; Ni, H.; Li, M.; Zhang, J.; Feng, X.; Fan, Q.; Hu, Z.; Huang, W. Carbon-Nitrogen/Graphene Composite as Metal-Free Electrocatalyst for the Oxygen Reduction Reaction. *Chin. Sci. Bull.* **2011**, *56*, 3583-3589.

(5) Illathvalappil, R.; Unni, S. M.; Kurungot, S. Layer-Separated MoS₂ Bearing Reduced Graphene Oxide Formed by an In Situ Intercalation-Cum-Anchoring Route Mediated by Co(OH)₂ as a Pt-Free Electrocatalyst for Oxygen Reduction. *Nanoscale* **2015**, *7*, 16729-16736.

(6) Lei, Z.; Xu, S.; Wan, J.; Wu, P. Facile Synthesis of N-Rich Carbon Quantum Dots by Spontaneous Polymerization and Incision of Solvents as Efficient Bioimaging Probes and Advanced Electrocatalysts for Oxygen Reduction Reaction. *Nanoscale* **2016**, *8*, 2219-2226.

(7) Lin, Z.; Waller, G. H.; Liu, Y.; Liu, M.; Wong, C.-P. 3D Nitrogen-Doped Graphene Prepared by Pyrolysis of Graphene Oxide with Polypyrrole for Electrocatalysis of Oxygen Reduction Reaction. *Nano Energy* **2013**, *2*, 241-248. (8) Mao, S.; Wen, Z.; Huang, T.; Hou, Y.; Chen, J., High-Performance Bi-Functional Electrocatalysts of 3d Crumpled Graphene–Cobalt Oxide Nanohybrids for Oxygen Reduction and Evolution Reactions. *Energy Environ. Sci.* **2014**, *7*, 609-616.

(9) Wu, Z.-S.; Yang, S.; Sun, Y.; Parvez, K.; Feng, X.; Müllen, K., 3D Nitrogen-Doped Graphene Aerogel-Supported Fe₃O₄ Nanoparticles as Efficient Electrocatalysts for the Oxygen Reduction Reaction.*J. Am. Chem. Soc.* **2012**, *134*, 9082-9085.

(10) Patil, I. M.; Lokanathan, M.; Kakade, B. Three Dimensional Nanocomposite of Reduced Graphene Oxide and Hexagonal Boron Nitride as an Efficient Metal-Free Catalyst for Oxygen Electroreduction. *J. Mater. Chem. A* **2016**, *4*, 4506-4515.