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Figure S1. XRD of rGE, SiO2 and rGES-2. 

Figure S1 gives the XRD patterns of rGE, SiO2 and rGES. The rGE shows a broad 

peak at 23.3°, the peak of SiO2 was found at 22.6°, and rGES shows a comprehensive 

peak of rGE and SiO2 at 22.9°, signifying a certain integration of SiO2 and rGE. After 

integrated with rGE in rGES composites, SiO2 shows some narrow and small new 

peaks in the range of 15–35°, indicating that the regularity of SiO2 is enhanced. A 

more regular growth of SiO2 is promoted by the existence of rGE. Moreover, no 
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obvious graphite peak of 26.6°can be found in rGES, indicating the agglomeration is 

inhibited well by SiO2 nanoparticles and a good dispersion of rGE in rGES. 
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Figure S2. FTIR spectra of rGE, SiO2 and rGES-2. 

In order to further reveal the interaction between rGE and SiO2, the FT-IR spectra 

of GO, rGE and rGES are compared in Figure S2. For the case of SiO2, the peak at 

about 790 cm
 1
 could be assigned to the typical vibration mode of framework Si–O–Si, 

1064 cm
 1
 is the asymmetric stretching vibration of Si O Si, and this peak also 

emerges in rGES just as shown in Figure S2. A weak band located at 950 cm
 1

 for

SiO2 was mainly attributed to the stretching vibrations of Si–OH groups at defect 

sites. Most of the characteristic peaks of SiO2 can be found in rGES, indicating that the 

components are well combined and successfully constitute the final composite. 
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Scheme S1. Cross-linking reactions of polysiloxane. 

Most unfilled silicone networks display extremely poor mechanical properties 

except self-enhanced matrixes. To understand the enhancing mechanism of rGES in 
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methyl vinyl polysiloxane matrix, it is necessary to figure out the reinforcement 

principle of unfilled and filled polysiloxane by individual SiO2 and rGE. Methyl vinyl 

polysiloxane is such a kind of silicone whose backbone consists of repeated units of 

—Si—O—,
S1

 and each silicon atom is connected with methyl or vinyl. The 

cross-linking pots situate at the vinyl groups of one polysiloxane molecule and the 

methyl groups of another polysiloxane molecule.
S2, S3

 For the peroxide curing agent 

used in this experiment, there are two possible dealcoholation processes,
S4

 

corresponding to four crosslinked forms or products, just as shown in Scheme S1. 

Therefore, the stress transmission and reinforcing of unfilled polysiloxane is realized 

mainly through vulcanizing agent, which is clearly insufficient to provide ideal 

mechanical strength as the vinyl content is only 0.16% mol for the silicone used in our 

experiments. In order to improve the mechanical properties of such kind of 

non-self-reinforced polysiloxane molecules, suitable reinforcing filler is essential to 

help form stronger network structure.  

 

Scheme S2. Schematic interaction between polysiloxane and SiO2 in a cross-linked 

system. 
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The most frequently used filler for silicone matrixes is precipitated or fumed SiO2, 

which helps to form more developed network structures and stronger interactions in 

vulcanized polysiloxane matrixes.
S5, S6

 Abundant hydrogen bonds between SiO2 

nanoparticles and polysiloxane form due to excellent compatibility and dispersion.
S7, 

S8
 Besides the interaction provided by vulcanized agents, another strong interaction 

among different polysiloxane moleculars is achieved through bridging of SiO2. These 

two modes, stable and more intertwined together, help show more effective interfacial 

stress transfer
S9, S10

 and increased mechanical performances for polysiloxane matrix 

than a single crosslinking mode (Scheme S2).  

 

Scheme S3. Schematic interaction between polysiloxane and rGE in the SR matrix. 

However, rGE is not as compatible with polysiloxane as SiO2, and the trend of 

graphitization leads to a large number of multilayer dispersion of rGE in polysiloxane 

(Scheme S3). Thicker rGE causes higher rigidity and harder blend with flexible 

polysiloxane due to lack of buffer or transition at the incompatible interface. As a 

result, the extraordinary performances of rGE are not effectively elaborated, and the 
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rGE/polysiloxane interface is easily out of control or failure under external physical 

and chemical changes. One way to solve the problem is to overcome the stack of rGE 

and improve the compatibility with polysiloxane. Chemical modification and nano 

compounding are demonstrated able to prevent the rGE layers from stacking.
S11, S12

 

Since SiO2 performs well in filled silicone matrixes, we would like to try the nano 

modification of rGE with nanoscale SiO2. 

 

 

Scheme S4 The blending processes of rGES/SR composites via green solvent-free 

process.  
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