Making monomeric Aquaporin Z by disrupting the hydrophobic tetramer interface

Victoria Schmidt* and James N. Sturgis*

Laboratoire d'Ingenierie des Systemes Macromoleculaires, IMM, CNRS and Aix-Marseille Univ. 31 Chemin Joseph Aiguier, Marseille 13420, France

E-mail: victoria.schmidt@imm.cnrs.fr; james.sturgis@univ-amu.fr

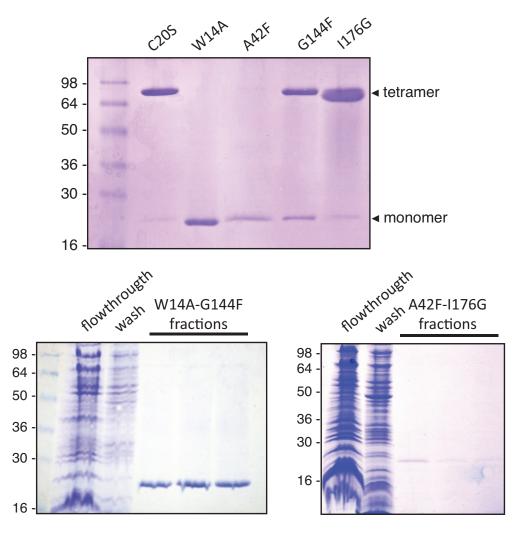


Figure S1: Coomassie blue stained SDS-PAGE showing the purified proteins. The top gel shows purified proteins from the $C_{20}S$ reference strain, and the four single mutants characterized here: $W_{14}A$, $A_{42}F$, $G_{144}F$ and $I_{176}G$. As can be readilly appreciated the different proteins are relatively pure and show mainly tetrameric ($C_{20}S$, $I_{176}G$), monomeric ($W_{14}A$, $A_{42}F$) or mixed ($G_{144}F$) quaternary structure in this measurement. The lower panels show SDS-PAGE during the purification of the two double mutants. This illustrates the purity of the proteins obtained, and also the very low yield of the $A_{42}F$ – $I_{176}G$ double mutant. On the left side of each gel are indicated the positions of molecular mass markers (in kDa).