Facile Route to the Synthesis of 1,3-Diazaheterocycle-Fused [1,2-*a*]Quinoline Derivatives via Cascade Reactions

Liang Chen,[†] Rong Huang,[†] Ling-Bin Kong,[†] Jun Lin^{*,†} and Sheng-Jiao Yan^{*,†}

[†]Key Laboratory of Medicinal Chemistry for Natural Resources (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China

Supporting Information

Table of Contents

General Information	S4
General Procedure for the Preparation of 3 and 4	S4
Spectroscopic Data of 3 and 4	S5
X-ray Structure and Data of 3bf	S25
Figure S1. X-Ray crystal structure of 3bf	S25
Figure S2. ¹ H NMR (300 MHz, DMSO- <i>d</i> ₆) spectra of compound 3aa	S29
Figure S3. ¹³ C NMR (75 MHz, DMSO- d_6) spectra of compound 3aa	S30
Figure S4. ¹ H NMR (300 MHz, DMSO- <i>d</i> ₆) spectra of compound 3ab	S31
Figure S5. ¹³ C NMR (75 MHz, DMSO- d_6) spectra of compound 3ab	S32
Figure S6. ¹ H NMR (300 MHz, DMSO- d_6) spectra of compound 3ac	S33
Figure S7 13 C NMR (75 MHz, DMSO- d_6) spectra of compound 3ac	S34
Figure S8. ¹ H NMR (300 MHz, DMSO- <i>d</i> ₆) spectra of compound 3ad	S35
Figure S9. ¹³ C NMR (75 MHz, DMSO- d_6) spectra of compound 3ad	S36
Figure S10. ¹ H NMR (300 MHz, DMSO- d_6) spectra of compound 3ae	S37
Figure S11. 13 C NMR (75 MHz, DMSO- d_6) spectra of compound 3ae	S38
Figure S12. ¹ H NMR (300 MHz, DMSO- d_6) spectra of compound 3af	S39
Figure S13. ¹³ C NMR (75 MHz, DMSO- d_6) spectra of compound 3af	S40
Figure S14. ¹ H NMR (300 MHz, DMSO- d_6) spectra of compound 3ag	S41
Figure S15. ¹³ C NMR (75 MHz, DMSO- d_6) spectra of compound 3ag	S42
Figure S16. ¹ H NMR (300 MHz, DMSO- d_6) spectra of compound 3ah	S43
Figure S17. ¹³ C NMR (75 MHz, DMSO- d_6) spectra of compound 3ah	S44
Figure S18. ¹ H NMR (300 MHz, DMSO- <i>d</i> ₆) spectra of compound 3ai	S45
Figure S19. ¹³ C NMR (75 MHz, DMSO- d_6) spectra of compound 3ai	S46
Figure S20. ¹ H NMR (300 MHz, DMSO- d_6) spectra of compound 3aj	S47
Figure S21. ¹³ C NMR (75 MHz, DMSO- d_6) spectra of compound 3aj	S48

Figure S22.	¹ H NMR (300 MHz, DMSO- d_6) spectra of compound 3ak	S49
Figure S23.	¹³ C NMR (75 MHz, DMSO- d_6) spectra of compound 3ak	S50
Figure S24.	¹ H NMR (300 MHz, DMSO- d_6) spectra of compound 3al	S51
Figure S25.	¹³ C NMR (75 MHz, DMSO- d_6) spectra of compound 3al	S52
Figure S26.	¹ H NMR (300 MHz, DMSO- d_6) spectra of compound 3am	S53
Figure S27.	¹³ C NMR (75 MHz, DMSO- d_6) spectra of compound 3am	S54
Figure S28.	¹ H NMR (300 MHz, DMSO- d_6) spectra of compound 3an	S55
Figure S29.	¹³ C NMR (75 MHz, DMSO- d_6) spectra of compound 3an	S56
Figure S30.	¹ H NMR (300 MHz, DMSO- d_6) spectra of compound 3ao	S57
Figure S31.	¹³ C NMR (75 MHz, DMSO- d_6) spectra of compound 3ao	S58
Figure S32.	¹ H NMR (300 MHz, DMSO- d_6) spectra of compound 3ap	S59
Figure S33.	¹³ C NMR (75 MHz, DMSO- d_6) spectra of compound 3ap	S60
Figure S34.	¹ H NMR (300 MHz, DMSO- d_6) spectra of compound 3ba	S61
Figure S35.	¹³ C NMR (75 MHz, DMSO- d_6) spectra of compound 3ba	S62
Figure S36.	¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 3bb	S63
Figure S37.	13 C NMR (125 MHz, DMSO- d_6) spectra of compound 3bb	S64
Figure S38.	¹ H NMR (400 MHz, DCCl ₃) spectra of compound 3bc	S65
Figure S39.	¹³ C NMR (100 MHz, DCCl ₃) spectra of compound 3bc	S66
Figure S40.	¹ H NMR (300 MHz, DMSO- d_6) spectra of compound 3bd	S67
Figure S41.	¹³ C NMR (75 MHz, DMSO- d_6) spectra of compound 3bd	S68
Figure S42.	¹ H NMR (300 MHz, DMSO- d_6) spectra of compound 3be	S69
Figure S43.	¹³ C NMR (75 MHz, DMSO- d_6) spectra of compound 3be	S70
Figure S44.	¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 3bf	S71
Figure S45.	13 C NMR (125 MHz, DMSO- d_6) spectra of compound 3bf	S72
Figure S46.	¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 3bg	S73
Figure S47.	¹³ C NMR (125 MHz, DMSO- d_6) spectra of compound 3bg	S74
Figure S48.	¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 3bh	S75
Figure S49.	13 C NMR (125 MHz, DMSO- d_6) spectra of compound 3bh	S76
Figure S50.	¹ H NMR (300 MHz, DMSO- d_6) spectra of compound 3bi	S77
Figure S51.	¹³ C NMR (75 MHz, DMSO- d_6) spectra of compound 3bi	S78
Figure S52.	¹ H NMR (300 MHz, DMSO- d_6) spectra of compound 3bj	S79
Figure S53.	¹³ C NMR (75 MHz, DMSO- d_6) spectra of compound 3bj	S80
Figure S54.	¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 3bk	S81
Figure S55.	13 C NMR (125 MHz, DMSO- d_6) spectra of compound 3bk	S82
Figure S56.	¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 3bl	S83
Figure S57.	13 C NMR (125 MHz, DMSO- d_6) spectra of compound 3bl	S84
Figure S58.	¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 3bm	S85
Figure S59.	13 C NMR (125 MHz, DMSO- d_6) spectra of compound 3bm	S86
Figure S60.	¹ H NMR (300 MHz, DMSO- d_6) spectra of compound 3bn	S87
Figure S61.	¹³ C NMR (75 MHz, DMSO- d_6) spectra of compound 3bn	S88
Figure S62.	¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 3ca	S89
Figure S63.	¹³ C NMR (125 MHz, DMSO- d_6) spectra of compound 3ca	S90
Figure S64.	¹⁹ F NMR (565 MHz, DMSO- d_6) spectra of compound 3ca	S91
Figure S65.	¹ H NMR (600 MHz, DMSO- d_6) spectra of compound 3cb	S92

Figure S66.	¹³ C NMR (150 MHz, DMSO- d_6) spectra of compound 3cb	S93
Figure S67.	¹ H NMR (600 MHz, DMSO- d_6) spectra of compound 3cc	S94
Figure S68.	¹³ C NMR (150 MHz, DMSO- d_6) spectra of compound 3cc	S95
Figure S69.	¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 3cd	S96
Figure S70.	¹³ C NMR (125 MHz, DMSO- <i>d</i> ₆) spectra of compound 3cd	S97
Figure S71.	¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 3ce	S98
Figure S72.	13 C NMR (125MHz, DMSO- d_6) spectra of compound 3ce	S99
Figure S73.	¹ H NMR (300 MHz, DMSO- d_6) spectra of compound 3cf	S100
Figure S74.	13 C NMR (75 MHz, DMSO- d_6) spectra of compound 3cf	S101
Figure S75.	¹ H NMR (600 MHz, DMSO- d_6) spectra of compound 3cg	S102
Figure S76.	¹³ C NMR (150 MHz, DMSO- d_6) spectra of compound 3cg	S103
Figure S77.	¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 3ch	S104
Figure S78.	13 C NMR (125 MHz, DMSO- d_6) spectra of compound 3ch	S105
Figure S79.	¹⁹ F NMR (470 MHz, DMSO- d_6) spectra of compound 3ch	S106
Figure S80.	¹ H NMR (600 MHz, DMSO- d_6 + HClO ₄) spectra of compound 3ci	S107
Figure S81.	¹³ C NMR (150 MHz, DMSO- d_6 + HClO ₄) spectra of compound 3ci	S108
Figure S82.	¹⁹ F NMR (565 MHz, DMSO- d_6 + HClO ₄) spectra of compound 3ci	S109
Figure S83.	¹ H NMR (600 MHz, DMSO- d_6 + HClO ₄) spectra of compound 3cj	S110
Figure S84.	¹³ C NMR (150 MHz, DMSO- d_6 + HClO ₄) spectra of compound 3cj	S111
Figure S85.	¹ H NMR (600 MHz, DMSO- d_6) spectra of compound 3ck	S112
Figure S86.	13 C NMR (150 MHz, DMSO- d_6) spectra of compound 3ck	S113
Figure S87.	¹ H NMR (300 MHz, DMSO- d_6) spectra of compound 3cl	S114
Figure S88.	¹³ C NMR (75 MHz, DMSO- d_6) spectra of compound 3cl	S115
Figure S89.	¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 3cm	S116
Figure S90.	¹³ C NMR (125 MHz, DMSO- d_6) spectra of compound 3cm	S117
Figure S91.	¹ H NMR (600 MHz, DMSO- d_6) spectra of compound 3cn	S118
Figure S92.	¹³ C NMR (150 MHz, DMSO- d_6) spectra of compound 3cn	S119
Figure S93.	¹ H NMR (500 MHz, DMSO- d_6 + DCCl ₃) spectra of compound 4da	S120
Figure S94.	¹³ C NMR (125 MHz, DMSO- d_6 + DCCl ₃) spectra of compound 4da	S121
Figure S95.	¹⁹ F NMR (471 MHz, DMSO- d_6 + DCCl ₃) spectra of compound 4da	S122
Figure S96.	¹ H NMR (300 MHz, DMSO- d_6 + DCCl ₃) spectra of compound 4db	S123
Figure S97.	¹³ C NMR (75 MHz, DMSO- d_6 + DCCl ₃) spectra of compound 4db	S124
Figure S98.	¹ H NMR (500 MHz, DMSO- d_6 + DCCl ₃) spectra of compound 4dc	S125
Figure S99.	¹³ C NMR (150 MHz, DMSO- d_6 + DCCl ₃) spectra of compound 4dc	S126
Figure S100.	19 F NMR (565 MHz, DMSO- d_6 + DCCl ₃) spectra of compound 4dc	S127
Figure S101.	¹ H NMR (600 MHz, DMSO- d_6) spectra of compound 4dd	S128
Figure S102.	¹³ C NMR (150 MHz, DMSO- d_6) spectra of compound 4dd	S129
Figure S103.	¹⁹ F NMR (471 MHz, DMSO- d_6 + DCCl ₃) spectra of compound 4dd	S130
Figure S104.	HPLC of intermediate 6	S131
Figure S105.	HRMS of piperidine	S132
Figure S106.	HRMS of compound 2d	S133
Figure S107.	HRMS of intermediate 6	S134
References an	nd Notes	S135

General Information

All compounds were fully characterized by spectroscopic data. The NMR spectra were recorded on a Bruker DRX300 (¹H: 300 MHz, ¹³C: 75 MHz), a Bruker DRX400 (¹H: 400 MHz, ¹³C: 100 MHz), a Bruker DRX500 (¹H: 500 MHz, ¹³C: 125 MHz) and a Bruker DRX600 (¹H: 600 MHz, ¹³C: 150 MHz) with DMSO- d_6 and CDCl₃ as the solvents. The chemical shifts (δ) are expressed in parts per million relative to the residual deuterated solvent signal, and coupling constants (*J*) are given in Hertz. IR spectra were recorded on a FT-IR Thermo Nicolet Avatar 360 using KBr pellet. The reactions were monitored by thin layer chromatography (TLC) using silica gel GF₂₅₄. The melting points were determined on XT-4A melting point apparatus and are uncorrected. HRMs were performed on an Agilent LC/Ms TOF instrument. All chemicals and solvents were used as received without further purification unless otherwise stated. X-ray diffraction was obtained by APEX DUO.

The materials **1a-d** were purchased from Aldrich Corporation Limited. HKAs **2** were prepared according to a procedure described in the literature. ¹⁻³

A mixture of 2-fluorobenzaldehyde **1** (1.1 mmol), HKAs 2 (1.0 mmol), and piperidine (1.5 mmol) are mixed by stirring at different temperatures (**1a** as starting material, the temperature of the reaction was 60 °C; **1b** was 75 °C; **1c** and **1d** (at reflux) in 1,4-dioxane (15 mL). When the solution of the reaction was clear, the CaCl₂ (0.5 mmol) was added. After completion of the reaction, as indicated by TLC (CH₂Cl₂—EtOAc, 1:10 v/v), the mixture was cooled to room temperature and filtered. The solid was then washed with small amount of ethanol (*ca*. 5 mL), and dissolved in CHCl₃ (20 mL). Then, the organic phase was washed with saturated salt water (25 mL) and NaHCO₃ (25 mL), dried over anhydrous Na₂SO₄, concentrated, and petroleum ether was added for recrystallization to obtain the pure products **3** or **4**.

Spectroscopic Data of 3 and 4

4-(4'-Fluorophenyl)methanoneyl-7-nitro-1,2-dihydroimi-dazo[1,2-*a*]quinoline (3aa).

Yellow solid, m.p. 229–230 °C; IR (KBr): 3438, 1636, 1613, 1517, 1330, 1263, 1154, 853 cm⁻¹; ¹H NMR (300 MHz, DMSO-*d*₆) (δ , ppm): 3.88–3.95 (m, 2H, C*H*₂N), 4.01–4.08 (m, 2H, NC*H*₂), 6.98 (d, *J* = 9.3 Hz, 1H, Ar*H*), 7.35 (t, *J* = 8.9 Hz, 2H, Ar*H*), 7.80 (s, 1H, C*H*), 7.97–8.02 (m, 2H, Ar*H*), 8.24–8.28 (m, 1H, Ar*H*), 8.45(d, *J* = 2.4 Hz, 1H, Ar*H*); ¹³C NMR (75 MHz, DMSO-*d*₆) (δ , ppm): 45.5, 53.5, 112.4, 115.8 (d, *J* = 21.8 Hz), 119.1, 124.9, 127.2 129.4, 132.4, 132.6 (d, *J* = 9.8 Hz), 136.2, 139.5, 143.9, 152.8, 165.4 (d, *J* = 251.3 Hz), 190.9; HRMS (TOF ES⁺): *m*/*z* calcd for C₁₈H₁₃FN₃O₃[M+H], 338.0935; found, 338.0935.

4-(4'-Chlorophenyl)methanoneyl-7-nitro-1,2-dihydroimi-dazo[1,2-*a*]quinoline (3ab).

Yellow solid, m.p. 273–274 °C; IR (KBr): 2938, 1635, 1610, 1330, 1265, 1093, 871 cm⁻¹; ¹H NMR (300 MHz, DMSO- d_6) (δ , ppm): 3.92–3.95 (m, 2H, C H_2 N), 4.02–4.05 (m, 2H, NC H_2), 7.00(d, J = 9.0 Hz, 1H, ArH), 7.59 (d, J = 8.4 Hz, 2H, ArH), 7.84 (s, 1H, CH), 7.91 (d, J = 8.7 Hz, 2H, ArH), 8.26–8.29 (m, 1H, ArH), 8.48 (d, J = 2.7 Hz, 1H, ArH); ¹³C NMR (75 MHz, DMSO- d_6) (δ , ppm): 45.5, 53.4, 112.5, 119.1, 125.1, 127.3, 128.8, 129.1, 131.4, 134.4, 136.8, 138.8, 139.6, 143.9, 152.8, 191.3; HRMS (TOF ES⁺): m/z calcd for C₁₈H₁₃N₃O₃Cl [M+H], 354.0640; found, 354.0638.

4-(4'-Bromophenyl)methanoneyl-7-nitro-1,2-dihydroimi-dazo[1,2-*a*]quinoline (3ac).

Yellow solid, m.p. 281–282 °C; IR (KBr): 3439, 2938, 1636, 1613, 1325, 1264, 1091, 868 cm⁻¹; ¹H NMR (300 MHz, DMSO- d_6) (δ , ppm): 3.89–3.95 (m, 2H, C H_2 N), 4.02–4.09 (m, 2H, NC H_2), 7.01(d, J = 9.0 Hz, 1H, ArH), 7.74 (d, J = 8.7 Hz, 2H, ArH), 7.83 (d, J = 6.9 Hz, 2H, ArH), 7.84 (s, 1H, CH), 8.27–8.31 (m, 1H, ArH), 8.49 (d, J = 2.4 Hz, 1H, ArH); ¹³C NMR (75 MHz, DMSO- d_6) (δ , ppm): 45.5, 53.5, 112.5, 119.1, 125.1, 127.3, 128.1, 129.1, 131.4, 131.8, 134.8, 136.7, 139.6, 144.0, 152.8, 191.6; HRMS (TOF ES⁺): m/z calcd for C₁₈H₁₃N₃O₃Br[M+H], 398.0134; found, 398.0137.

4-(Phenyl)methanoneyl-7-nitro-1,2-dihydroimidazo[1,2-a]quinoline (3ad).

Yellow solid, m.p. 284–285 °C; IR (KBr): 3439, 2927, 1635, 1592, 1325, 1262, 1094, 729 cm⁻¹; ¹H NMR (300 MHz, DMSO- d_6) (δ , ppm): 3.90–3.96 (m, 2H, C H_2 N), 4.03–4.09 (m, 2H, NC H_2), 7.01(d, J = 9.3 Hz, 1H, ArH), 7.54 (t, J = 7.5 Hz, 2H, ArH), 7.69 (t, J = 7.4 Hz, 1H, ArH), 7.80 (s, 1H, CH), 7.91 (d, J = 7.5 Hz, ArH), 8.27–8.30 (m, 1H, ArH), 8.48 (d, J = 2.4 Hz, 1H, ArH); ¹³C NMR (75 MHz, DMSO- d_6) (δ , ppm): 50.8, 58.8, 117.7, 124.4, 130.2, 132.4, 134.0, 134.8, 135.0, 139.2, 140.9, 141.1, 144.8, 149.2, 158.1, 197.7; HRMS (TOF ES⁺): m/z calcd for C₁₈H₁₄N₃O₃[M+H], 320.1029; found, 320.1029.

4-(*p*-Tolyl)methanoneyl-7-nitro-1,2-dihydroimidazo[1,2-*a*]quinoline (3ae).

Yellow solid, m.p. 283–284 °C; IR (KBr): 3439, 2935, 1657, 1635, 1610, 1517, 1325, 1288, 1264, 1090, 870 cm⁻¹; ¹H NMR (300 MHz, DMSO- d_6) (δ , ppm): 2.39 (s, 3H, CH₃), 3.92–3.95 (m, 2H, CH₂N), 4.02–4.05 (m, 2H, NCH₂), 7.00 (d, J = 9.0 Hz, 1H, Ar*H*), 7.34 (d, J = 7.8 Hz, 2H, Ar*H*), 7.75 (s, 1H, C*H*), 7.80 (d, J = 7.8 Hz, 2H, Ar*H*), 8.27 (d, J = 8.7 Hz, 1H, Ar*H*), 8.47 (s, 1H, Ar*H*); ¹³C NMR (75 MHz, DMSO- d_6) (δ , ppm): 21.2, 45.5, 53.5, 112.3, 119.1, 124.8, 127.0, 129.3, 129.7, 129.9, 133.1, 135.5, 139.5, 143.8, 144.6, 152.8, 191.9; HRMS (TOF ES⁺): m/z calcd for C₁₉H₁₆N₃O₃[M+H], 334.1186; found, 334.1186.

4-(4'-Methoxyphenyl)methanoneyl-7-nitro-1,2-dihydroimidazo[1,2-*a*]quinolin e (3af).

Yellow solid, m.p. 260–261 °C; IR (KBr): 1651, 1613, 1592, 1330, 1260, 1172, 585 cm⁻¹; ¹H NMR (300 MHz, DMSO- d_6) (δ , ppm): 3.85 (s, 3H, OCH₃), 3.89–3.96 (m, 2H, CH₂N), 4.03–4.09 (m, 2H, NCH₂), 7.00 (d, J = 9.3 Hz, 1H, ArH), 7.05 (d, J = 8.7 Hz, 2H, ArH), 7.72 (s, 1H, CH), 7.88 (d, J = 8.7 Hz, 2H, ArH), 8.25–8.29 (m, 1H, ArH), 8.46 (d, J = 2.4 Hz, 1H, ArH); ¹³C NMR (75 MHz, DMSO- d_6) (δ , ppm): 45.5, 53.5, 55.6, 112.3, 114.0, 119.2, 124.7, 126.9, 128.4, 130.1, 132.0, 135.0, 139.5, 143.7, 152.9, 163.8, 190.7; HRMS (TOF ES⁺): m/z calcd for C₁₉H₁₆N₃O₄[M+H], 350.1135; found, 350.1132.

4-(Thiophen-2'-yl)methanoneyl-7-nitro-1,2-dihydroimidazo[1,2-*a*]quinoline (3ag).

Orange solid, m.p. 274–275 °C; IR (KBr): 3076, 2975, 1641, 1589, 1410, 1324, 1262, 1054, 742 cm⁻¹; ¹H NMR (300 MHz, DMSO- d_6) (δ , ppm): 3.97–4.00 (m, 2H, C H_2 N), 4.04–4.06 (m, 2H, NC H_2), 7.00(d, J = 9.0 Hz, 1H, ArH), 7.25–7.28 (m, 1H, CH), 7.86 (s, 1H, CH), 7.89–7.90 (m,1H, CH), 8.14–8.16 (m, 1H, CH), 8.26-8.30 (m, 1H, ArH), 8.48 (d, J = 2.4 Hz, 1H, ArH); ¹³C NMR (75 MHz, DMSO- d_6) (δ , ppm): 45.6, 53.5, 112.4, 119.0, 125.0, 127.3, 129.0, 135.7, 136.6, 136.9, 139.5, 142.5, 143.9, 152.5, 184.1; HRMS (TOF ES⁺): m/z calcd for C₁₆H₁₂N₃O₃S[M+H], 326.0593; found, 326.0595.

5-(4'-Fluorophenyl)methanoneyl-8-nitro-2,3-dihydro-1*H*-pyrimido[1,2-*a*]quin oline (3ah).

Yellow solid, m.p. 224–225 °C; IR (KBr): 2934, 1634, 1596, 1508, 1327, 1277, 907, 585 cm⁻¹; ¹H NMR (300 MHz, DMSO-*d*₆) (δ, ppm): 1.90–1.92 (m, 2H, C*H*₂),

3.27–3.31 (m, 2H, CH₂N), 3.97–3.99 (m, 2H, NCH₂), 7.30–7.42 (m, 3H, Ar*H*), 7.63 (s, 1H, C*H*), 7.95–8.00 (m, 2H, Ar*H*), 8.25–8.29 (m, 1H, Ar*H*), 8.44(d, J = 2.4 Hz, 1H, Ar*H*); ¹³C NMR (75 MHz, DMSO- d_6) (δ , ppm): 19.3, 42.9, 44.4, 112.4, 115.8 (d, J = 22.5), 119.5, 124.2, 125.8 130.8, 132.2 (d, J = 9.8 Hz), 132.7, 136.2, 140.4, 145.1, 146.7, 165.2 (d, J = 250.5 Hz), 192.5; HRMS (TOF ES⁺): m/z calcd for C₁₉H₁₅N₃O₃F[M+H], 352.1091; found, 352.1088.

5-(4'-Chlorophenyl)methanoneyl-8-nitro-2,3-dihydro-1*H*-pyrimido[1,2-*a*]quin oline (3ai).

Yellow solid, m.p. 272–273 °C; IR (KBr): 2928, 1662, 1640, 1324, 1277, 1094, 899, 834 cm⁻¹; ¹H NMR (300 MHz, DMSO- d_6) (δ , ppm): 1.86–1.90 (m, 2H, C H_2), 3.25–3.28 (m, 2H, C H_2 N), 3.92–3.96 (m, 2H, NC H_2), 7.36 (d, J = 9.3 Hz, 1H, ArH), 7.59 (s, 1H, CH), 7.70 (d, J = 8.7 Hz, 2H, ArH), 7.89 (d, J = 8.4 Hz, 2H, ArH), 8.24–8.28 (m, 1H, ArH), 8.42 (d, J = 2.7 Hz, 1H, ArH); ¹³C NMR (75 MHz, DMSO- d_6) (δ , ppm): 19.4, 43.1, 44.3, 112.1, 119.4, 124.2, 125.8, 128.8 130.3, 130.9, 134.7, 136.7, 138.4, 140.2, 145.3, 146.5, 193.0; HRMS (TOF ES⁺): m/z calcd for C₁₉H₁₅N₃O₃Cl[M+H], 368.0796; found, 368.0795.

5-(4'-Bromophenyl)methanoneyl-8-nitro-2,3-dihydro-1*H*-pyrimido[1,2-*a*]quin oline (3aj).

Yellow solid, m.p. 264–265 °C; IR (KBr): 2966, 1653, 1613, 1326, 1273, 743 cm⁻¹; ¹H NMR (300 MHz, DMSO- d_6) (δ , ppm): 1.86–1.90 (m, 2H, C H_2), 3.25–3.28 (m, 2H, C H_2 N), 3.92–3.96 (m, 2H, NC H_2), 7.36 (d, J = 9.3 Hz, 1H, ArH), 7.59 (s, 1H, CH), 7.70 (d, J = 8.7 Hz, 2H, ArH), 7.81 (d, J = 8.4 Hz, 2H, ArH), 8.24–8.28 (m, 1H, ArH), 8.42 (d, J = 2.7 Hz, 1H, ArH); ¹³C NMR (75 MHz, DMSO- d_6) (δ , ppm): 19.4, 43.1, 44.3, 112.1, 119.5, 124.2, 125.8, 127.6 130.3, 131.0, 131.8, 135.1, 136.7, 140.3, 145.3, 146.5, 193.2; HRMS (TOF ES⁺): m/z calcd for C₁₉H₁₅N₃O₃Br[M+H], 412.0291; found, 412.0291. 5-(Phenyl)methanoneyl-8-nitro-2,3-dihydro-1*H*-pyrimido[1,2-*a*]quinoline (3ak).

Yellow solid, m.p. 285–286 °C; IR (KBr): 2954, 2849, 1640, 1595, 1324, 1277, 1095, 904, 718 cm⁻¹; ¹H NMR (300 MHz, DMSO- d_6) (δ , ppm): 1.88 (m, 2H, CH₂), 3.27 (m, 2H, CH₂N), 3.95 (m, 2H, NCH₂), 7.37 (d, J = 9.3 Hz, 1H, ArH), 7.51 (t, J = 7.5 Hz, 2H, ArH), 7.56 (s, 1H, CH), 7.64 (t, J = 7.1 Hz, 1H, ArH), 7.90 (d, J = 7.5 Hz, ArH), 8.27–8.25 (m, 1H, ArH), 8.42 (s, 1H, ArH); ¹³C NMR (75 MHz, DMSO- d_6) (δ , ppm): 19.4, 43.1, 44.3, 112.1, 119.5, 124.1, 125.6, 128.7, 129.1, 129.8, 133.6, 135.9, 137.2, 140.3, 145.2, 146.5, 194.0; HRMS (TOF ES⁺): m/z calcd for C₁₉H₁₆N₃O₃[M+H], 334.1186; found, 334.1186.

5-(*p*-Tolyl)methanoneyl-8-nitro-2,3-dihydro-1*H*-pyrimido[1,2-*a*]quinoline (3al).

Yellow solid, m.p. 282–283 °C; IR (KBr): 2959, 1642, 1595, 1323, 1277, 1093, 904 cm⁻¹; ¹H NMR (300 MHz, DMSO- d_6) (δ , ppm): 1.86–1.89 (m, 2H, CH₂), 2.37 (s, 3H, CH₃), 3.26–3.29 (m, 2H, CH₂N), 3.92–3.96 (m, 2H, NCH₂), 7.30 (d, J = 8.1 Hz, 2H, ArH), 7.35 (d, J = 9.3 Hz, 1H, ArH), 7.51 (s, 1H, CH), 7.78 (d, J = 8.1 Hz, 2H, ArH), 8.22–8.26 (m, 1H, ArH), 8.40 (d, J = 2.7 Hz, 1H, ArH); ¹³C NMR (75 MHz, DMSO- d_6) (δ , ppm): 19.4, 21.2, 43.1, 44.3, 112.0, 119.5, 124.0, 125.6, 129.2, 129.2, 129.5, 133.5, 137.4, 140.2, 144.1, 145.2, 146.4, 193.5; HRMS (TOF ES⁺): m/z calcd for C₂₀H₁₈N₃O₃[M+H], 348.1342; found, 348.1341.

5-(4'-Methoxyphenyl)methanoneyl-8-nitro-2,3-dihydro-1*H*-pyrimido[1,2-*a*]qui noline (3am).

Yellow solid, m.p. 221–222 °C; IR (KBr): 2934, 1641, 1595, 1328, 1277, 1162, 986 cm⁻¹; ¹H NMR (300 MHz, DMSO-*d*₆) (δ, ppm): 1.87–1.90 (m, 2H, C*H*₂),

3.27–3.30 (m, 2H, CH₂N), 2.83 (s, 3H, OCH₃), 3.92–3.96 (m, 2H, NCH₂), 7.02 (d, J = 8.7 Hz, 2H, ArH), 7.35 (d, J = 9.3 Hz, 1H, ArH), 7.49 (s, 1H, CH), 7.85 (d, J = 8.7 Hz, 2H, ArH), 8.22–8.26 (m, 1H, ArH), 8.40 (d, J = 2.7 Hz, 1H, ArH); ¹³C NMR (75 MHz, DMSO- d_6) (δ , ppm): 19.4, 43.1, 44.3, 55.6, 112.0, 113.9, 119.6, 123.9, 125.5, 128.9, 129.2, 131.6, 137.5, 140.2, 145.2, 146.4, 163.4, 192.4; HRMS (TOF ES⁺): m/z calcd for C₂₀H₁₈N₃O₄[M+H], 364.1291; found, 364.1293.

5-(Thiophen-2'-yl)methanoneyl-8-nitro-2,3-dihydro-1*H*-pyrimido[1,2-*a*]quinol ine (3an).

Yellow solid, m.p. 224–225 °C; IR (KBr): 2960, 1645, 1594, 1511, 1329, 1279, 1054, 737 cm⁻¹; ¹H NMR (300 MHz, DMSO- d_6) (δ , ppm): 1.89–1.92 (m, 2H, C H_2), 3.31–3.35 (m, 2H, C H_2 N), 3.92–3.96 (m, 2H, NC H_2), 7.20–7.23 (m, 1H, CH), 7.34(d, J = 9.3 Hz, 1H, ArH), 7.58 (s, 1H, CH), 7.77–7.79 (m,1H, CH), 8.05–8.07 (m, 1H, CH), 8.22–8.40 (m, 1H, ArH), 8.40 (d, J = 2.7Hz, 1H, ArH); ¹³C NMR (75 MHz, DMSO- d_6) (δ , ppm): 19.4, 43.1, 44.4, 112.0 119.4, 124.2, 125.8, 128.9, 129.7, 135.5, 135.8, 136.6, 140.2, 143.1, 145.3, 146.1, 186.1; HRMS (TOF ES⁺): m/z calcd for C₁₇H₁₄N₃O₃S[M+H], 340.0750; found, 340.0752.

6-(4'-Chlorophenyl)methanoneyl-9-nitro-1,2,3,4-tetrahydro-[1,3]diazepino [1,2-*a*]quinoline (3ao).

Yellow solid, m.p. 232–233 °C; IR (KBr): 2930, 1657, 1626, 1597, 1340, 1285, 1087, 840 cm⁻¹; ¹H NMR (300 MHz, DMSO- d_6) (δ , ppm): 1.78 (m, 2H, C H_2), 2.04–2.07 (m, 2H, C H_2), 3.62–3.66 (m, 2H, C H_2 N), 4.11–4.15 (m, 2H, NC H_2), 7.38 (d, J = 9.3 Hz, 1H, ArH), 7.56 (d, J = 8.7 Hz, 2H, ArH), 7.62 (s, 1H, CH), 7.90 (d, J = 8.4 Hz, 2H, ArH), 8.22–8.26 (m, 1H, ArH), 8.45 (d, J = 2.7 Hz, 1H, ArH); ¹³C NMR (75 MHz, DMSO- d_6) (δ , ppm): 23.6, 25.0, 47.2, 49.2, 112.8, 120.0, 124.1, 125.6, 128.8, 130.6, 130.8, 134.8, 137.0, 138.2, 140.1, 146.9, 148.5, 192.9; HRMS (TOF ES⁺): m/z calcd for C₂₀H₁₇ClN₃O₃[M+H], 382.0953; found,

382.0952.

6-(*p*-Tolyl)methanoneyl-9-nitro-1,2,3,4-tetrahydro-[1,3]diazepino[1,2-*a*]quinol ine (3ap).

Yellow solid, m.p. 236–237 °C; IR (KBr): 1663, 1636, 1594, 1500, 1486, 1327, 1265, 1206, 1090, 861, 819 cm⁻¹; ¹H NMR (300 MHz, DMSO- d_6) (δ , ppm): 1.79 (m, 2H, C H_2), 2.04–2.08 (m, 2H, C H_2), 3.63–3.66 (m, 2H, C H_2 N), 4.11–4.15 (m, 2H, NC H_2), 7.31 (d, J = 8.1 Hz, 1H, ArH), 7.37 (d, J = 9.3 Hz, 2H, ArH), 7.54 (s, 1H, CH), 7.79 (d, J = 8.1 Hz, 2H, ArH), 8.21–8.25 (m, 1H, ArH), 8.43 (d, J = 2.7 Hz, 1H, ArH); ¹³C NMR (75 MHz, DMSO- d_6) (δ , ppm): 21.2, 23.6, 25.1, 47.2, 49.2,112.8, 120.2, 123.9, 125.3, 129.1, 129.2, 129.7, 133.5, 137.8, 140.0, 143.9, 146.8, 148.5, 193.5; HRMS (TOF ES⁺): m/z calcd for C₂₁H₂₀N₃O₃[M+H], 362.1499; found, 362.1500.

4-(4'-Fluorophenyl)methanoneyl-7-(trifluoromethyl)-1,2-dihydroimidazo [1,2*a*]quinoline (3ba).

Yellow solid, m.p. 198–199 °C; IR (KBr): 3438, 1663, 1636, 1599, 1386, 1336, 1207, 1155, 1115, 1077, 998, 859, 610 cm⁻¹; ¹H NMR (300 MHz, DMSO-*d*₆) (δ , ppm): 3.85–3.93 (m, 2H, C*H*₂N), 3.98–4.04 (m, 2H, NC*H*₂), 7.01 (d, *J* = 8.7 Hz, 1H, Ar*H*), 7.30–7.38 (m, 2H, Ar*H*), 7.72 (s, 1H, C*H*), 7.72–7.76 (dd, *J*₁= 9.0 Hz, *J*₂= 1.8 Hz, 1H, Ar*H*), 7.92 (d, *J* = 1.5 Hz, 1H, Ar*H*), 7.94–8.01 (m, 2H, Ar*H*); ¹³C NMR (75 MHz, DMSO-*d*₆) (δ , ppm): 45.3, 53.3, 112.5, 115.8 (d, *J*₂= 21.8 Hz), 119.3, 119.8–120.7 (m), 124.4 (d, *J*₁= 269.3 Hz), 126.4, 128.2, 129.0, 132.5 (d, *J*₃= 9.8 Hz), 136.3, 142.1, 153.2, 165.3 (d, *J*₁= 251.3 Hz), 191.2; HRMS (TOF ES⁺): *m*/*z* calcd for C₁₉H₁₃N₂OF₄[M+H], 361.0958; found, 361.0958.

4-(4'-Chlorophenyl)methanoneyl-7-(trifluoromethyl)-1,2-dihydroimidazo [1,2-*a*]quinoline (3bb).

Yellow solid, m.p. 232–233 °C; IR (KBr): 3442, 1661, 1635, 1580, 1334, 1206, 1159, 1112, 1076, 997, 840, 519 cm⁻¹; ¹H NMR (500 MHz, DMSO- d_6) (δ , ppm): 3.87–3.91 (m, 2H, C H_2 N), 3.98–4.02 (m, 2H, NC H_2), 7.02 (d, J = 8.6 Hz, 1H, ArH), 7.59 (d, J = 8.3 Hz, 2H, ArH), 7.75 (s, 1H, ArH), 7.76 (s, 1H, ArH), 7.90 (d, J = 8.5 Hz, 2H, ArH), 7.94 (s, 1H, ArH); ¹³C NMR (125 MHz, DMSO- d_6) (δ , ppm): 45.7, 53.7, 112.9, 119.6, 120.5 (d, J_2 = 32.5 Hz), 124.8 (d, J_I = 270.0 Hz), 126.9, 128.8, 129.1, 129.2, 131.7, 135.1, 137.2, 139.1, 142.6, 153.6, 192.0; HRMS (TOF ES⁺): m/z calcd for C₁₉H₁₃N₂OF₃Cl[M+H], 377.0663; found, 377.0664.

4-(4'-Bromophenyl)methanoneyl-7-(trifluoromethyl)-1,2-dihydroimidazo [1,2-*a*]quinoline (3bc).

Yellow solid, m.p. 237–238 °C; IR (KBr): 1662, 1635, 1582, 1399, 1334, 1206, 1159, 1111, 1075, 996, 837, 765 cm⁻¹; ¹H NMR (400 MHz, DCCl₃) (δ , ppm): 4.22–4.27 (t, *J* = 12.2 Hz, 2H, C*H*₂N), 4.35–4.42 (t, *J* = 12.4 Hz, 2H, NC*H*₂), 7.04 (d, *J* = 11.2 Hz, 1H, Ar*H*), 7.66 (s, 1H, C*H*), 7.82 (m, 2H, Ar*H*), 7.85–7.88 (m, 2H, Ar*H*), 8.02 (d, *J* = 10.0 Hz, 2H, Ar*H*); ¹³C NMR (125 MHz, DCCl₃) (δ , ppm): 45.8, 53.9, 111.9, 119.2, 122.5 (m), 125.3, 126.7, 128.6, 129.0, 129.2, 131.4, 131.9, 134.9, 138.1, 142.0, 154.0, 191.5; HRMS (TOF ES⁺): *m*/*z* calcd for C₁₉H₁₃N₂OF₃Br[M+H], 421.0157; found, 421.0158.

4-(Phenyl)methanoneyl-7-(trifluoromethyl)-1,2-dihydroimidazo[1,2-*a*]quinoli ne (3bd).

Yellow solid, m.p. 212–213 °C; IR (KBr): 1666, 1635, 1578, 1387, 1333, 1204, 1160, 1117, 1073, 996, 817, 519 cm⁻¹; ¹H NMR (300 MHz, DMSO- d_6) (δ , ppm): 3.85–3.92 (m, 2H, CH₂N), 3.98–4.05 (m, 2H, NCH₂), 7.02 (d, J = 8.7 Hz, 1H, ArH), 7.51–7.56 (m, 2H, ArH), 7.67 (d, J = 7.2 Hz, 1H, ArH), 7.71 (s, 1H, CH),

7.73–7.76 (dd, J_1 = 8.7 Hz, J_2 = 1.5 Hz, 1H, Ar*H*), 7.89 (s, 1H, Ar*H*), 7.92 (d, J = 5.4 Hz, 2H, Ar*H*); ¹³C NMR (75 MHz, DMSO- d_6) (δ , ppm): 45.3, 53.3, 112.5, 119.3, 120.0 (d, J = 32.3 Hz), 124.4 (d, J = 277.5 Hz), 126.3, 128.2, 128.7, 129.3, 129.5, 133.8, 135.8, 135.9, 142.1, 153.2, 192.6; HRMS (TOF ES⁺): m/z calcd for C₁₉H₁₄N₂OF₃[M+H], 343.1052; found, 343.1050.

4-(*p***-**Tolyl)methanoneyl-7-(trifluoromethyl)-1,2-dihydroimidazo[1,2-*a*]quinoli ne (3be).

Yellow solid, m.p. 249–250 °C; IR (KBr): 1660, 1637, 1333, 1206, 1157, 1110, 1075, 997, 828, 762 cm⁻¹; ¹H NMR (300 MHz, DMSO- d_6) (δ , ppm): 2.38 (s, 3H, CH₃), 3.85–3.91 (m, 2H, CH₂N), 3.97–4.04 (m, 2H, NCH₂), 7.00 (d, J = 8.7 Hz, 1H, Ar*H*), 7.32 (d, J = 8.7 Hz, 2H, Ar*H*), 7.66 (s, 1H, C*H*), 7.73 (d, J = 8.4 Hz, 1H, Ar*H*), 7.78 (d, $J_1 = 8.1$ Hz, 2H, Ar*H*), 7.92 (s, 1H, Ar*H*); ¹³C NMR (75 MHz, DMSO- d_6) (δ , ppm): 21.2, 45.3, 53.3, 112.4, 119.3, 119.7, 124.4 (d, J = 269.3 Hz), 126.2, 128.1, 129.3, 129.5, 129.6, 133.3, 135.5, 142.0, 144.4, 153.2, 192.1; HRMS (TOF ES⁺): m/z calcd for C₂₀H₁₆N₂OF₃[M+H], 357.1209; found, 357.1210.

4-(4'-Methoxyphenyl)methanoneyl-7-(trifluoromethyl)-1,2-dihydroimidazo [1,2-*a*]quinoline (3bf).

Yellow solid, m.p. 228–229 °C; IR (KBr): 2945, 1658, 1635, 1596, 1387, 1334, 1265, 1205, 1155, 1109, 856 cm⁻¹; ¹H NMR (500 MHz, DMSO-*d*₆) (δ , ppm): 3.85 (s, 3H, *CH*₃), 3.88–3.92 (m, 2H, *CH*₂N), 4.00–4.04 (m, 2H, N*CH*₂), 7.03 (d, *J* = 9.0 Hz, 1H, Ar*H*), 7.05 (d, *J* = 8.6 Hz, 2H, Ar*H*), 7.65 (s, 1H, *CH*), 7.75 (d, *J* = 8.5 Hz, 1H, Ar*H*), 7.88 (d, *J*₁= 8.5 Hz, 2H, Ar*H*), 7.92 (s, 1H, Ar*H*); ¹³C NMR (125 MHz, DMSO-*d*₆) (δ , ppm): 45.7, 53.6, 56.0, 112.8, 114.4, 119.8, 120.2, 125.9, 126.5, 128.4, 129.0, 130.1, 132.4, 135.5, 142.3, 153.7, 164.2, 192.4; HRMS (TOF ES⁺): *m*/*z* calcd for C₂₀H₁₆N₂O₂F₃[M+H], 373.1158; found, 373.1160.

4-(Thiophen-2'-yl)methanoneyl-7-(trifluoromethyl)-1,2-dihydroimidazo [1,2-*a*]quinoline (3bg).

Orange solid, m.p. 208–209 °C; IR (KBr): 3069, 1650, 1633, 1413, 1334, 1204, 1159, 1118, 1073, 821, 743 cm⁻¹; ¹H NMR (500 MHz, DMSO- d_6) (δ , ppm): 3.92–3.96 (m, 2H, C H_2 N), 4.00–4.04 (m, 2H, NC H_2), 7.00 (d, J = 8.7 Hz, 1H, CH), 7.26 (t, J = 4.3 Hz, 1H, CH), 7.73–7.75 (m, 1H, CH), 7.78 (s, 1H, CH), 7.88 (d, J = 3.7 Hz, 1H, ArH), 7.93 (s, 1H, ArH), 8.13 (d, J = 4.8 Hz, 1H, ArH); ¹³C NMR (125 MHz, DMSO- d_6) (δ , ppm): 45.8, 53.6, 56.0, 112.8, 119.6, 120.4 (d, J = 32.5 Hz), 124.8 (d, J = 270.0 Hz), 126.8, 128.7, 129.0, 129.3, 136.2, 136.6, 136.9, 142.4, 143.0, 153.4, 184.7; HRMS (TOF ES⁺): m/z calcd for C₁₇H₁₂N₂OF₃S[M+H], 349.0616; found, 349.0614.

5-(4'-Fluorophenyl)methanoneyl-8-(trifluoromethyl)-2,3-dihydro-1*H*-pyrimid o[1,2-*a*]quinoline (3bh).

Yellowy solid, m.p. 172–173 °C; IR (KBr): 1668, 1642, 1596, 1319, 1210, 1154, 1116, 846, 814 cm⁻¹; ¹H NMR (500 MHz, DMSO- d_6) (δ , ppm): 1.87–1.89 (m, 2H, C H_2), 3.25–3.27 (m, 2H, C H_2 N), 3.90-3.92 (m, 2H, NC H_2), 7.32 (t, J = 8.6 Hz, 2H, ArH), 7.37 (d, J = 8.9 Hz 1H, ArH), 7.49 (s, 1H, CH), 7.75 (d, $J_1 = 8.7$ Hz, 1H, ArH), 7.89 (s, 1H, ArH), 7.95–7.98 (m, 2H, ArH); ¹³C NMR (123 MHz, DMSO- d_6) (δ , ppm): 19.9, 43.5, 44.3, 112.4, 116.1 (d, J = 22.5 Hz), 119.9, 121.3 (d, J = 33.8 Hz), 124.7 (d, J = 268.8 Hz), 126.1 (d, J = 3.8 Hz), 127.4 (d, J = 2.5 Hz), 130.4, 132.4 (d, J = 10.0 Hz), 133.3, 137.0, 143.8, 147.2, 165.5 (d, J = 252.5 Hz), 193.2; HRMS (TOF ES⁺): m/z calcd for C₂₀H₁₅N₂OF₄[M+H], 375.1115; found, 375.1113.

5-(4'-Chlorophenyl)methanoneyl-8-(trifluoromethyl)-2,3-dihydro-1*H*-pyrimid o[1,2-*a*]quinoline (3bi).

Yellowy solid, m.p. 181–182 °C; IR (KBr): 2931, 1670, 1640, 1592, 1319, 1208, 1161, 1115, 815 cm⁻¹; ¹H NMR (300 MHz, DMSO- d_6) (δ , ppm): 1.85–1.88 (m, 2H, CH₂), 3.22–3.26 (m, 2H, CH₂N), 3.89–3.92 (m, 2H, NCH₂), 7.37 (d, J = 8.7 Hz, 1H, ArH), 7.51 (s, 1H, CH), 7.55 (d, J = 8.4 Hz, 2H, ArH), 7.75 (d, J = 9.0 Hz, 1H, ArH), 7.87–7.90 (m, 3H, ArH); ¹³C NMR (75 MHz, DMSO- d_6) (δ , ppm): 19.5, 43.0, 43.9, 112.1, 119.5, 121.0 (d, J = 33.0 Hz), 124.3 (d, J = 270.0 Hz), 125.8, 127.0, 128.8, 130.4, 130.8, 134.9, 136.2, 138.2, 143.4, 146.8, 193.2; HRMS (TOF ES⁺): m/z calcd for C₂₀H₁₅N₂OF₃Cl[M+H], 391.0819; found, 391.0816.

5-(4'-Bromophenyl)methanoneyl-8-(trifluoromethyl)-2,3-dihydro-1*H*-pyrimid o[1,2-*a*]quinoline (3bj).

Yellowy solid, m.p. 195–196 °C; IR (KBr): 2951, 1671, 1641, 1590, 1318, 1277, 1112, 814 cm⁻¹; ¹H NMR (300 MHz, DMSO- d_6) (δ , ppm): 1.86 (m, 2H, CH₂), 3.23 (m, 2H, CH₂N), 3.88–3.92 (m, 2H, NCH₂), 7.37 (d, J = 9.0 Hz, 1H, ArH), 7.51 (s, 1H, CH), 7.70 (d, J = 8.4 Hz, 2H, ArH), 7.76 (d, J = 9.3 Hz, 1H, ArH), 7.80 (d, J = 8.4 Hz, 2H, ArH), 7.76 (d, J = 9.3 Hz, 1H, ArH), 7.80 (d, J = 8.4 Hz, 2H, ArH), 7.90 (s, 1H, ArH); ¹³C NMR (75 MHz, DMSO- d_6) (δ , ppm): 19.5, 43.0, 43.8, 112.1, 119.5, 120.5 (d, $J_2 = 32.3$), 124.3 (d, $J_1 = 269.3$ Hz), 125.8, 127.1, 127.5, 130.4, 130.9, 131.8, 135.2, 136.2, 143.4, 146.8, 193.5; HRMS (TOF ES⁺): m/z calcd for C₂₀H₁₅N₂OF₃Br[M+H], 435.0314; found, 435.0317.

5-(Phenyl)methanoneyl-8-(trifluoromethyl)-2,3-dihydro-1*H*-pyrimido[1,2-*a*]q uinoline (3bk).

Yellowy solid, m.p. 187–188 °C; IR (KBr): 1667, 1640, 1589, 1343, 1320, 1213, 1160, 1099, 814 cm⁻¹; ¹H NMR (500 MHz, DMSO- d_6) (δ , ppm): 1.87–1.89 (m, 2H, CH₂), 3.24–3.26 (m, 2H, CH₂N), 3.90–3.93 (m, 2H, NCH₂), 7.37 (d, J = 8.9 Hz, 1H, ArH), 7.48–7.52 (m, 3H, CH), 7.63 (t, J = 7.4 Hz, 1H, ArH), 7.75 (d, J = 8.8 Hz, 1H, ArH), 7.88–7.90 (m, 3H, ArH); ¹³C NMR (125 MHz, DMSO- d_6) (δ , ppm): 19.9, 43.4, 44.3, 112.4, 120.0, 121.4 (d, J = 32.5 Hz), 124.8 (d, J = 267.5 Hz), 126.0, 127.3, 129.0, 129.4, 130.3, 133.8, 136.5, 137.2, 143.7, 147.3, 194.6; HRMS

(TOF ES⁺): m/z calcd for C₂₀H₁₆N₂OF₃[M+H], 357.1209; found, 357.1205.

5-(*p*-Tolyl)methanoneyl-8-(trifluoromethyl)-2,3-dihydro-1*H*-pyrimido[1,2-*a*] quinoline (3bl).

Yellowy solid, m.p. 226–227 °C; IR (KBr): 1663, 1642, 1319, 1209, 1160, 1112, 1083, 828 cm⁻¹; ¹H NMR (500 MHz, DMSO- d_6) (δ , ppm): 1.86–1.88 (m, 2H, CH₂), 2.37 (s, 3H, CH₃), 3.24–3.26 (m, 2H, CH₂N), 3.89–3.92 (m, 2H, NCH₂), 7.30 (d, J = 8.0 Hz, 2H, ArH), 7.36 (d, J = 8.9 Hz, 1H, ArH), 7.43 (s, 1H, CH), 7.74 (d, J = 8.7 Hz, 1H, ArH), 7.78 (d, J = 8.1 Hz, 2H, ArH), 7.88 (s, 1H, ArH); ¹³C NMR (125 MHz, DMSO- d_6) (δ , ppm): 19.9, 21.6, 43.4, 44.3, 112.4, 120.0, 121.3 (d, J = 32.5), 124.8 (d, J = 270.0 Hz), 125.9, 127.1, 127.2, 129.6, 129.9, 134.1, 137.4, 143.7, 144.4, 147.2, 194.2; HRMS (TOF ES⁺): m/z calcd for C₂₁H₁₈N₂OF₃[M+H], 371.1365; found, 371.1363.

5-(4'-Methoxyphenyl)methanoneyl-8-(trifluoromethyl)-2,3-dihydro-1*H*-pyrimi do[1,2-*a*]quinoline (3bm).

White solid, m.p. 192–193 °C; IR (KBr): 1662, 1641, 1593, 1319, 1264, 1157, 1029, 839 cm⁻¹; ¹H NMR (500 MHz, DMSO- d_6) (δ , ppm): 1.87–1.88 (m, 2H, CH₂), 3.26 (m, 2H, CH₂N), 3.84 (s, 3H, CH₃), 3.90–3.91 (m, 2H, NCH₂), 7.01–7.03 (m, 2H, Ar*H*), 7.36 (d, *J* = 8.8 Hz, 1H, Ar*H*), 7.41 (s, 1H, C*H*), 7.74 (d, *J* = 8.8 Hz, 1H, Ar*H*), 7.84–7.88 (m, 3H, Ar*H*); ¹³C NMR (125 MHz, DMSO- d_6) (δ , ppm): 19.9, 43.4, 44.3, 55.9, 112.3, 114.3, 120.0, 121.3 (d, *J* = 32.5), 124.8 (d, *J* = 270.0 Hz), 125.9, 127.2, 127.2, 129.5, 129.7, 137.5, 143.7, 147.2, 163.8, 193.1; HRMS (TOF ES⁺): *m/z* calcd for C₂₁H₁₈N₂O₂F₃ [M+H], 387.1314; found, 387.1317.

5-(Thiophen-2'-yl)methanoneyl-8-(trifluoromethyl)-2,3-dihydro-1*H*-pyrimido[1,2-*a*]quinoline (3bn).

Light red solid, m.p. 209–210 °C; IR (KBr): 1645, 1586, 1343, 1319, 1209, 1156, 1102, 821, 732 cm⁻¹; ¹H NMR (300 MHz, DMSO- d_6) (δ , ppm): 1.87–1.91 (m, 2H, CH₂), 3.29–3.32 (m, 2H, CH₂N), 3.88–3.92 (m, 2H, NCH₂), 7.19–7.22 (m, 1H, CH), 7.35 (d, J = 8.7 Hz, 1H, CH), 7.50 (s, 1H, CH), 7.72–7.76 (m, 2H, CH), 7.88 (d, J = 1.8 Hz, 1H, ArH), 8.04 (dd, $J_I = 4.8$ Hz, $J_2 = 1.2$ Hz, 1H, ArH); ¹³C NMR (75 MHz, DMSO- d_6) (δ , ppm): 19.5, 43.0, 43.9, 112.0, 119.4, 120.9 (q, $J_2 = 32.3$ Hz), 124.3 (d, $J_I = 269.3$ Hz), 125.7, 126.1, 127.0, 128.7, 129.8, 135.2, 135.5, 136.2, 143.3 (d, $J_3 = 9.8$ Hz), 146.5, 186.3; HRMS (TOF ES⁺): m/z calcd for C₁₈H₁₄N₂OF₃S[M+H], 363.0773; found, 363.0777.

6,7,9-Trifluoro-4-(4'-fluorophenyl)methanoneyl-1,2-dihydroimidazo[1,2-a] quinoline (3ca).

Red solid, m.p. 177–178 °C; IR (KBr): 1668, 1636, 1598, 1496, 1393, 1267, 1157, 858, 603 cm⁻¹; ¹H NMR (500 MHz, DMSO- d_6) (δ , ppm): 3.84 (t, J = 10.3 Hz, 2H, CH₂N), 4.20–4.25 (m, 2H, NCH₂), 7.35 (t, J = 8.7 Hz, 2H, ArH), 7.61 (s, 1H, CH), 7.70–7.76 (m, 1H, ArH), 7.97–8.00 (m, 2H, ArH); ¹³C NMR (125 MHz, DMSO- d_6) (δ , ppm): 48.6, 54.1, 108.8 (t, J = 25.0 Hz), 111.5 (d, J = 15.0 Hz), 116.2 (d, J = 22.5 Hz), 126.4 (d, J = 13.8 Hz), 127.3, 131.2, 132.7, 132.9 (d, J = 10.0 Hz), 140.9 (t, J = 11.9 Hz), 141.9 (m), 142.7 (d, J = 12.5 Hz), 143.9 (t, J = 18.8 Hz), 153.7, 165.8 (d, J = 251.3 Hz), 191.1; ¹⁹F NMR (565 MHz, DMSO- d_6) (δ , ppm): -148.4 (t, J = 16.9 Hz), -147.0 (d, J = 22.6 Hz), -132.8 (d, J = 11.3 Hz), -104.5; HRMS (TOF ES⁺): m/z calcd for C₁₈H₁₁N₂OF₄[M+H], 347.0802; found, 347.0801.

6,7,9-Trifluoro-4-(4'-chlorophenyl)methanoneyl-1,2-dihydroimidazo[1,2-a]qui noline (3cb).

Red solid, m.p. 186-187 °C; IR (KBr): 1664, 1638, 1595, 1499, 1393, 1269, 1090,

776 cm⁻¹; ¹H NMR (600 MHz, DMSO-*d*₆) (δ, ppm): 3.81–3.85 (m, 2H, C*H*₂N), 4.21–4.26 (m, 2H, NC*H*₂), 7.60 (d, J = 8.5 Hz, 2H, Ar*H*), 7.65 (s, 1H, C*H*), 7.73–7.78 (m, 1H, Ar*H*), 7.91 (d, J = 8.5 Hz, 2H, Ar*H*); ¹³C NMR (150 MHz, DMSO-*d*₆) (δ, ppm): 48.7 (d, J = 9.0 Hz), 54.2, 109.0 (t, J = 25.5 Hz), 111.6 (d, J = 10.5 Hz), 126.6 (d, J = 10.0 Hz), 127.8, 129.3, 131.0, 131.8, 134.8, 139.4, 141.1, 142.5 (d, J = 60.0 Hz), 144.0 (d, J = 8.8 Hz), 153.8, 191.7; HRMS (TOF ES⁺): m/z calcd for C₁₈H₁₁N₂OF₃Cl [M+H], 363.0506; found, 363.0503.

6,7,9-Trifluoro-4-(4'-bromophenyl)methanoneyl-1,2-dihydroimidazo[1,2-a]qui noline (3cc).

Orange solid, m.p. 203–204 °C; IR (KBr): 1663, 1635, 1586, 1496, 1269, 1124, 774, 609 cm⁻¹; ¹H NMR (600 MHz, DMSO- d_6 + DCCl₃) (δ , ppm): 3.83 (t, J = 10.3 Hz, 2H, CH_2 N), 4.21–4.26 (m, 2H, NC H_2), 7.64 (s, 1H, CH), 7.73–7.74 (m, 3H, ArH), 7.82 (d, J = 8.4 Hz, 2H, ArH); ¹³C NMR (150 MHz, DMSO- d_6 + DCCl₃) (δ , ppm): 48.7 (d, J = 9.0 Hz), 54.2, 109.0 (t, J = 25.5 Hz), 111.6 (d, J = 10.5 Hz), 126.6, 127.9, 128.6, 131.0, 131.8, 132.3, 135.1, 141.1, 142.7, 143.9 (d, J = 51.0 Hz), 153.8, 191.8; HRMS (TOF ES⁺): m/z calcd for C₁₈H₁₁N₂OF₃Br [M+H], 407.0001; found, 407.0000.

6,7,9-Trifluoro-4-(phenyl)methanoneyl-1,2-dihydroimidazo[1,2-a]quinoline (3cd).

Orange solid, m.p. 195–196 °C; IR (KBr): 1667, 1636, 1498, 1392, 1270, 803, 609 cm⁻¹; ¹H NMR (500 MHz, DMSO- d_6) (δ , ppm): 3.84 (t, J = 10.3 Hz, 2H, CH₂N), 4.21–4.26 (m, 2H, NCH₂), 7.54 (d, J = 7.7 Hz, 2H, ArH), 7.59 (s, 1H, CH), 7.67–7.76 (m, 2H, ArH), 7.90 (d, J = 7.5 Hz, 2H, ArH); ¹³C NMR (125 MHz, DMSO- d_6) (δ , ppm): 48.6 (d, J = 8.8 Hz), 54.1, 108.7 (t, J = 24.4 Hz), 111.5 (d, J = 11.3 Hz), 126.4 (d, J = 12.5 Hz), 127.1, 129.1, 129.8, 131.4, 134.3, 135.9, 140.9, 141.9, 142.8, 143.9 (d, J = 33.8 Hz), 153.7, 192.6; HRMS (TOF ES⁺): m/z calcd for C₁₈H₁₂N₂OF₃ [M+H], 329.0896; found, 329.0894.

6,7,9-Trifluoro-4-(*p*-tolyl)methanoneyl-1,2-dihydroimidazo[1,2-a]quinoline (3ce).

Red-orange solid, m.p. 185–186 °C; IR (KBr): 1662, 1635, 1496, 1392, 1272, 1193, 603 cm⁻¹; ¹H NMR (500 MHz, DMSO- d_6) (δ , ppm): 2.39 (s, 3H, CH₃), 3.83 (t, J = 10.3 Hz, 2H, CH₂N), 4.19–4.25 (m, 2H, NCH₂), 7.33 (d, J = 8.0 Hz, 2H, ArH), 7.53 (s, 1H, CH), 7.69–7.75 (m, 1H, ArH), 7.79 (d, J = 8.1 Hz, 2H, ArH); ¹³C NMR (125 MHz, DMSO- d_6) (δ , ppm): 21.6, 48.6 (d, J = 8.8 Hz), 54.1, 108.6 (t, J = 25.0 Hz), 111.6, 126.4, 126.7, 129.7, 130.0, 131.7, 133.5, 140.9, 141.9 (d, J = 30.0 Hz), 142.8, 143.9, 145.0, 153.7, 192.0; HRMS (TOF ES⁺): m/z calcd for C₁₉H₁₄N₂OF₃ [M+H], 343.1052; found, 343.1050.

6,7,9-Trifluoro-4-(4'-methoxyphenyl)methanoneyl-1,2-dihydroimidazo [1,2-a]quinoline (3cf).

Orange solid, m.p. 191–192 °C; IR (KBr): 1633, 1598, 1497, 1260, 1162, 1026, 603 cm⁻¹; ¹H NMR (300 MHz, DMSO- d_6 + DCCl₃) (δ , ppm): 3.82–3.89 (m, 2H, CH₂N), 3.85 (s, 3H, CH₃), 4.19–4.27 (m, 2H, NCH₂), 7.02 (d, J = 9.0 Hz, 2H, Ar*H*), 7.46 (d, J = 1.5 Hz, 1H, C*H*), 7.57–7.67 (m, 1H, Ar*H*), 7.83–7.88 (m, 2H, Ar*H*); ¹³C NMR (75 MHz, DMSO- d_6) (δ , ppm): 48.2 (d, J = 8.3 Hz), 5.71, 55.5, 108.0 (t, J = 24.8 Hz), 111.1 (d, J = 10.5 Hz), 113.9, 126.0, 128.3, 131.3, 131.9, 139.8, 140.8, 143.1 (d, J = 18.8 Hz), 144.0, 153.4, 163.8, 190.3; HRMS (TOF ES⁺): m/z calcd for C₁₉H₁₄N₂O₂F₃ [M+H], 359.1001; found, 359.0999.

6,7,9-Trifluoro-4-(thiophen-2-yl)methanoneyl-1,2-dihydroimidazo[1,2-a] quinoline (3cg).

Orange solid, m.p. 170–171 °C; IR (KBr): 1640, 1496, 1413, 1280, 1127, 733 cm⁻¹; ¹H NMR (600 MHz, DMSO-*d*₆) (δ, ppm): 3.86–3.89 (m, 2H, C*H*₂N), 4.22–4.25 (m,

2H, NC*H*₂), 7.25–7.26 (m, 1H, C*H*), 7.63 (s, 1H, C*H*), 7.66–7.72 (m, 1H, Ar*H*), 7.86–7.87 (m, 1H, C*H*), 8.13–8.14 (m, 1H, C*H*); ¹³C NMR (150 MHz, DMSO-*d*₆) (δ , ppm): 48.8, 54.2, 108.9 (m), 111.5 (m), 126.5 (d, *J* = 12.0 Hz), 127.1, 129.4, 130.8, 136.9, 137.2, 141.1–142.7 (m), 142.0–142.4 (m), 142.9, 143.6–144.0 (m), 153.5, 184.4; HRMS (TOF ES⁺): m/z calcd for C₁₆H₁₀N₂OF₃S [M+H], 335.0460; found, 335.0464.

7,8,10-Trifluoro-5-(4'-fluorophenyl)methanoneyl-2,3-dihydro-1*H*-pyrimido [1,2-*a*]quinoline (3ch).

Yellow solid, m.p. 179–180 °C; IR (KBr): 2845, 1665, 1639, 1599, 1492, 1265, 1151, 992, 844 cm⁻¹; ¹H NMR (500 MHz, DMSO- d_6) (δ , ppm): 1.75 (m, 2H, CH₂), 3.22 (m, 2H, CH₂N), 4.14 (m, 2H, NCH₂), 7.32 (t, J = 8.7 Hz, 2H, ArH), 7.43 (s, 1H, CH), 7.66–7.72 (m, 1H, ArH), 7.94–7.97 (m, 2H, ArH); ¹³C NMR (125 MHz, DMSO- d_6) (δ , ppm): 20.1, 43.5, 48.5 (d, J = 17.5 Hz), 108.2 (m), 112.4 (d, J = 18.8 Hz), 116.0 (t, J = 25.6 Hz), 121.3, 127.4, 132.4 (d, J = 10.0 Hz), 133.2 (d, J = 10.0 Hz), 138.5, 141.5 (d, J = 21.3 Hz), 143.5 (d, J = 6.3 Hz), 145.6, 146.8, 165.5 (d, J = 251.3 Hz), 192.5; ¹⁹F NMR (470 MHz, DMSO- d_6) (δ , ppm): -149.6, -145.5 (t, J = 9.4 Hz), -123.2, -105.3; HRMS (TOF ES⁺): m/z calcd for C₁₉H₁₃N₂OF₄ [M+H], 361.0958; found, 361.0959.

7,8,10-Trifluoro-5-(4'-chlorophenyl)methanoneyl-2,3-dihydro-1*H*-pyrimido[1, 2-*a*]quinoline (3ci).

Yellow solid, m.p. 199–200 °C; IR (KBr): 2924, 1663, 1638, 1600, 1492, 1264, 1088, 991, 842 cm⁻¹; ¹H NMR (600 MHz, DMSO- d_6 + HClO₄) (δ , ppm): 2.16 (m, 2H, CH₂), 3.54 (m, 2H, CH₂N), 4.67 (m, 2H, NCH₂), 7.71 (d, J = 8.2 Hz, 2H, ArH), 7.99 (d, J = 8.3 Hz, 2H, ArH), 8.26–8.31 (m, 1H, ArH), 8.48 (s, 1H, CH); ¹³C NMR (150 MHz, DMSO- d_6 + HClO₄) (δ , ppm): 18.3, 39.1, 50.8 (d, J = 19.5 Hz), 112.7 (m), 113.6 (d, J = 16.5 Hz), 124.8, 125.1, 129.6, 132.7, 134.9, 135.1, 140.3, 143.5 (d, J = 6.3 Hz), 145.6, 146.8, 150.7, 190.9; ¹⁹F NMR (565 MHz, DMSO- d_6 +

HClO₄) (δ , ppm): -145.3 (m), -138.3 (m), -115.8; HRMS (TOF ES⁺): m/z calcd for C₁₉H₁₃N₂OF₃Cl [M+H], 377.0663; found, 377.0665.

7,8,10-Trifluoro-5-(4'-bromophenyl)methanoneyl-2,3-dihydro-1*H*-pyrimido[1, 2-*a*]quinoline (3cj).

Yellow solid, m.p. 193–194 °C; IR (KBr): 2948, 1669, 1638, 1587, 1493, 1263, 1163, 1070, 906, 844 cm⁻¹; ¹H NMR (600 MHz, DMSO- d_6) (δ , ppm): 1.74 (m, 2H, C H_2), 3.21 (m, 2H, C H_2 N), 4.14 (m, 2H, NC H_2), 7.47 (s, 1H, ArH), 7.71–7.72 (m, 3H, ArH), 7.79–7.81 (m, 2H, ArH); ¹³C NMR (150 MHz, DMSO- d_6 + HClO₄) (δ , ppm): 20.2, 43.6, 48.6 (d, J = 16.5 Hz), 108.4 (m), 112.5 (d, J = 18.0 Hz), 121.8, 127.5, 128.0, 131.5, 132.2, 135.6, 138.3, 141.9 (d, J = 12.0 Hz), 143.5, 144.0, 147.0, 193.3;HRMS (TOF ES⁺): m/z calcd for C₁₉H₁₃N₂OF₃Br [M+H], 421.0158; found, 421.0159.

7,8,10-Trifluoro-5-(phenyl)methanoneyl-2,3-dihydro-1*H*-pyrimido[1,2-*a*] quinoline (3ck).

Yellow solid, m.p. 191–192 °C; IR (KBr): 2958, 1669, 1638, 1597, 1492, 1267, 1198, 1165, 990, 665 cm⁻¹; ¹H NMR (600 MHz, DMSO- d_6) (δ , ppm): 1.72–1.76 (m, 2H, CH₂), 3.21 (m, 2H, CH₂N), 4.13–4.16 (m, 2H, NCH₂), 7.42 (s, 1H, CH), 7.48–7.52 (m, 2H, ArH), 7.64 (t, J = 7.4 Hz, 1H, ArH), 7.67–7.72 (m, 1H, ArH), 7.85–7.88 (m, 2H, ArH); ¹³C NMR (150 MHz, DMSO- d_6) (δ , ppm): 20.2, 43.6, 48.6, 108.2 (m), 112.5 (t, J = 10.5 Hz), 121.2, 127.4, 129.1, 129.5, 134.0, 136.4, 138.9, 141.8 (m), 143.4 (m), 145.6 (m), 147.0, 194.0; HRMS (TOF ES⁺): m/z calcd for C₁₉H₁₄N₂OF₃ [M+H], 343.1052; found, 343.1054.

7,8,10-Trifluoro-5-(*p*-tolyl)methanoneyl-2,3-dihydro-1*H*-pyrimido[1,2-*a*] quinoline (3cl).

Yellow solid, m.p. 196–197 °C; IR (KBr): 1663, 1602, 1492, 1268, 1163, 990, 836 cm⁻¹; ¹H NMR (300 MHz, DMSO- d_6) (δ , ppm): 1.69–1.76 (m, 2H, CH₂), 2.37 (s, 3H, CH₃), 3.19–3.22 (m, 2H, CH₂N), 4.10–4.16 (m, 2H, NCH₂), 7.30 (d, J = 7.8 Hz, 2H, ArH), 7.35 (s, 1H, CH), 7.62–7.73 (m, 1H, ArH), 7.75 (d, J = 8.4 Hz, 2H, ArH); ¹³C NMR (75 MHz, DMSO- d_6) (δ , ppm): 19.7, 21.2, 43.0, 48.2, 107.6 (m), 112.0 (d, J = 20.3 Hz), 120.4, 127.0, 129.2, 129.2, 133.5, 138.6, 140.6 (m), 143.7 (m), 142.6–145.8 (m), 144.0, 146.4, 193.1; HRMS (TOF ES⁺): m/z calcd for C₂₀H₁₆N₂OF₃ [M+H], 357.1209; found, 357.1208.

7,8,10-Trifluoro-5-(4'-methoxyphenyl)methanoneyl-2,3-dihydro-1*H*-pyrimido[1,2-*a*]quinoline (3cm).

Yellow solid, m.p. 174–175 °C; IR (KBr): 1659, 1597, 1493, 1257, 1162, 1019, 849 cm⁻¹; ¹H NMR (500 MHz, DMSO- d_6) (δ , ppm): 1.74–1.76 (m, 2H, C H_2), 3.23–3.24 (m, 2H, C H_2 N), 3.85 (s, 3H, C H_3), 4.14–4.15 (m, 2H, NC H_2), 7.03 (d, J = 8.8 Hz, 2H, ArH), 7.34 (s, 1H, CH), 7.63–7.73 (m, 1H, ArH), 7.84 (d, J = 8.7 Hz, 2H, ArH); ¹³C NMR (125 MHz, DMSO- d_6) (δ , ppm): 20.1, 43.4, 48.5, 56.0, 108.0 (m), 112.4, 114.3, 120.7, 127.3, 129.3, 131.9, 139.0, 141.6 (m), 143.3 (m), 143.7–145.5 (m), 146.8, 163.9, 192.3; HRMS (TOF ES⁺): m/z calcd for C₂₀H₁₆N₂O₂F₃ [M+H], 373.1158; found, 373.1158.

7,8,10-Trifluoro-5-(thiophen-2'-yl)methanoneyl-2,3-dihydro-1*H*-pyrimido [1,2-*a*]quinoline (3cn).

Yellow solid, m.p. 178–179 °C; IR (KBr): 2959, 1641, 1599, 1492, 1409, 1256, 1197, 983, 857 cm⁻¹; ¹H NMR (600 MHz, DMSO-*d*₆) (δ, ppm): 1.75–1.78 (m, 2H, C*H*₂), 3.26–3.28 (m, 2H, C*H*₂N), 4.12–4.15 (m, 2H, NC*H*₂), 7.20–7.22 (m, 1H, C*H*), 7.42 (s, 1H, C*H*), 7.66–7.72 (m, 1H, Ar*H*), 7.75–7.76 (m, 1H, C*H*), 8.04–8.05

(m, 1H, C*H*); ¹³C NMR (150 MHz, DMSO- d_6) (δ , ppm): 20.2, 43.5, 48.6, 108.4 (m), 112.3 (t, J = 7.5 Hz), 121.2, 127.5 (d, J = 7.5 Hz), 129.2, 135.8, 136.0, 138.3, 141.7–142.0 (m), 143.4–143.5 (m), 143.5, 143.8–145.5 (m), 146.6, 186.2; HRMS (TOF ES⁺): m/z calcd for C₁₇H₁₂N₂OF₃S [M+H], 349.0616; found, 349.0618.

6,7,9-Trifluoro-4-(4'-fluorophenyl)methanoneyl-8-(piperidin-1-yl)-1,2-dihydro imidazo[1,2-*a*]quinoline (4da).

Red solid, m.p. 170–171 °C; IR (KBr): 2935, 2851, 1653, 1628, 1482, 1271, 1232, 1156, 1119, 1001, 848, 768, 602 cm⁻¹; ¹H NMR (500 MHz, DMSO- d_6 + CDCl₃) (δ , ppm): 1.62–1.68 (m, 6H, CH₂), 3.23 (m, 4H, CH₂), 3.84 (t, J = 10.2 Hz, 2H, CH₂N), 4.21–4.26 (m, 2H, NCH₂), 7.28 (t, J = 8.7 Hz, 2H, ArH), 7.48 (s, 1H, CH), 7.90–7.93 (m, 2H, ArH); ¹³C NMR (125 MHz, DMSO- d_6 + CDCl₃) (δ , ppm): 24.0, 26.5, 48.8, 52.2, 53.9, 115.9 (d, $J_2 = 22.5$ Hz), 127.3, 128.7, 132.7 (d, $J_3 = 10.0$ Hz), 133.1, 133.6, 154.0, 165.7 (d, $J_1 = 252.5$ Hz), 191.1; ¹⁹F NMR (471 MHz, DMSO- d_6 + DCCl₃) (δ , ppm): -105.0, -145.9, -148.5, -156.9 (d, J = 18.8 Hz); HRMS (TOF ES⁺): m/z calcd for C₂₃H₂₀N₃OF₄ [M+H], 430.1537; found, 430.1533.

6,7,9-Trifluoro-4-(4'-chlorophenyl)methanoneyl-8-(piperidin-1-yl)-1,2-dihydr oimidazo[1,2-*a*]quinoline (4db).

Red solid, m.p. 160–161 °C; IR (KBr): 2932, 2854, 1628, 1483, 1269, 1120, 1090, 1000, 844, 766cm⁻¹; ¹H NMR (300 MHz, DMSO- d_6 + CDCl₃) (δ , ppm): 1.61 (m, 6H, CH₂), 3.22 (m, 4H, CH₂), 3.84 (t, J = 10.2 Hz, 2H, CH₂N), 4.17–4.26 (m, 2H, NCH₂), 7.47 (s, 1H, CH), 7.49 (d, J = 8.7 Hz, 2H, ArH), 7.82 (d, J = 8.4 Hz, 2H, ArH); ¹³CNMR (75 MHz, DMSO- d_6 + CDCl₃) (δ , ppm): 23.6, 26.1, 48.3, 51.8, 53.6, 103.2, 126.0, 126.5, 128.5, 128.8, 131.0, 134.7, 138.6, 153.6, 191.0; HRMS (TOF ES⁺): m/z calcd for C₂₃H₂₀ClN₃OF₃ [M+H], 446.1242; found, 446.1239.

6,7,9-Trifluoro-4-(4'-bromophenyl)methanoneyl-8-(piperidin-1-yl)-1,2-dihydr oimidazo[1,2-*a*]quinoline (4dc).

Orange solid, m.p. 181–181 °C; IR (KBr): 2933, 2855, 1654, 1633, 1478, 1386, 1270, 1156, 1121, 997, 832, 761cm⁻¹; ¹H NMR (500 MHz, DMSO- d_6 + CDCl₃) (δ , ppm): 1.62 (m, 6H, C H_2), 3.24 (m, 4H, C H_2), 3.83 (t, J = 10.2 Hz, 2H, C H_2 N), 4.21–4.26 (m, 2H, NC H_2), 7.52 (s, 1H, CH), 7.69 (d, J = 8.4 Hz, 2H, ArH), 7.76 (d, J = 8.4 Hz, 2H, ArH); ¹³C NMR (150 MHz, DMSO- d_6 + CDCl₃) (δ , ppm): 23.80, 26.6, 44.7, 50.8, 52.4, 104.9, 114.7, 124.0, 126.6, 127.0, 128.1, 131.9, 132.4, 135.6, 137.4, 138.1, 139.7, 140.2, 140.5, 141.6, 146.7, 155.2, 190.9; ¹⁹F NMR (565 MHz, DMSO- d_6 + DCCl₃) (δ , ppm): -143.9, -144.0, -148.7 (d, J = 16.9 Hz); HRMS (TOF ES⁺): m/z calcd for C₂₃H₂₀N₃OF₃Br [M+H], 490.0735; found, 490.0737.

6,7,9-Trifluoro-4-(phenyl)methanoneyl-8-(piperidin-1-yl)-1,2-dihydroimidazo[1,2-*a*]quinoline (4dd).

Orange-red solid, m.p. 186–187 °C; IR (KBr): 2938, 2853, 1633, 1480, 1456, 1268, 1119, 1000, 656cm⁻¹; ¹H NMR (600 MHz, DMSO- d_6) (δ , ppm): 1.62 (m, 6H, C H_2), 3.23 (m, 4H, C H_2), 3.86 (t, J = 10.3 Hz, 2H, C H_2 N), 4.21–4.26 (m, 2H, NC H_2), 7.43 (s, 1H, CH), 7.46–7.49 (m, 2H, ArH), 7.60–7.62 (m, 1H, ArH), 7.83 (d, J = 7.5 Hz, 2H, ArH); ¹³C NMR (150 MHz, DMSO- d_6) (δ , ppm): 23.7, 26.5, 44.7, 50.7, 52.3, 104.8 (d, J_3 = 19.5 Hz), 114.8, 124.0, 129.3, 129.9, 133.9, 136.5, 137.2, 137.9, 139.8, 140.4, 155.2, 191.7; ¹⁹F NMR (471 MHz, DMSO- d_6 + DCCl₃) (δ , ppm): -143.9, -144.6, -149.0 (d, J = 22.6 Hz); HRMS (TOF ES⁺): m/z calcd for C₂₃H₂₁N₃OF₃ [M+H], 412.1631; found, 412.1633.

Figure S1. X-Ray crystal structure of 3bf

Table S1 Crystal data and structure refinement for	3	b	f
---	---	---	---

Identification code	1
Empirical formula	$C_{20} H_{15} F_3 N_2 O_2$
Formula weight	372.34
Temperature	293(2) K
Wavelength	0.71073 Å
Crystal system, space group	Monoclinic, P2(1)/n
Unit cell dimensions	a = 13.0354(17) A alpha = 90 deg
	b = 8.9711(12) A beta = 103.316(2) deg.
	c = 15.209(2) A gamma = 90 deg.
Volume	1730.8(4) A^3
Z, Calculated density	4, 1.429 Mg/m^3
Absorption coefficient	0.115 mm^-1
F(000)	768
Crystal size	0.40 x 0.36 x 0.32 mm
Theta range for data collection	1.86 to 25.14 deg.
Limiting indices	-15<=h<=15, -10<=k<=10, -18<=l<=18
Reflection collected/unique	13129 / 3092 [R(int) = 0.0456]
Completeness to theta $= 30.07$	99.9 %
Max. and min. transmission	0.9641 and 0.9554
Refinement method	Full-matrix least-squares on F ²
Data/restraints/parameters	3092 / 0 / 246
Goodness-of-fit on F^2	1.022
Final R indices [I>2sigma(I)]	R1 = 0.0563, wR2 = 0.1471
R indices (all data)	R1 = 0.1038, $wR2 = 0.1812$
Extinction coefficient	0.0047(16)
Largest diff. peak and hole	0.387 and -0.330 e.A^-3

Table 52 Dolld lenguis [A]	
F(1)-C(20)	1.341(4)
F(2)-C(20)	1.295(5)
F(3)-C(20)	1.297(4)
N(1)-C(11)	1.376(4)
N(1)-C(10)	1.394(3)
N(1)-C(15)	1.459(4)
N(2)-C(10)	1.288(4)
N(2)-C(14)	1.487(4)
O(1)-C(2)	1.371(4)
O(1)-C(1)	1.423(4)
O(2)-C(8)	1.228(3)
C(1)-H(1A)	0.9600
C(1)-H(1B)	0.9600
C(1)-H(1C)	0.9600
C(2)-C(7)	1.380(5)
C(2)-C(3)	1.383(5)
C(3)-C(4)	1.374(4)
C(3)-H(3)	0.9300
C(4)-C(5)	1.391(4)
C(4)-H(4)	0.9300
C(5)-C(6)	1.390(4)
C(5)-C(8)	1.477(4)
C(6)-C(7)	1.389(4)
C(6)-H(6)	0.9300
C(7)-H(7)	0.9300
C(8)-C(9)	1.517(4)
C(9)-C(13)	1.352(4)
C(9)-C(10)	1.457(4)
C(11)-C(16)	1.403(4)
C(11)-C(12)	1.417(4)
C(12)-C(19)	1.392(4)
C(12)-C(13)	1.452(4)
C(13)-H(13)	0.9300
C(14)-C(15)	1.535(4)
C(14)-H(14A)	0.9700
C(14)-H(14B)	0.9700
C(15)-H(15A)	0.9700
C(15)-H(15B)	0.9700
C(16)-C(17)	1.381(4)
C(16)-H(16)	0.9300
C(17)-C(18)	1.390(4)
C(17)-H(17)	0.9300
C(18)-C(19)	1.381(4)
C(18)-C(20)	1.479(5)

Table S2Bond lengths [A] and angles [deg] for 3bf

C(19)-H(19)	0.9300	
C(11)-N(1)-C(10)	124.6(2)	
C(11)-N(1)-C(15)	127.0(2)	
C(10)-N(1)-C(15)	108.3(2)	
C(10)-N(2)-C(14)	106.5(2)	
C(2)-O(1)-C(1)	118.2(3)	
O(1)-C(1)-H(1A)	109.5	
O(1)-C(1)-H(1B)	109.5	
H(1A)-C(1)-H(1B)	109.5	
O(1)-C(1)-H(1C)	109.5	
H(1A)-C(1)-H(1C)	109.5	
H(1B)-C(1)-H(1C)	109.5	
O(1)-C(2)-C(7)	124.7(3)	
O(1)-C(2)-C(3)	115.9(3)	
C(7)-C(2)-C(3)	119.4(3)	
C(4)-C(3)-C(2)	120.8(3)	
C(4)-C(3)-H(3)	119.6	
C(2)-C(3)-H(3)	119.6	
C(3)-C(4)-C(5)	120.9(3)	
C(3)-C(4)-H(4)	119.5	
C(5)-C(4)-H(4)	119.5	
C(6)-C(5)-C(4)	117.8(3)	
C(6)-C(5)-C(8)	121.0(3)	
C(4)-C(5)-C(8)	121.2(3)	
C(7)-C(6)-C(5)	121.5(3)	
C(7)-C(6)-H(6)	119.2	
C(5)-C(6)-H(6)	119.2	
C(2)-C(7)-C(6)	119.6(3)	
C(2)-C(7)-H(7)	120.2	
C(6)-C(7)-H(7)	120.2	
O(2)-C(8)-C(5)	122.5(3)	
O(2)-C(8)-C(9)	119.3(3)	
C(5)-C(8)-C(9)	118.2(2)	
C(13)-C(9)-C(10)	119.5(3)	
C(13)-C(9)-C(8)	122.3(3)	
C(10)-C(9)-C(8)	118.1(3)	
N(2)-C(10)-N(1)	116.1(3)	
N(2)-C(10)-C(9)	126.7(3)	
N(1)-C(10)-C(9)	117.2(3)	
N(1)-C(11)-C(16)	121.9(3)	
N(1)-C(11)-C(12)	118.2(2)	
C(16)-C(11)-C(12)	119.9(3)	
C(19)-C(12)-C(11)	118.5(3)	
C(19)-C(12)-C(13)	123.0(3)	
C(11)-C(12)-C(13)	118.5(3)	

C(9)-C(13)-C(12)	121.9(3)
C(9)-C(13)-H(13)	119.0
C(12)-C(13)-H(13)	119.0
N(2)-C(14)-C(15)	107.0(3)
N(2)-C(14)-H(14A)	110.3
C(15)-C(14)-H(14A)	110.3
N(2)-C(14)-H(14B)	110.3
C(15)-C(14)-H(14B)	110.3
H(14A)-C(14)-H(14B)	108.6
N(1)-C(15)-C(14)	102.1(2)
N(1)-C(15)-H(15A)	111.3
C(14)-C(15)-H(15A)	111.3
N(1)-C(15)-H(15B)	111.3
C(14)-C(15)-H(15B)	111.3
H(15A)-C(15)-H(15B)	109.2
C(17)-C(16)-C(11)	119.9(3)
C(17)-C(16)-H(16)	120.1
C(11)-C(16)-H(16)	120.1
C(16)-C(17)-C(18)	120.7(3)
C(16)-C(17)-H(17)	119.7
C(18)-C(17)-H(17)	119.7
C(19)-C(18)-C(17)	119.7(3)
C(19)-C(18)-C(20)	120.1(3)
C(17)-C(18)-C(20)	120.1(3)
C(18)-C(19)-C(12)	121.4(3)
C(18)-C(19)-H(19)	119.3
C(12)-C(19)-H(19)	119.3
F(2)-C(20)-F(3)	108.5(4)
F(2)-C(20)-F(1)	102.7(3)
F(3)-C(20)-F(1)	102.1(4)
F(2)-C(20)-C(18)	114.8(3)
F(3)-C(20)-C(18)	114.4(3)
F(1)-C(20)-C(18)	113.0(3)

Symmetry transformations used to generate equivalent atoms:

_

S33

Figure S54. ¹H NMR (500 MHz, DMSO- d_6) spectra of compound **3bk**

S83

Figure S79. ¹⁹F NMR (470 MHz, DMSO- d_6) spectra of compound **3ch**

Figure S85. ¹H NMR (600 MHz, DMSO- d_6) spectra of compound **3ck**

Figure S95. ¹⁹F NMR (471 MHz, DMSO- d_6 + DCCl₃) spectra of compound **4da**

Figure S98. ¹H NMR (500 MHz, DMSO- d_6 + DCCl₃) spectra of compound **4dc**

Figure S100. ¹⁹F NMR (565 MHz, DMSO- d_6 + DCCl₃) spectra of compound **4dc**

Figure S103. ¹⁹F NMR (471 MHz, DMSO- d_6 + DCCl₃) spectra of compound **4dd**

Figure S105. HRMS of piperidine

Figure S106. HRMS of compound 2d

Figure S107. HRMS of intermediate 6

References and Notes

- 1. X.-B. Chen, X.-M. Liu, R. Huang, S.-J. Yan and J. Lin, Eur. J. Org. Chem., 2013, 2013, 4607-4613.
- 2. F. Yu, R. Huang, H. Ni, J. Fan, S. Yan and J. Lin, Green Chem., 2013, 15, 453-462.
- 3. S.-J. Yan, Y.-J. Liu, Y.-L. Chen, L. Liu and J. Lin, Bioorg. Med. Chem. Lett., 2010, 20, 5225-5228
- 4. CCDC 1587141 contains the supplementary crystallographic data for compound **3bf**. These data can be obtained free of charge from The Cambridge Crystallographic Data Center *via* <u>www.ccdc.cam.ac.uk/data_request/cif</u>.