Supporting Information

Noncovalent Approach to Liquid-Crystalline Ion Conductors: High-Rate Performances and Room Temperature Operation for Li-Ion Batteries

Taira Onuma,[†] Eiji Hosono^{*,‡}, Motokuni Takenouchi,[†] Junji Sakuda,[†] Satoshi Kajiyama,[†] Masafumi Yoshio,[†] and Takashi Kato^{*,†}

[†]Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo Hongo, Bunkyoku, Tokyo 113-8656, Japan

[‡]Research Institute for Energy Conservation, National Institute of Advanced Industrial Science and Technology, Umezono, Tsukuba, Ibaraki 305-8568, Japan

Corresponding Authors

*E-mail: e-hosono@aist.go.jp (E.H.). *E-mail: kato@chiral.t.u-tokyo.ac.jp (T.K.).

Figure S1. Polarizing optical microscopic image of 1/EC(29) at 25 °C in the homeotropically aligned smectic A phase. The inset shows the conoscopic image.

Figure S2. DSC thermograms of the mixtures of **1**, EC, and LiTFSI on 1^{st} cooling (left) and 2^{nd} heating (right) at a scanning rate of 10 K min⁻¹. Iso: isotropic; SmA: smectic A.

Figure S3. X-ray diffraction pattern of 1/EC(29) at 60 °C.

Figure S4. Interlayer spacings of the smectic structures of the mixtures of different weight ratios of EC at 60 $^{\circ}$ C.

Figure S5. Cyclic voltammogram for the cell composed of Li metal/LC electrolyte (1/EC(29))/stainless-steel (SUS316L) in the potential range from -0.04 to 3.9 V versus Li/Li⁺ at the scan rate of 0.025 mV s⁻¹ at 60 °C.