Highly structured polyvinyl alcohol (PVA) porous carriers. Tuning inherent stability and release kinetics in water.

Juan Manuel Sonego², Johanna M. Flórez-Castillo¹, Matías Jobbágy^{2*}

Supporting Information

Figure S1. FESEM images frozen at 5.5 mm min⁻¹. Scale bar placed at the upper right

corner represents 500 nm for all images.

Figure S2. Freeze dried samples 5.0L0% (left) and 5.0L100% (right) frozen inside a 15 mm diameter mould at 5.5 mm min⁻¹. Scale between minor lines corresponds to 1 mm.

Figure S3. PXRD patterns of samples frozen in liquid N_2 at 5 mm min⁻¹. A control sample slowly frozen overnight at 263 K, labeled as 5.0L100%-HT, is also presented.

Figure S4. Dependence of t_{50} with PVA 16kD mass fraction for PVA carriers with total content of 7.5 % ($\mathbf{\nabla}$), 5.0 % ($\mathbf{\circ}$) and 2.5 % ($\mathbf{\bullet}$). Carriers were prepared by straight immersion of parent PVA solution drops into liquid N₂.

Figure S5. Attenuance recorded at 700 nm as a function of time for carriers with total PVA content of 5% m/v and increasing percentage of PVA 16 kD (samples 5.0L0% to 5.0L100%).