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Supplemental Information 

 

Supplementary Movies 

Movies 1 to 4 are sped up by 2.5 times the original frame rate. Movie 5 is sped up by 1.5 times 

the original frame rate. 

1. Movie 1: 1ml_hr 80 V_pp.avi (4.38 MB): Optimum Crystal.avi (4.38 MB). Optimum crystal 

formation at 1 mL/hr and 80 Vrms without any defects.  

2. Movie 2: 1 ml_hr 99 V_pp.avi (4.98 MB): Crystal formation at 1 mL/hr and 99 Vrms.  

3. Movie 3: 3 ml_hr 99 V_pp.avi (4.83 MB): Crystal formation at 3 mL/hr and 99 Vrms.  

4. Movie 4: 5 ml_hr 99V_pp.avi (4.99 MB): Crystal formation at 5 mL/hr and 99 Vrms.  

5. Movie 5: 1 ml_hr 60 V_pp slip plane.avi (1.10 MB): Formation and reorientation of slip 

plane in a crystal formed at 1 mL/hr and 60Vpp.  

6. Movie 6: Acoustically-assembled particles cured in a UV-curable resin to form bulk material. 
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1. Theory 

1.1. Hydrodynamics of Colloidal Transport 

 The transport of colloidal particles entrained in a fluid flow and an acoustic field is 

modeled by the Langevin equation of motion
1
, 

� ����� = 6�	
���� − ����� + ��� 	+ �� +� ∙ � + ��                           (S1) 

where m is the particle mass, up is the particle velocity vector, µ is viscosity, a is the particle 

radius, uf is the unperturbed fluid velocity vector, Fac is the acoustic force experienced by the 

colloidal particles as they interact with an acoustic field, FE is sum of all the electrostatic forces 

that interact with the colloidal particle, m·g is the gravitational body force and FB is the 

stochastic force due to Brownian motion.  The factors Kp and Kf represent the hindrance to 

colloidal particle transport and fluid flow as they approach a solid boundary. 

 

1.2. Hydrodynamic Interactions 

 Fluid flow is driven through a square capillary in a single direction by a syringe pump.  

Neglecting acoustically generated flows, which are discussed below in the next section, the flow 

profile for a square capillary is
2
, 

��,���,  ! = 4 #$%∑ ∑ '()�)*+ $⁄ !'()�-*. $⁄ !)-�)%/-%!0-12,3,4,…0)12,3,4,…                        (S2) 

where Q is the fluid flow rate and w is inner width of the capillary.  In this model, Q/w
2
 

represents the average fluid velocity (uavg) in the capillary and the maximum fluid velocity is 

umax ≈ 1.79uavg for a square capillary.  The colloidal particles sediment and are acoustically 

focused towards the center of the capillary microchannel.  Near the wall at the channel 

centerline, the unperturbed fluid velocity is approximately
3
, 

��,�� ! = 	 6789:$                                               (S3) 
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for a value of y that is less than or equal to one particle radius. 

 The hindrance factor for a particle traveling parallel and perpendicular to a wall is given 

as
4
,  

�,+ = �,� = 2;6;<=%�.!/2;;33=�.!/6322;6;<=%�.!/4>46=�.!/2<<                               (S4) 

�,. = >=%�.!/?=�.!/;>=%�.!/;=�.!                                                   (S5) 

where α = (y-a)/a.  The rational functions provide convenient forms for expressing these 

hindrance factors to within ±0.1% of their exact values
5
.  Goldman et al. present the hindrance to 

colloidal transport in shear flow near a wall as the ratio of particle translation velocity to 

unperturbed fluid velocity in the absence of particles
6
, 

 
7@,A7B,A = C;>DE;4=%/2623D=/2<;>DE;4=%/;ED>?=/3E .F > 1.003202D.3D4.43M;.;4NO	�=! .F ≤ 1.003202 (S6) 

where the ratio is express as a rational function fit to the exact values.  Based on this result, the 

factor Kf in the direction of flow is, 

��,� = 7@,A7B,A�,+                                                   (S7) 

The hindrance factors presented here only represent the corrections due to the capillary wall.  For 

simplicity, we neglect corrections for hydrodynamic interactions between particles.  

Investigation of these hydrodynamic interactions will be the subject of future work. 

 The work by Goldman et al. provides us with a way to interpret microparticle image 

velocimetry data near the wall of the capillary.  The particle translation velocity, up,z, is measured 

using optical video microscopy and normalized by a factor of, 

Q = 7@,ARF                                                       (S8) 
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where Γ = 4umax/w is the effective shear rate in the capillary tube.  The dimensionless height, y/a, 

is a function of Β and we can use the data from Goldman et al. to estimate this functional form 

as, 

 
.F = SDD<?TUM;><6T%/;>;3T/2<<<DD<?T%M;6DET/2ED6 V > 0.451 +	X�;.6;M3.E2 T⁄ ! V ≤ 0.45 (S9) 

Equation (S9) provides us with a way to connect the measured translation velocity with the 

particle’s height above the capillary wall. 

Brownian motion and thermal fluctuation interactions become significantly dominant at the 

sub-micrometer scale
7
. Brownian dynamics is given by the Langevin model for Brownian 

motion, considers that a particle is subject to a white noise due to thermal fluctuations. The 

diffusion of a particle far from a boundary is given by the Stokes-Einstein relationship, 

Y = Z[>*\F                                                          (S10) 

where D is the diffusivity of a single particle, k is the Boltzmann’s constant, T is the absolute 

temperature, η is the viscosity of the medium and a is the radius of the particle. Long range 

hydrodynamic interactions exist in a suspension at low Reynold’s number that can modify the 

mobility of a system. Brownian motion decreases considerably with an increase in the radius of 

the particles and the motion of the particles is defined by applied forces acting on the particles 

compared to the Brownian motion alone.  Peclet number, defined as the ratio of fluid advection 

to particle diffusion, is used to estimate if Brownian motion can be neglected.  Peclet number is 

given by
8
, 

 ]X = >*7@^F%Z[                                                           (S11) 

For the case where Pe > 1, we can neglect the stochastic effects of Brownian motion and model 

the transport of colloids as deterministic. 
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1.3. Acoustic Forces 

Acoustic waves are produced by a mechanically oscillating force on a given particle at the node 

(or antinode) depending on the particle-fluid material properties.  The acoustic force acting on a 

spherical particle in an ideal fluid was formulated by King
9
.  Gor’kov used the equation to derive 

the force on a small spherical body with the radius of the particle much larger than the 

wavelength of the sound wave
10

.  The modified density factors for particle-medium systems with 

comparable densities and small spherical particles was given by Yosioka et.al.
11

.  Acoustic 

energy is dominantly influenced by the compressibility and density of the fluid-particle system. 

The acoustic energy exerted on a small particle by an acoustic wave is given by
12,13

, 

Uac= Ucomp + Udens                                                             (S12)                    

Ucomp= 
_@6`B		aB% b−2cdedB − 1f	〈]��!;〉i                                              (S13) 

Udens= 
_@6`B		aB%	 b >�M`e/`B!�;`e/`B�Z% 	〈|k]��!;|〉i                                              (S14) 

where Ucomp represents the energy contribution due to a change in compressibility resulting from 

the local acoustic pressure and Udens models how the acoustic energy acts on the fluid-solid 

system when there is a density mismatch.  While, P is the acoustic wave pressure, Vp is the 

volume of the particle, l is the density, c is the velocity of sound, m is the compressibility, λ is 

the wavelength and k= 2π/λ is the wavenumber. The subscripts s and f represent the solid particle 

and fluid respectively.  The angled brackets represent the time-averaged pressure where, P(x)= 

Po cos(kx)sin(ωt), represents a model for acoustic pressure distribution our device.  The pre-

factor, Po, is the pressure wave magnitude and ω is the pressure wave frequency.  

Substituting these parameters in Fac= -nUac, where the primary acoustic pressure is given by, 



S6 

 

 oFa = − *_@d8p;q ∇〈]��!;〉 																																																						�S15!	
where Φ is the acoustic contrast factor is given by,  

Φ = 
4`eM;`B;`e/`B  - 

dedB                                                           (S16) 

If the wave exerts a force on the particle towards the node, the particles are acoustically 

positive contrast particles (i.e., Φ is positive) and if the wave exerts a force towards the particle 

at the anti-node, the particles are acoustically negative particles (i.e., Φ is negative).  

Acoustic energy is given by the equation 

t =	t< 	 u2 v1 − 2wx%y z{|;�}�! − 3 v;�wM2!;w/2 y |~�;�}�!�                      (S17) 

The amplitude of energy equation is given by 

                 t< =  
]02D`BaB% � = 

;*3 
3�Fa                                     (S18) 

The term, �Fa =	 ��%6`BaB% is the energy density of the acoustic wave independent of the 

position of the wave, � = `e`B and � = aeaB.   Figure 1A shows the normalized pressure distribution 

and Figure 1B shows the corresponding acoustic energy distribution of a sinusoidal standing 

acoustic wave propagating in the x-direction with a single node. The pressure and energy graphs 

shown in Figure 8 are normalized by the pressure amplitude and energy amplitude respectively.  

As described above, at zero acoustic pressure (i.e., the node), the acoustic energy is minimum, 

causing the particles to concentrate at the node and form an ordered crystal. 

 

2. State Diagram 

The density and compressibility values of polystyrene and water used to calculate the acoustic 

contrast factor of the system used in the state diagram are listed in Table S1. 
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As we increase the flow rate to 7 mL/hr, the microparticles assemble at the acoustic node but do 

not form ordered structures as shown in Figure S1. 

 

3. Order Parameter Analysis 

3.1. Computational Order Parameter Analysis 

The average degree of hexagonal close-packing, 〈�>〉, is defined as the average number of 

nearest neighbors of a particle in an ensemble
14

. The number of nearest neighbors, �(a, for the 

particle, i, surrounded by nearest neighbors, j, is calculated within a coordination distance, rc. 

The bond-angle between particles for a six-fold symmetry is given by
15

  

�>( = 2��� ∑ X>���`√M2����12 													�(� < �a                                      (S19) 

Equation (S19) is used to calculate the crystalline connectivity, �>(�, given by 

 �>(� =	 ���u������∗���������∗�                                                                (S20) 

The ensemble is considered to be crystalline if �>(� ≥ 0.32.  So the nearest neighbors for a given 

particle can be calculated using
15

, 

�>( = ∑ ��1 					�>(� ≥ 0.320 						�>(� < 0.32�����12                                              (S21) 

The average order parameter for the ensemble containing N particles, 〈�>〉 is given by,  

〈�>〉 = 2�∑ �>(��12                                                            (S22) 

The above equations were used to calculate the ensemble order parameter 〈�>〉 for the 

experiments discussed below.  

To calculate the experimental order parameter, 〈�>〉, the polydispersity factor was taken to be 

20%. The values were based on the radial distribution graphs shown in Figure S2. 
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3.2. Theoretical Maximum Order Parameter Analysis 

We also estimate the maximum average degree of hexagonal close-packing, 〈�>〉, for a 

defect-free crystal arrangement for a given crystal width, WC, and crystal length, LC, by 

assuming that the acoustic field confines the colloidal particles to rectangular area of variable 

aspect ratio, ArC.  The expression for maximum 〈�>〉 based on ideal packing is, 

〈�>〉 = 6 − �D∙F∙���2/� �!M>.?3F%¡¢£�£                                           (S23)                                          

¤�x = 0.866 ¢���                                                    (S24) 

where WC and LC can be estimated from optical microscopy measurements.   

We estimate the maximum average degree of hexagonal close-packing, 〈�>〉, for a defect-

free crystal arrangement for a given number of rows, NT, and number of columns, NL, using the 

following equations
16

: 

〈�>〉 = 	 >x�/4x¦/6x§/3xU/;x%�¨�©                                         (S25)  

The number of particles surrounded by 6, 5, 4, 3 and 2 particles as shown in Figure S3, in a 

crystal confined to a rectangular area are given by, 

�> = ��[ − 2!��¢ − 2!                                          (S26) 

�4 = ��[ − 2!                                                  (S27) 

�6 = 2��¢ − 2!                                                 (S28) 

�3 =	�[                                                      (S29) 

�; = 2                                                        (S30) 

Substituting the Equation (S2) to (S6) in the order parameter equation, Equation (S1), we find 

that	〈�>〉 is given by  

〈�>〉 = 6 − 6�¨�2/� !M;�                                               (S31) 
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¤� = 	 �©�¨                                                              (S32) 

where Ar is the aspect ratio of the crystal and N = NT · NL is the total number of particles in a 

crystal. 

From Figure S3, we see that the relation between the number of columns in a crystal, NL, and the 

length of the crystal, LC, from optical microscopy is given by: 

NL= 
¢£;F                                                               (S33) 

As shown in Figure S4, the distance between two rows in a crystal is given by   

Drow= √3
                                                        (S34) 

The relation between number of rows in a crystal, NT, and the width of the crystal obtained from 

optical microscopy, Wc, is given by, 

NT = 
��√3F                                                         (S35) 

Substituting Equation (S9) and (S11) in Equation (S9), we get the order parameter, 〈�>〉, in terms 

of the length and width of the crystal measured using optical microscopy as 

〈�>〉 = 6 − [D∙F∙���2/� �!M>.?3F%]¢£�£                                               (S36) 

¤�x = 0.866 ¢���                                                      (S37) 

 

4. Throughput Calculation 

The number of rows in a crystal for the width calculated in Figure 6 is given by Equation (S35). 

The number of particles entering the acoustic field (i.e., the capillary) per row, Np, is given by, 

�= 
¢¬)(�7�()F®	_�®¬a(�.	¯(F-��� 	¬�	F	F �(a®�                                                              (S38) 

From Eq. (S35) and Eq. (S38), the throughput in particles per minute is given by, 
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°ℎ�{�²ℎ³�´ = ��[ 

°ℎ�{�²ℎ³�´ = 17.32��F% �¶{�²~´�·~�
¸	�X¸{z~´ !                             (S39) 
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Figure S1 – A random dispersion exhibits no hexagonal ordering at 7 mL/hr and 99 Vpp, but the 

acoustic field is sufficiently strong to cause migration toward the capillary center.  Scale bar is 

100 µm.    
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Figure S2 shows the radial distribution curves for the 1 mL/hr- 80 Vpp and the 5 mL/hr-60 Vpp 

cases as they are the most crystalline and least crystalline cases. A polydispersity factor of 20% 

for the experimental order parameter analysis was decided based on the width of the peaks. 
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Figure S3. Schematic of the length and width convention in a crystal and the number of nearest 

neighbors.  
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Figure S4. Schematic showing the relation between row distance, Drow and diameter of the 

particle. 
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Table S1. Material Properties of Water and Polystyrene
13

  

     Water Polystyrene 

l (kg/m
3
) 1000 1050 m	(Pa

-1
) / 10

10
  3  4.58 
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Table S2. Theoretical Average Height of the Particle from the Capillary and Throughput 

Flow 

Rate 

(mL/hr) 

Effective 

Shear 

Rate (1/s) 

Voltage 

(Vpp) 

Experimental 

Average 

Velocity 

(µm/s) 

Average 

Separation 

(nm) 

Peclet 

Number 

(Pe) 

Throughput 

Rate 

(Particles/min) 

1 2.0 

60 6.0 7.7 1365.3 480 

80 5.4 3.2 1246.0 237.6 

99 1.1 N/A 261.6 57.18 

3 6.0 

60 18.8 12.3 4314.0 902.4 

80 19.4 16.2 4451.6 465.6 

99 18.6 11.2 4268.1 595.2 

5 9.9 

60 30.1 8.6 6906.9 1324.2 

80 34.8 29.7 7985.4 974.4 

99 34.3 26.4 7870.7 823.2 
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