Impact of oxygen functional groups on reduced graphene oxide based sensors

for ammonia and toluene detection at room temperature

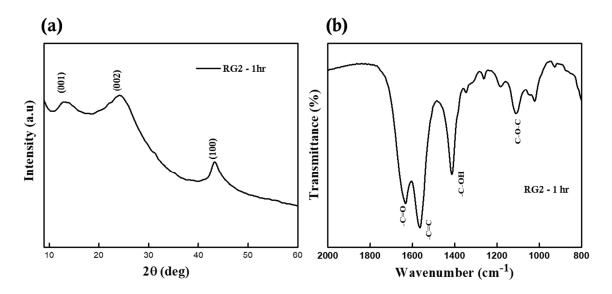
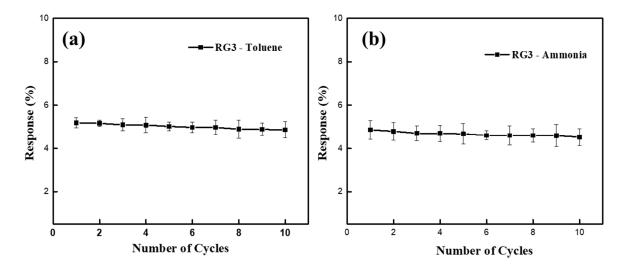
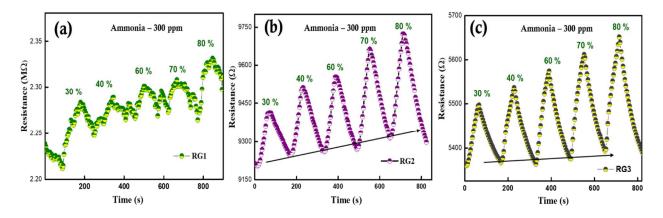
Cherukutty Ramakrishnan Minitha^a, Velunair Sukumaran Anithaa^b, Vijayakumar Subramaniam^c, Ramasamy Thangavelu Rajendra Kumar^{a,d}*

^aAdvanced Materials and Devices Laboratory (AMDL), Department of Physics, Bharathiar University, Coimbatore - 641 046, India.

^bDepartment of Physics, Bharathiar University, Coimbatore - 641 046, India.

^cDepartment of Medical Physics, Bharathiar University, Coimbatore - 641 046, India.

^dDepartment of Nanoscience and technology, Bharathiar University, Coimbatore - 641 046, India.

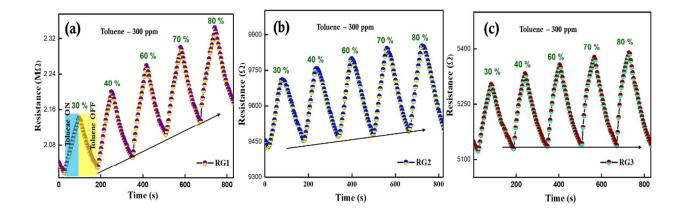

Figure. S1: (a) XRD and (b) FTIR spectra of RG2 (1 hour)

Figure S2: The stability of RG3 sensor with 10 repetitive cycles in the presence of 40 % RH (a) Toluene and (b) Ammonia. Error bars represent standard deviations (n=3)

Figure S3: Response of the rGO based sensor for detection of 300 ppm of Ammonia at different relative humidity (30 % to 80 %) (a) RG1, (b) RG2 and (c) RG3 respectively

Figure S4 : Response of the rGO based sensor for detection of 300 ppm of Toluene at different relative humidity (30 % to 80 %) (a) RG1, (b) RG2 and (c) RG3 respectively.