Supporting information for

Sulfurization of H-phosphonate diesters by elemental sulfur under aqueous conditions

Tuomas Lönnberg*

Department of Chemistry, University of Turku, 20014 Turku, Finland

Email: tuanlo@utu.fi

Contents

Figure S1 ¹ H NMR spectrum of bis(2´,3´-O-methyleneadenosin-5´-yl)-H-phosphonate (1h)	S2
Figure S2 ¹³ C NMR spectrum of bis(2´,3´-O-methyleneadenosin-5´-yl)-H-phosphonate (1h)	S6
Figure S3 ³¹ P NMR spectrum of bis(2´,3´-O-methyleneadenosin-5´-yl)-H-phosphonate (1h)	S9
Figure S4 ¹ H NMR spectrum of 2´,3´-O-methyleneadenosine-5´-H-phosphonate (3h)	S10
Figure S5 ¹³ C NMR spectrum of 2´,3´-O-methyleneadenosine-5´-H-phosphonate (3h)	S16
Figure S6 ³¹ P NMR spectrum of 2',3'-O-methyleneadenosine-5'-H-phosphonate (3h)	S20
Table S1 Observed rate constants for the hydrolysis of 1h in the presence of 3.0 mg of sublimed elemental sulfur	S21
Table S2 Observed rate constants for the sulfurization of 1h in the presence of 3.0 mg of sublimed elemental sulfur	S22

Figure S1¹H NMR spectrum of bis(2',3'-O-methyleneadenosin-5'-yl)-H-phosphonate (1h)

Figure S1 ¹H NMR spectrum of bis(2',3'-O-methyleneadenosin-5'-yl)-H-phosphonate (1h) (continued)

Figure S1 ¹H NMR spectrum of bis(2´,3´-O-methyleneadenosin-5´-yl)-H-phosphonate (1h) (continued)

Figure S1 ¹H NMR spectrum of bis(2',3'-O-methyleneadenosin-5'-yl)-H-phosphonate (1h) (continued)

number of scans: 685

Figure S2 ¹³C NMR spectrum of bis(2´,3´-O-methyleneadenosin-5´-yl)-H-phosphonate (1h)

Figure S2 ¹³C NMR spectrum of bis(2',3'-O-methyleneadenosin-5'-yl)-H-phosphonate (1h) (continued)

Figure S2 ¹³C NMR spectrum of bis(2',3'-O-methyleneadenosin-5'-yl)-H-phosphonate (1h) (continued)

Figure S3 ³¹P NMR spectrum of bis(2',3'-O-methyleneadenosin-5'-yl)-H-phosphonate (1h)

Figure S4 ¹H NMR spectrum of 2′,3′-O-methyleneadenosine-5′-H-phosphonate (3h)

Figure S4 ¹H NMR spectrum of 2′,3′-O-methyleneadenosine-5′-H-phosphonate (3h) (continued)

Figure S4 ¹H NMR spectrum of 2',3'-O-methyleneadenosine-5'-H-phosphonate (3h) (continued)

Figure S4 ¹H NMR spectrum of 2',3'-O-methyleneadenosine-5'-H-phosphonate (3h) (continued)

Figure S4 ¹H NMR spectrum of 2',3'-O-methyleneadenosine-5'-H-phosphonate (3h) (continued)

Figure S4 ¹H NMR spectrum of 2′,3′-O-methyleneadenosine-5′-H-phosphonate (3h) (continued)

Figure S5 ¹³C NMR spectrum of 2′,3′-O-methyleneadenosine-5′-H-phosphonate (3h)

Figure S5 ¹³C NMR spectrum of 2',3'-O-methyleneadenosine-5'-H-phosphonate (3h) (continued)

Figure S5 ¹³C NMR spectrum of 2',3'-O-methyleneadenosine-5'-H-phosphonate (3h) (continued)

Figure S5 ¹³C NMR spectrum of 2',3'-O-methyleneadenosine-5'-H-phosphonate (3h) (continued)

Figure S6 ³¹P NMR spectrum of 2',3'-O-methyleneadenosine-5'-H-phosphonate (3h)

			$k_{\rm obs}$ / 10 ⁻⁴ s ⁻¹			$\log(k_{obs} / s^{-1})$
рН	[buffer] = 200 mM	[buffer] = 100 mM	[buffer] = 50 mM	[buffer] = 20 mM	[buffer] = 0 mM	
0.52	n/a ^a	n/a ^a	n/a ^a	n/a ^a	44 ± 2	-2.35
1.00	n/a ^a	n/a ^a	n/a ^a	n/a ^a	14.5 ± 0.5	-2.84
1.52	n/a ^a	n/a ^a	n/a ^a	n/a ^a	5.4 ± 0.1	-3.27
2.00	n/a ^a	n/a ^a	n/a ^a	n/a ^a	2.79 ± 0.03	-3.55
2.52	n/a ^a	n/a ^a	n/a ^a	n/a ^a	1.39 ± 0.03	-3.86
3.07	1.46 ± 0.03	1.35 ± 0.03	1.22 ± 0.03	1.24 ± 0.04	1.19 ± 0.03^{b}	-3.92
3.55	1.32 ± 0.02	1.36 ± 0.05	1.22 ± 0.05	1.17 ± 0.05	1.2 ± 0.1^{b}	-3.92
4.08	1.81 ± 0.05	1.76 ± 0.04	1.68 ± 0.04	1.35 ± 0.05	1.5 ± 0.1^{b}	-3.82
4.56	2.39 ± 0.04	2.1 ± 0.2	2.14 ± 0.03	1.86 ± 0.02	1.9 ± 0.1^{b}	-3.72
5.03	3.5 ± 0.2	3.84 ± 0.08	3.8 ± 0.2	$(1.59 \pm 0.08)^{c}$	3.7 ± 0.2^{b}	-3.43
5.82	10.2 ± 0.1	9.0 ± 0.5	8.2 ± 0.3	11 ± 1	10 ± 1^d	-3.02
6.30	24.7 ± 0.9	22 ± 1	25 ± 2	22 ± 3	23 ± 3^{d}	-2.64
6.78	53 ± 8	53 ± 3	60 ± 1	60 ± 1	56 ± 4^{d}	-2.25
7.25	170 ± 30	170 ± 10	170 ± 10	220 ± 20	170 ± 20^{d}	-1.77

Table S1 Observed rate constants for the hydrolysis of **1h** in the presence of 3.0 mg of sublimed elemental sulfur; *T* = 60 °C, *I*(NaCl) = 1.0 M.

^{*a*} Kinetic runs at pH < 3 were carried out in aq. HCl, rather than buffer. ^{*b*} Linear extrapolation of values obtained at 20, 50, 100 and 200 mM buffer. ^{*c*} Excluded as an outlier. ^{*d*} Average of values obtained at 20, 50, 100 and 200 mM buffer.

			$k_{\rm obs}$ / 10 ⁻⁴ s ⁻¹			$\log (k_{obs} / s^{-1})$
рН	[buffer] = 200 mM	[buffer] = 100 mM	[buffer] = 50 mM	[buffer] = 20 mM	[buffer] = 0 mM	
0.52	n/a ^a	n/a ^a	n/a ^a	n/a ^a	n/a ^b	n/a ^b
1.00	n/a ^a	n/a ^a	n/a ^a	n/a ^a	n/a ^b	n/a ^b
1.52	n/a ^a	n/a ^a	n/a ^a	n/a ^a	0.0140 ± 0.0002	-5.85
2.00	n/a ^a	n/a ^a	n/a ^a	n/a ^a	0.0337 ± 0.0003	-5.47
2.52	n/a ^a	n/a ^a	n/a ^a	n/a ^a	0.110 ± 0.002	-4.96
3.07	0.140 ± 0.003	0.161 ± 0.003	$(0.068 \pm 0.002)^{c}$	0.189 ± 0.006	0.16 ± 0.02^{d}	-4.80
3.55	0.337 ± 0.004	0.218 ± 0.008	0.184 ± 0.007	$(0.94 \pm 0.04)^{c}$	0.25 ± 0.07^{d}	-4.60
4.08	$(0.090 \pm 0.003)^c$	0.42 ± 0.01	0.43 ± 0.01	0.60 ± 0.02	0.49 ± 0.08^{d}	-4.31
4.56	0.86 ± 0.01	1.02 ± 0.08	$(0.38 \pm 0.06)^{c}$	1.31 ± 0.07	1.1 ± 0.2^{d}	-3.96
5.03	1.63 ± 0.07	$(0.70 \pm 0.01)^{c}$	2.1 ± 0.1	1.53 ± 0.08	1.7 ± 0.2^{d}	-3.77
5.82	2.27 ± 0.03	3.4 ± 0.2	3.6 ± 0.1	5.4 ± 0.5	4 ± 1^d	-3.40
6.30	2.59 ± 0.04	$(1.6 \pm 0.2)^{c}$	7.3 ± 0.3	5.9 ± 0.2	5 ± 2^{d}	-3.30
6.78	7 ± 1	9.3 ± 0.8	$(4.2 \pm 0.1)^{c}$	9.8 ± 0.2	9 ± 1^d	-3.05
7.25	19 ± 4	17 ± 1	53 ± 5	60 ± 6	40 ± 20^{d}	-2.40

Table S2 Observed rate constants for the sulfurization of **1h** in the presence of 3.0 mg of sublimed elemental sulfur; T = 60 °C, I(NaCl) = 1.0 M.

^{*a*} Kinetic runs at pH < 3 were carried out in aq. HCl, rather than buffer. ^{*b*} Not detected owing to overwhelmingly faster hydrolysis. ^{*c*} Excluded as an outlier. ^{*d*} Average of values obtained at 20, 50, 100 and 200 mM buffer.