Special Magnetic Catalyst with Lignin-Reduced Au-Pd Nanoalloy Supporting Information

Guocheng Han^{1,#}, Xiaoyun Li^{1,2,#}, Jiaming Li¹, Xiaoying Wang^{1,2*}, Yu Shrike Zhang ^{2*}, Runcang Sun¹

¹ State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China

² Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston 02139, United States

[#]Co-first author with the same contribution to this work

*Corresponding authors: Xiaoying Wang, <u>xyw@scut.edu.cn</u>; Yu Shrike Zhang <u>yszhang@research.bwh.harvard.edu</u>

Supporting information

Figure S1 FT-IR spectra of (a) original lignin, (b) lignin- $Au_{2.0}Pd_{1.0}$ composites, (c) lignin- $Au_{1.0}Pd_{1.0}$ composites, and (d) lignin- $Au_{0.5}Pd_{1.0}$ composites. The results reveal that O–H and C=O units within the lignin structure may contribute to the reduction of metal salt to nanoalloy.

Figure S2 Time-dependent UV-vis spectra of the reduction of 4-NP by NaBH₄ in the presence of single-component (a) AuNPs and (b) PdNPs.

Figure S3 Size distribution of (a) $Au_{0.5}Pd_{1.0}$, (b) $Au_{1.0}Pd_{1.0}$ and (c) $Au_{2.0}Pd_{1.0}$.

Figure S1 FT-IR spectra of (a) original lignin, (b) lignin- $Au_{2.0}Pd_{1.0}$ composites, (c) lignin- $Au_{1.0}Pd_{1.0}$ composites, and (d) lignin- $Au_{0.5}Pd_{1.0}$ composites. The results reveal that O–H and C=O units within the lignin structure may contribute to the reduction of metal salt to nanoalloy.

Figure S2 Time-dependent UV-vis spectra of the reduction of 4-NP by NaBH₄ in the presence of single-component (a) AuNPs and (b) PdNPs.

Figure S3 Size distribution of (a) $Au_{0.5}Pd_{1.0}$, (b) $Au_{1.0}Pd_{1.0}$ and (c) $Au_{2.0}Pd_{1.0}$.