Science Advances

advances.sciencemag.org/cgi/content/full/5/7/eaax0501/DC1

Supplementary Materials for

Nicotinamide adenine dinucleotide as a photocatalyst

Jinhyun Kim, Sahng Ha Lee, Florian Tieves, Caroline E. Paul, Frank Hollmann, Chan Beum Park*

*Corresponding author. Email: parkcb@kaist.ac.kr

Published 19 July 2019, *Sci. Adv.* **5**, eaax0501 (2019) DOI: 10.1126/sciadv.aax0501

This PDF file includes:

- Fig. S1. Optical and electrochemical properties of NAD⁺.
- Fig. S2. Photostability of NAD⁺.

Fig. S3. Formation of superoxide radicals by photoactivated NAD⁺.

Fig. S4. Use of Tris and Nash's reagent in quantification of hydroxyl radicals.

Fig. S5. Solar-driven formation of hydroxyl radicals with NAD⁺.

Fig. S6. NAD⁺-sensitized production of AgNPs without sacrificial electron donors.

Fig. S7. Photocatalytic synthesis of AgNPs using NAD⁺ in a MOPS buffer.

Fig. S8. Photoreduction of prosthetic FMN driven by NAD⁺.

Fig. S9. Light-driven enzymatic hydrogenation of C=C bonds using NAD⁺ and *Ts*OYE.

Fig. S1. Optical and electrochemical properties of NAD⁺. (A) UV-Vis absorption spectra of 50 μ M NAD⁺, 50 μ M nicotinamide, 50 μ M adenine, and 50 μ M D-(-)-ribose in deionized water. Cuvette path length: 1 cm. (**B**, **C**, **D**) Cyclic voltammograms of NAD⁺ with different potential ranges. Working electrode: a polished glassy carbon electrode. Scan rate: 100 mV s⁻¹. (**E**) Cyclic voltammograms of 5.38 mM ferrocene at different scan rates. Electrolyte solution of (**B**, **C**, **D**, **E**): 1/1 mixture of acetonitrile (containing 100 mM TBAPF₆)/sodium phosphate buffer (100 mM, pH 7.5). The number of cycles of (**B**, **C**, **D**, **E**): 4. (**F**) Energy levels of nicotinamide and adenine moieties of NAD⁺ (Left). Molecular structure of NAD⁺ (Right).

Fig. S2. Photostability of NAD⁺. (A) Spectrophotometric changes in the absorbance of NAD⁺ under irradiation (λ : 260-900 nm, $P_{260-900 \text{ nm}}$: 200 mW cm⁻², $P_{260-300 \text{ nm}}$: 10 mW cm⁻²) at 293.15 K. **(B)** Changes in relative absorbance (A/A_0) of NAD⁺ at 260 nm. Solvent: deionized water. Light source: a xenon lamp equipped with a water filter.

Fig. S3. Formation of superoxide radicals by photoactivated NAD⁺. (A) Influence of wavelength range and light intensity on the light-driven formation of superoxide radicals. A buffered solution containing 1 mM NAD⁺ and 30 μ M NBT was irradiated with a xenon lamp with/without a filter for 30 min. Solvent: a sodium phosphate buffer (50 mM, pH 7.5, O₂ purged). A relative amount of the radical is the normalized absorption intensity (at a given wavelength range and light intensity) to that at *P*_{260-900 nm} of 200 mW cm⁻². (**B**) Control experiments for a background reaction with NBT and phosphate ions under UV illumination. Reaction condition of the experimental group: 30 μ M NBT, O₂-purged sodium phosphate buffer (50 mM, pH 7.5), irradiation (Xenon lamp, 200 mW cm⁻², 30 min). The measurement was performed in triplicate and all reported values represent the mean ± standard deviation.

Fig. S4. Use of Tris and Nash's reagent in quantification of hydroxyl radicals. (**A**) Reaction between a Tris and a hydroxyl radical generates a formaldehyde molecule; one molecule of formaldehyde reacts with one ammonium ion and two molecules of acetylacetone to produce 1- (5-acetyl-2,6-dimethyl-1,4-dihydropyridin-3-yl)ethanone. The concentration of the final product can be quantitatively measured at 412 nm. (**B**) Calibration of formaldehyde using Nash's reagent. Absorbance at 412 nm was recorded for 0-1 mM formaldehyde after the incubation of a solution containing formaldehyde and Nash's reagent at 323.15 K for 1 h.

Fig. S5. Solar-driven formation of hydroxyl radicals with NAD⁺. (A) Control experiments for NAD⁺-sensitized formation of hydroxyl radicals. Reaction condition of the experimental group: 1 mM NAD⁺ and 10 mM Tris in an O₂-purged sodium phosphate buffer (50 mM, pH 7.5) under light condition (λ : 260-900 nm, $P_{260-300 \text{ nm}}$: 10 mW cm⁻², $P_{260-900 \text{ nm}}$: 200 mW cm⁻², t = 30 min). Temperature: 293.15 K. (**B**) Mechanism of OH⁺ generation in the process of O₂ reduction. Hydroxyl radicals can be formed via the reaction between H₂O₂ and O₂⁻⁺. (**C**) Effect of the N₂-rich condition on the generation of hydroxyl radicals by NAD⁺ photocatalyst. Reaction condition: 1 mM NAD⁺ and 10 mM Tris in a sodium phosphate buffer (50 mM, pH 7.5) under irradiation (λ : 260-900 nm, $P_{260-300 \text{ nm}}$: 10 mW cm⁻², $P_{260-900 \text{ nm}}$: 200 mW cm⁻², t = 30 min) at 293.15 K. Error bars correspond to the standard deviation (n = 3). (**D**, **E**) Two possible photocatalytic pathways of NAD⁺-driven O₂ reduction and H₂O oxidation. (**D**) Oxidative quenching step. (**E**) Reductive quenching step.

Fig. S6. NAD⁺-sensitized production of AgNPs without sacrificial electron donors. (A) Spectrophotometric changes in the absorbance of 50 μ M NAD⁺ upon addition of Ag⁺ ions at 293.15 K. (B) UV-Vis absorption spectra of AgNO₃ (0-10 μ M). (C) Changes in absorption spectra of NAD⁺/Ag⁺ mixture under illumination. Reaction condition: 0.5 mM NAD⁺ and 1 mM AgNO₃ dissolved in a N₂-purged deionized water. Light source: a xenon lamp equipped with an infrared filter (λ : 260-900 nm, $P_{260-300 \text{ nm}}$: 5 mW cm⁻², $P_{260-900 \text{ nm}}$: 100 mW cm⁻²). (D) Photograph of the experimental group after 6-min illumination. (E, F) Changes in absorption spectra without (E) NAD⁺ or (F) light. (G, H) Photographs of control groups in the absence of (G) NAD⁺ or (H) light after 6-min reaction. (I) High resolution-transmission electron microscopy image of AgNPs shown in (C) under 6-min irradiation. Scale bar: 20 nm. Photo credit: Jinhyun Kim, Korea Advanced Institute of Science and Technology.

Fig. S7. Photocatalytic synthesis of AgNPs using NAD⁺ in a MOPS buffer. (A) Linear sweep voltammogram of MOPS. Working electrode: a polished glassy carbon electrode. Counter electrode: a Pt wire. Scan rate: 25 mV s⁻¹. (B) Quantification of AgNPs (shown in **Fig. 3A**) using an inductively coupled plasma mass spectrometer (ICP-MS) or a microbalance. (**C**, **D**) Control experiments of AgNP formation by photoexcited NAD⁺ without (**C**) NAD⁺ or (**D**) light. Experimental experiment: **Fig. 3A**. (**E**) Size distribution histogram of AgNPs formed by photoexcited NAD⁺ under 1-min irradiation. (**F**) Influence of light intensity on NAD⁺-sensitized formation of AgNPs. Reaction condition: 0.25 mM NAD⁺, 1 mM AgNO₃, N₂-purged MOPS buffer (50 mM, pH 7.5), irradiation ($P_{260-900 \text{ nm}}$: 100 mW cm⁻², t = 30 s), 293.15 K. (**G**) Effect of Ag⁺ concentration on NAD⁺-sensitized growth of AgNPs. Reaction condition: 10 μ M NAD⁺, AgNO₃, N₂-purged MOPS buffer (50 mM, pH 7.5), or A(t = 0 s) at 442 nm. An error bar represents a standard deviation from three independent experiments. (**H**) High resolution-transmission electron microscopy image of AgNPs synthesized by photoactivated NAD⁺ under 6-min illumination. Scale bar: 20 nm. (**I**) Size distribution histogram of AgNPs shown in (**H**).

Fig. S8. Photoreduction of prosthetic FMN driven by NAD⁺. (A) NAD⁺-sensitized reduction of FMN bound to *Ts*OYE in a MOPS buffer. Reaction condition of the experimental group: 13.5 μ M *Ts*OYE, 2 mM NAD⁺, and 5 mM CaCl₂ in N₂-purged MOPS buffer (100 mM, pH 7.5). *P*_{260-900 nm}: 0.485 μ E cm⁻² s⁻¹. (B) Light-driven activation of prosthetic FMN with/without NAD⁺ in a TEOA buffer. Reaction condition of the experimental group: 13.5 μ M *Ts*OYE, 2 mM NAD⁺, and 5 mM CaCl₂ in N₂-purged TEOA buffer (100 mM, pH 7.5). *P*_{260-900 nm}: 0.485 μ E cm⁻² s⁻¹. Error bars of (A) and (B): standard deviation (*n* = 3). (C) Negligible formation of NADH from NAD⁺. Absorption spectra of 0.1 mM NAD⁺ in a TEOA buffer (5 mM, pH 7.5) under illumination (Xenon lamp, λ : 260-900 nm, *P*_{260-900 nm}: 0.970 μ E cm⁻² s⁻¹). (D) Energy diagram for prosthetic FMN reduction by photoactivated NAD⁺. (E, F) Plausible mechanism of photoinduced reduction of prosthetic FMN by NAD⁺ through (E) an oxidative quenching step or (F) a reductive quenching step. Photosensitization of NAD⁺ excites its electrons from a ground state to the excited state. The photoexcited electrons possess a potential energy high enough to reduce the FMN prosthetic group. As a counterpart of the photocatalytic reduction, TEOA donates its electron to the oxidized NAD⁺.

Fig. S9. Light-driven enzymatic hydrogenation of C=C bonds using NAD⁺ and *Ts***OYE.** (A) TTN of NAD⁺ in photoenzymatic reduction by *Ts***OYE**. Reaction conditions: NAD⁺, 9 μ M *Ts***OYE**, 5 mM CaCl₂, and 6 mM 2-methyl-2-cyclohexen-1-one in a TEOA buffer (150 mM, pH 7.5) at 318.15 K. *P*_{260-900 nm}: 1.212 μ E cm⁻² s⁻¹. TTN_{NAD+s} were determined after 150 min of reaction. (**B**) A series of control experiments for each reaction components (i.e., NAD⁺, light, TEOA, *Ts*OYE). Reaction condition of the experimental group: 1.5 mM NAD⁺, 3 μ M *Ts*OYE, 5 mM CaCl₂, and 6 mM *trans*-cinnamaldehyde in a TEOA buffer (150 mM, pH 7.5) at 318.15 K. *P*_{260-900 nm}: 1.212 μ E cm⁻² s⁻¹. TOF and TTN were determined after 30 and 120 min of reaction. The specific specific of *Ts*OYE towards *trans*-cinnamaldehyde (1.16 μ mol min⁻¹ mg⁻¹) is 24-times lower than that towards 2-methyl-2-cyclohexen-1-one (27.59 μ mol min⁻¹ mg⁻¹) [*Biochem. Biophys. Res. Commun.* **393**, 426-431 (2010)]. (**C, D**) Comparison between (**C**) the conventional and (**D**) the new-found route for activation of oxidoreductases. ED: electron donor. EM: electron mediator.