

Supporting Information

Pd^{II}-Catalyzed Enantioselective C(sp³)–H Activation/Cross-Coupling Reactions of Free Carboxylic Acids

Liang Hu, Peng-Xiang Shen, Qian Shao, Kai Hong, Jennifer X. Qiao, and Jin-Quan Yu*

anie_201813055_sm_miscellaneous_information.pdf

Table of Contents

1. General Information	2
2. Substrate Structures	3
3. Experimental Section	5
3.1 Preparation of Ligands	5
3.2 Optimization of Conditions of Arylation for Cyclopropanecarboxylic Acid	11
3.3 Optimization of Conditions of Arylation for Cyclobutanecarboxylic Acid	13
3.4 Optimization of Conditions of Vinylation for Cyclopropanecarboxylic Acid	14
3.5 Enantioselective Arylation of Cylcopropanecarboxylic Acid	16
3.6 Enantioselective Arylation of Cylcobutanecarboxylic Acid	38
3.7 Enantioselective Vinylation of Cylcopropanecarboxylic Acid	63
3.8 Synthesis of Cis-Chiral Amine from Carboxylic Acid	72
4. Reference	74
5. X-Ray Crystallographic Data of Compound	75
6. NMR Spectra	77

1. General Information

Carboxylic acids were obtained from the commercial sources or synthesized following literature procedures. Alkyl iodides were obtained from the commercial sources. Solvents were obtained from Sigma-Aldrich, Oakwood and Acros and used directly without further purification. Analytical thin layer chromatography was performed on 0.25 mm silica gel 60-F254. Visualization was carried out with UV light and Bromocresol Green Stain. ¹H NMR was recorded on Bruker DRX-600 instrument (600 MHz). Chemical shifts were quoted in parts per million (ppm) referenced to the literature values of tetramethylsilane. The following abbreviations (or combinations thereof) were used to explain multiplicities: s = singlet, d =doublet, t = triplet, q = quartet, p = pentet, m = multiplet, br = broad. Coupling constants, J, were reported in Hertz unit (Hz). ¹³C NMR spectra were recorded on Bruker DRX-600 instrument (150 MHz), and were fully decoupled by broad band proton decoupling. Chemical shifts were reported in ppm referenced to either the center line of a triplet at 77.0 ppm of chloroform-d or the center line of a multiplet at 29.84 ppm of acetone- d^6 . High-resolution mass spectra (HRMS) were recorded on an Agilent Mass spectrometer using ESI-TOF (electrospray ionization-time of flight). Enantiomeric ratio (er) were determined on a Agilent SFC system or Waters SFC system using commercially available chiral columns.

2. Substrate Structures

Substrates 1a, 1p, 4a, 4q, 4u were purchased from commercial sources. 1q-1u, 4p, 4r-4t was synthesized from the reported procedure.^{1,5,14}

α-Substituted cyclopropanecarboxylic acids

α-Substituted cyclobutanecarboxylic acids

Unsuccessfull substrate

ОH Me

14% yield

3. Experimental Section

3.1.1 General Procedure for the Preparation of Ligands L20-28

4-Nitrobenzenesulfonyl chloride (NsCl, 50 mmol, 1.0 equiv) was added to a cooled (0 °C) solution of L-phenylalanine methyl ester hydrochloride (L-Phe-OMe·HCl, 50 mmol, 1.0 equiv) and triethylamine (TEA, 150 mmol, 3.0 equiv) in DCM (150 mL). After being stirred at room temperature for 12 h, the reaction mixture was poured into H₂O. The organic layer was separated, dried over anhydrous Na₂SO₄, filtered and concentrated under vacuum. The residue was purified by trituration with a mixture of 50% DCM/hexane to give **S1**.

S1 (8.0 mmol, 1.0 equiv), $Pd(OAc)_2$ (0.075 equiv), Ar-BPin (2.0 equiv), L-Ac-Val-OH (0.2 equiv), Ag₂CO₃ (2.0 equiv), Na₂CO₃ (2.0 equiv), BQ (0.5 equiv), H₂O (5.0 equiv), and DMSO (0.4 equiv) were weighed in air and placed in a Schlenk tube with a magnetic stir bar. *t*-AmylOH (50 mL) was added, and the reaction vessel was evacuated and backfilled with nitrogen (×3). The reaction mixture was heated to 80 °C for 24 h under vigorous stirring. After being cooled to room temperature, the reaction mixture was diluted with EtOAc and filtered through a pad of Celite eluting with EtOAc. The filtrate was concentrated under vacuum and the resulting residue was purified by flash chromatography on silica gel (eluent: EtOAc/hexane = 1: 3) to give **S2**.

4-Methoxybenzenethiol (PMP-SH, 20.0 mmol, 4.0 equiv) and potassium carbonate (20.0 mmol, 4.0 equiv) were added to a solution of **S2** (5.0 mmol, 1.0 equiv) in MeCN (40 mL) and DMSO (1.5 mL). After being stirred at room temperature for 12 h, the reaction mixture was diluted with EtOAc, washed with H₂O and brine, dried over anhydrous Na₂SO₄, filtered, and concentrated under vacuum. The residue was purified by column chromatography on silica gel (eluent: EtOAc/hexane = 1: 1) to give **S3**.

Ac₂O (12.0 mmol, 3.0 equiv) was added to a solution of **S3** (4.0 mmol, 1.0 equiv) and triethylamine (12.0 mmol, 3.0 equiv) in DCM (20 mL). After being stirred at room temperature for 3 h, the reaction mixture was quenched with saturated NH₄Cl solution and extracted with DCM. The combined organic layers were dried over anhydrous Na₂SO₄, filtered and concentrated to give **S4**, which could be used directly in the next step without further purification.

LiOH (8.0 mmol) was added to a suspension of S4 in THF (8 mL), and H_2O (4 mL) at 0 °C. The reaction mixture was allowed to warm to room temperature and stirred for 8 h. The reaction mixture was quenched with 10% aqueous citric acid solution and extracted EtOAc (3

x 20 mL). The combined organic layers were washed with brine, dried over anhydrous Na_2SO_4 , filtered and concentrated to give the desired ligand, further purification could be conducted by recrystallization or reversed phase flash column.

(S)-3-([1,1':3',1''-terphenyl]-2'-yl)-2-acetamidopropanoic acid (L20)

¹H NMR (600 MHz, DMSO- d_6) δ 11.92 (s, 1H), 7.47 – 7.40 (m, 4H), 7.39 – 7.33 (m, 7H), 7.30 (t, J = 7.6 Hz, 1H), 7.11 (d, J = 7.6 Hz, 2H), 3.66 (q, J = 7.7 Hz, 1H), 3.13 (dd, J = 14.1, 7.5 Hz, 1H), 3.01 (dd, J = 14.1, 8.1 Hz, 1H), 1.55 (s, 3H); ¹³C NMR (150 MHz, DMSO- d_6) δ 172.52, 168.26, 143.23, 141.67, 132.30, 129.32, 129.21, 128.19, 126.91, 126.13, 51.59, 31.04, 22.12.

HRMS (ESI-TOF) *m/z* Calcd for C₂₃H₂₂NO₃⁺ [M+H]⁺ 360.1600, found 360.1601.

(S)-3-([1,1':4',1'':3'',1''':4''',1''''-quinquephenyl]-2''-yl)-2-acetamidopropanoic acid (L21)

¹H NMR (600 MHz, DMSO- d_6) δ 11.99 (s, 1H), 7.83 – 7.66 (m, 8H), 7.53 – 7.45 (m, 9H), 7.41 – 7.37 (m, 2H), 7.35 (t, J = 7.6 Hz, 1H), 7.19 (d, J = 7.6 Hz, 2H), 3.80 (q, J = 7.7 Hz, 1H), 3.26 (dd, J = 14.1, 7.4 Hz, 1H), 3.11 (dd, J = 14.1, 8.2 Hz, 1H), 1.56 (s, 3H); ¹³C NMR (150 MHz, DMSO- d_6) δ 172.60, 168.32, 142.90, 140.87, 139.72, 138.49, 132.51, 129.89, 129.41, 128.99, 127.47, 126.57, 126.41, 126.29, 51.64, 31.33, 22.15.

HRMS (ESI-TOF) *m*/*z* Calcd for C₃₅H₃₀NO₃⁺ [M+H] ⁺ 512.2226, found 512.2228.

(S)-2-acetamido-3-(4,4"-difluoro-[1,1':3',1"-terphenyl]-2'-yl)propanoic acid (L22)

¹H NMR (600 MHz, DMSO-*d*₆) δ 12.02 (s, 1H), 7.50 (d, J = 8.0 Hz, 1H), 7.40 – 7.36 (m, 4H), 7.30 (t, J = 7.6 Hz, 1H), 7.25 (d, J = 8.8 Hz, 4H), 7.12 (d, J = 7.6 Hz, 2H), 3.70 (q, J = 7.8 Hz, 1H), 3.11 (dd, J = 14.1, 7.3 Hz, 1H), 2.96 (dd, J = 14.2, 8.2 Hz, 1H), 1.57 (s, 3H); ¹³C NMR (150 MHz, DMSO-*d*₆) δ 172.51, 168.32, 161.34 (d, J = 241.5 Hz), 42.21, 137.87 (d, J = 3.0 Hz), 132.75, 131.20 (d, J = 9.0 Hz), 129.52, 126.22, 115.03 (d, J = 21.0 Hz), 51.36, 31.21, 22.15; ¹⁹F NMR (376 MHz, DMSO) δ -116.14.

HRMS (ESI-TOF) m/z Calcd for C₂₃H₂₀F₂NO₃⁺ [M+H] ⁺369.1411, found 369.1409.

(*S*)-2-acetamido-3-(4,4''-dimethyl-[1,1':3',1''-terphenyl]-2'-yl)propanoic acid (L23) ¹H NMR (600 MHz, DMSO-*d*₆) δ 11.92 (s, 1H), 7.33 (d, *J* = 7.6 Hz, 1H), 7.23 (s, 9H), 7.06 (d, *J* = 7.6 Hz, 2H), 3.69 (q, *J* = 7.8 Hz, 1H), 3.14 (dd, *J* = 14.0, 7.5 Hz, 1H), 3.04 – 2.99 (m, 1H), 2.35 (s, 6H), 1.56 (s, 3H); ¹³C NMR (150 MHz, DMSO-*d*₆) δ 172.57, 168.34, 143.20, 138.87, 135.86, 132.34, 129.25, 129.11, 128.80, 126.06, 51.62, 31.06, 22.14, 20.80. HRMS (ESI-TOF) *m*/*z* Calcd for C₂₅H₂₆NO₃⁺ [M+H] ⁺388.1913, found 388.1914.

(*S*)-2-acetamido-3-(4,4''-dimethoxy-[1,1':3',1''-terphenyl]-2'-yl)propanoic acid (L24) ¹H NMR (600 MHz, DMSO- d_6) δ 11.93 (s, 1H), 7.32 (d, J = 7.6 Hz, 1H), 7.29 – 7.26 (m, 4H), 7.24 (d, J = 7.6 Hz, 1H), 7.06 (d, J = 7.5 Hz, 2H), 7.00 – 6.96 (m, 4H), 3.79 (s, 6H), 3.70 (q, J= 7.7 Hz, 1H), 3.15 (dd, J = 14.0, 7.3 Hz, 1H), 3.01 (dd, J = 14.0, 8.4 Hz, 1H), 1.57 (s, 3H); ¹³C NMR (150 MHz, DMSO- d_6) δ 172.63, 168.30, 158.12, 142.91, 134.05, 132.71, 130.32, 129.25, 126.01, 113.62, 55.06, 51.57, 31.12, 22.17.

HRMS (ESI-TOF) *m*/*z* Calcd for C₂₅H₂₆NO₅⁺ [M+H]⁺ 420.1811, found 420.1818.

(*S*)-2-acetamido-3-(4,4''-di-tert-butyl-[1,1':3',1''-terphenyl]-2'-yl)propanoic acid (L25) ¹H NMR (600 MHz, DMSO- d_6) δ 11.89 (s, 1H), 7.46 – 7.41 (m, 4H), 7.35 (d, *J* = 7.4 Hz, 1H), 7.30 – 7.26 (m, 5H), 7.09 (d, *J* = 7.6 Hz, 2H), 3.65 (q, *J* = 7.6 Hz, 1H), 3.14 (dd, *J* = 14.1, 7.6 Hz, 1H), 3.00 (dd, *J* = 14.1, 7.7 Hz, 1H), 1.54 (s, 3H), 1.32 (s, 18H); ¹³C NMR (150 MHz, DMSO- d_6) δ 172.75, 168.09, 149.01, 143.09, 138.81, 132.59, 129.26, 128.88, 126.08, 124.92, 51.63, 40.07, 34.25, 31.19, 22.11.

HRMS (ESI-TOF) *m*/*z* Calcd for C₃₁H₃₈NO₃⁺ [M+H] ⁺ 472.2852, found 472.2847.

(*S*)-2-acetamido-3-(3,3''-dimethyl-[1,1':3',1''-terphenyl]-2'-yl)propanoic acid (L26) ¹H NMR (600 MHz, DMSO- d_6) δ 11.93 (s, 1H), 7.36 – 7.26 (m, 4H), 7.18 – 7.12 (m, 6H), 7.08 (d, *J* = 7.6 Hz, 2H), 3.70 (q, *J* = 7.7 Hz, 1H), 3.13 (dd, *J* = 14.0, 7.3 Hz, 1H), 2.99 (dd, *J* = 14.1, 8.2 Hz, 1H), 2.35 (s, 6H), 1.56 (s, 3H); ¹³C NMR (150 MHz, DMSO- d_6) δ 172.59,

168.27, 143.28, 141.66, 137.19, 132.31, 129.86, 129.18, 128.06, 127.53, 126.29, 125.99, 51.72, 31.13, 22.14, 21.13.

HRMS (ESI-TOF) *m*/*z* Calcd for C₂₅H₂₆NO₃⁺ [M+H] ⁺ 388.1913, found 388.1914.

(S)-2-acetamido-3-(3,3'',5,5''-tetramethoxy-[1,1':3',1''-terphenyl]-2'-yl)propanoic acid (L27)

¹H NMR (600 MHz, DMSO-*d*₆) δ 11.99 (s, 1H), 7.40 (d, J = 7.7 Hz, 1H), 7.26 (dd, J = 7.9, 7.2 Hz, 1H), 7.11 (d, J = 7.6 Hz, 2H), 6.50 – 6.48 (m, 6H), 3.89 – 3.84 (m, 1H), 3.77 (s, 12H), 3.20 (dd, J = 14.1, 7.1 Hz, 1H), 3.04 (dd, J = 14.1, 8.6 Hz, 1H), 1.60 (s, 3H); ¹³C NMR (150 MHz, DMSO-*d*₆) δ 172.70, 168.39, 160.07, 143.63, 143.08, 132.32, 129.06, 125.91, 107.48, 99.05, 55.21, 51.62, 31.36, 22.15.

HRMS (ESI-TOF) *m*/*z* Calcd for C₂₇H₃₀NO₇⁺ [M+H] ⁺480.2022, found 480.2026.

(S)-2-acetamido-3-(3,3'',5,5''-tetra-tert-butyl-[1,1':3',1''-terphenyl]-2'-yl)propanoic acid (L28)

¹H NMR (600 MHz, CDCl₃) δ 7.44 (t, *J* = 1.8 Hz, 2H), 7.35 (dd, *J* = 8.1, 7.0 Hz, 1H), 7.28 – 7.26 (m, 2H), 7.21 (d, *J* = 1.9 Hz, 4H), 5.12 (d, *J* = 7.2 Hz, 1H), 4.07 (ddd, *J* = 11.9, 7.1, 3.4 Hz, 1H), 3.28 (dd, *J* = 14.6, 3.5 Hz, 1H), 3.14 (dd, *J* = 14.6, 11.8 Hz, 1H), 1.75 (s, 3H), 1.36 (s, 36H); ¹³C NMR (150 MHz, CDCl₃) δ 172.81, 170.97, 150.76, 143.93, 140.08, 130.99, 129.35, 126.32, 120.92, 52.75, 34.54, 31.06, 29.33, 22.44.

HRMS (ESI-TOF) *m*/*z* Calcd for C₃₉H₅₄NO₃⁺ [M+H] ⁺ 584.4104, found 584.4114.

3.1.2 General Procedure for the Preparation of Ligands L36-39

 Boc_2O (8.0 mmol, 2.0 equiv) was added to a solution of **S5** (4.0 mmol, 1.0 equiv) and triethylamine (8.0 mmol, 2.0 equiv) in DCM (20 mL). After being stirred at room temperature for 3 h, the reaction mixture was quenched with saturated NH₄Cl solution and extracted with

DCM. The combined organic layers were dried over anhydrous Na_2SO_4 , filtered and concentrated to give S6, which could be used directly in the next step without further purification.

LiOH (8.0 mmol) was added to a suspension of **S6** in THF (8 mL), and H_2O (4 mL) at 0 °C. The reaction mixture was allowed to warm to room temperature and stirred for 8 h. The reaction mixture was quenched with 10% aqueous citric acid solution and extracted EtOAc (3 x 20 mL). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered and concentrated to give **S7**, further purification could be conducted by recrystallization or reversed phase flash column.

The corresponding Boc-protected amino acid (**S7**) (4 mmol), dimethylammonium chloride (8.8 mmol, 2.2 equiv) and benzotriazol-1-ol hydrate (HOBt) (4 mmol, 1.0 equiv) were added to a round bottom flask equipped with a magnetic stir bar. The solid mixture was dissolved in DCM (40 mL), and 1-ethyl-(3-(3-dimethylamino)propyl)-carbodiimide hydrochloride (EDC) (4.8 mmol, 1.2 equiv) was added at 0 °C. The resulting solution was stirred at 0 °C as N-ethyl-N,N-diisopropylamine (DIPEA) (9.6 mmol, 2.4 equiv) was added slowly. The reaction solution was allowed to warm to r.t. and stirred for about 3 h, after which the solution was poured into a separatory funnel, diluted to 150 mL with additional DCM, and washed with approximately 25 mL of 10% w/w aqueous citric acid. The organic layer was separated and subsequently washed with 25 mL each of saturated aqueous NaHCO₃ and brine. The organics were dried over anhydrous Na₂SO₄, filtered, and concentrated in vacuo to provide corresponding amide (**S8**) which could be directly used in the next step without further purification.

To the Boc-protected amino amide (**S8**) was added 4 N HCl/dioxane solution (4 ml). The resulting solution was stirred at room temperature for 2 h. Then, the volatile components were evaporated in vacuo, and the residue was subsequently used in the following reduction step.

To a solution of **S9** in THF (24 ml) was added a solution of LiAlH₄ in THF (6.0 mmol, 1.5 equiv) dropwise under N₂ at 0 °C. Then, the mixture was heated to reflux for 12 h, before being cooled down and diluted with ether. The mixture was cooled to 0 °C, and 0.28 ml of water was added slowly followed by 15% w/w NaOH aqueous solution (0.28 ml) and water (0.84 ml). The resulting suspension was then warmed to room temperature and stirred for 15 min before MgSO₄ was added. The mixture was removed in vacuo to provide diamine compound (**S10**) which could be used in next step without purification.

To a solution of the synthesized diamine compound (S10) in DCM (8 ml) was added acetyl chloride (8 mmol, 2.0 equiv) at 0 °C. Then the solution was stirred at room temperature for 2 h. The volatile components were evaporated in vacuo, and the residue was dissolved in 8 ml of water. The resulting solution was extracted with ether (10 ml x 3), then the aqueous phase was alkalized with 15% w/w NaOH aqueous solution until pH>13. The alkalized mixture was extracted with ether (10 ml x 3), and the organic layers were concentrated to provide the desired MPAAM Ligand. Further purification could be conducted by recrystallization or reversed phase flash column.

(*S*)-N-(1-([1,1':3',1''-terphenyl]-2'-yl)-3-(dimethylamino)propan-2-yl)acetamide (L36) ¹H NMR (600 MHz, CDCl₃) δ 7.46 – 7.40 (m, 8H), 7.38 – 7.35 (m, 2H), 7.29 – 7.27 (m, 1H), 7.20 – 7.17 (m, 2H), 4.60 (d, *J* = 8.7 Hz, 1H), 3.74 (dd, *J* = 10.0, 5.8 Hz, 1H), 3.12 (dd, *J* = 14.2, 4.2 Hz, 1H), 2.80 (dd, *J* = 14.2, 10.7 Hz, 1H), 1.85 (dd, *J* = 12.0, 7.0 Hz, 1H), 1.72 (s, 6H), 1.69 (s, 3H), 1.61 (dd, *J* = 12.0, 7.8 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 169.00, 143.33, 142.40, 133.44, 129.76, 129.59, 128.36, 127.02, 126.03, 63.99, 48.06, 45.20, 32.38, 23.41.

HRMS (ESI-TOF) m/z Calcd for C₂₅H₂₉N₂O⁺ [M+H] ⁺ 373.2280, found 373.2282.

(S)-N-(1-(4,4''-difluoro-[1,1':3',1''-terphenyl]-2'-yl)-3-(dimethylamino)propan-2-yl)aceta mide (L37)

¹H NMR (600 MHz, CDCl₃) δ 7.37 (dd, J = 8.5, 5.5 Hz, 4H), 7.29 – 7.27 (m, 1H), 7.17 – 7.12 (m, 5H), 4.74 (d, J = 8.8 Hz, 1H), 3.78 – 3.71 (m, 1H), 3.03 (dd, J = 14.2, 4.2 Hz, 1H), 2.77 (dd, J = 14.2, 10.4 Hz, 1H), 1.92 (dd, J = 12.1, 7.5 Hz, 1H), 1.80 (s, 6H), 1.70 (s, 3H), 1.67 – 1.62 (m, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 169.05, 162.04 (d, J = 246.0 Hz), 142.36, 138.22 (d, J = 3.0 Hz), 133.58, 131.27 (d, J = 7.5 Hz), 129.86, 126.19, 115.27 (d, J = 21.0 Hz), 63.66, 47.68, 45.05, 32.71, 23.34; ¹⁹F NMR (376 MHz, CDCl₃) δ -115.70.

HRMS (ESI-TOF) *m*/*z* Calcd for C₂₅H₂₆F₂N₂O⁺ [M+H] ⁺ 409.2091, found 409.2096.

(S)-N-(1-(4,4''-di-tert-butyl-[1,1':3',1''-terphenyl]-2'-yl)-3-(dimethylamino)propan-2-yl)a cetamide (L38)

¹H NMR (600 MHz, CDCl₃) δ 7.48 – 7.44 (m, 4H), 7.36 – 7.32 (m, 4H), 7.25 – 7.23 (m, 1H), 7.18 – 7.15 (m, 2H), 4.59 (d, *J* = 9.0 Hz, 1H), 3.80 – 3.72 (m, 1H), 3.22 (dd, *J* = 14.2, 3.4 Hz, 1H), 2.70 (dd, *J* = 14.3, 11.2 Hz, 1H), 1.89 (dd, *J* = 11.9, 6.3 Hz, 1H), 1.69 (s, 6H), 1.68 (s, 3H), 1.65 – 1.60 (m, 1H), 1.37 (s, 18H); ¹³C NMR (150 MHz, CDCl₃) δ 168.50, 149.38, 142.77, 138.97, 133.30, 129.10, 129.00, 125.52, 124.83, 63.89, 47.81, 44.79, 34.12, 31.64, 30.96, 22.97.

HRMS (ESI-TOF) *m*/*z* Calcd for C₃₃H₄₅N₂O⁺ [M+H]⁺485.3532, found 485.3529.

(S)-N-(1-(dimethylamino)-3-(3,3'',5,5''-tetra-tert-butyl-[1,1':3',1''-terphenyl]-2'-yl)propa n-2-yl)acetamide (L39)

¹H NMR (600 MHz, CDCl₃) δ 7.42 (t, *J* = 1.8 Hz, 2H), 7.30 – 7.26 (m, 5H), 7.20 (d, *J* = 7.5 Hz, 2H), 4.72 (d, *J* = 9.2 Hz, 1H), 3.87 – 3.81 (m, 1H), 3.14 (dd, *J* = 14.2, 3.8 Hz, 1H), 2.80 (dd, *J* = 14.1, 11.1 Hz, 1H), 1.93 (d, *J* = 7.0 Hz, 1H), 1.72 (s, 6H), 1.69 (s, 3H), 1.66 – 1.62 (m, 1H), 1.38 (s, 36H); ¹³C NMR (150 MHz, CDCl₃) δ 168.91, 150.86, 150.71, 144.30, 141.51, 133.34, 129.63, 125.94, 120.89, 64.25, 47.49, 45.04, 34.97, 32.40, 31.58, 23.52. HRMS (ESI-TOF) *m/z* Calcd for C₄₁H₆₁N₂O⁺ [M+H]⁺ 597.4784, found 597.4791.

3.2 Optimization of Conditions of Arylation for Cyclopropanecarboxylic Acid Screening of Ligands^{a,b}

^{*a*} Conditions: **1a** (0.1 mmol), **2a** (1.5 equiv), Pd(OAc)₂ (10 mol%), Ligand (20 mol%), Ag₂CO₃ (1.5 equiv), K₂HPO₄ (1.5 equiv), BQ (0.5 equiv), H₂O (10.0 equiv), *t*-BuOH (1.0 mL), 80 °C, air, 12 h. ^{*b*} ¹H NMR yields, using CH₂Br₂ as an internal standard.

Screening of Ag Salts and Pd source^{a,b}

H _{≁,} → → → → → → → → → → → → → → → → → → →	+ MeO ₂ C	2a Bpin	Pd(ل مو BC	OAc) ₂ (10 mol%) P_2 25 (20 mol%) P_2 CO ₃ , K ₂ HPO ₄ Q, H ₂ O, <i>t</i> -BuOH 80 °C, air, 12 h	MeO ₂ C	, Мон
Ag Salt	Yield	er		Pd source	Yield	er
no change	70%	97:3		PdCl ₂	16%	-
AgOAc	43%	96:4		Pd(TFA) ₂	37%	96:4
AgOPiv	10%	-		Pd(MeCN) ₄ (BF ₄) ₂	34%	94:6
ΔαΤΕΔ	ND			Pd(MeCN) ₂ Cl ₂	35%	93:7
	INIX	-		Pd(PhCN) ₂ Cl ₂	30%	94:6
AgF	8%	-		[Pd(allyl)Cl] ₂	23%	92:8
Ag ₂ O	31%	93:7		$Pd(pph_3)_2Cl_2$	20%	91:9

^{*a*} Conditions: **1a** (0.1 mmol), **2a** (1.5 equiv), Pd (10 mol%), **L25** (20 mol%), Ag (1.5 equiv), K₂HPO₄ (1.5 equiv), BQ (0.5 equiv), H₂O (10.0 equiv), *t*-BuOH (1.0 mL), 80 °C, air, 12 h. ^{*b*} ¹H NMR yields, using CH₂Br₂ as an internal standard.

Screening of Solvent and Temperature^{*a,b*}

H _{**} 0 1a	H ⁺ _{MeO₂C 2a}	Bpin Pd(OAc) ₂ (10 mol% L25 (20 mol%) Ag ₂ CO ₃ , K ₂ HPO ₄ BQ, H ₂ O, <i>t</i> -BuOH 80 °C, air, 12 h	6) MeO ₂ C	Эл. ОН За
Entry	Solvent	Temperature	Yield	er
1	t-BuOH	80 °C	70%	97:3
2	t-AmylOH	80 °C	56%	94:6
3	THF	80 °C	16%	-
4	Dioxane	80 °C	19%	-
5	MeCN	80 °C	N.R.	-
6	HFIP	80 °C	21%	89:11
7	DMF	80 °C	N.R.	-
8	t-BuOH	70 °C	61%	97:3
9	t-BuOH	90 °C	71%	90:10

^{*a*} Conditions: **1a** (0.1 mmol), **2a** (1.5 equiv), Pd(OAc)₂ (10 mol%), **L25** (20 mol%), Ag₂CO₃ (1.5 equiv), K₂HPO₄ (1.5 equiv), BQ (0.5 equiv), H₂O (10.0 equiv), *t*-BuOH (1.0 mL), 80 °C, air, 12 h. ^{*b*} ¹H NMR yields, using CH₂Br₂ as an internal standard.

Screening of Bases^{*a,b*}

H ^{w,} , , , , , , , , , , , , , , , , , , ,	+ MeO ₂ (- Bpin -	Pd(OAc) ₂ (10 mol%) M L25 (20 mol%) Ag ₂ CO ₃ , K ₂ HPO ₄ BQ, H ₂ O, <i>t</i> -BuOH	eO ₂ C	V ^{,U} oh
1a		2a	80 °C, air, 12 h	3a	
Base	Yield	er	Base	Yield	er
None	3%	-	LiF	NR	-
NaOAc	11%	-	KOAc	32%	94:6
NaHCO ₃	9%	-	KHCO3	12%	-
Na ₂ CO ₃	23%	94:6	K ₂ CO ₃	29%	94:6
NaH ₂ PO ₄	NR	-	KH ₂ PO ₄	18%	-
Na ₂ HPO ₄	5%	-	K₂HPO₄· 3H₂O	45%	93:7
Na ₃ PO ₄	18%	-	K ₃ PO ₄	47%	96:4
Li ₂ CO ₃	NR	-	KF	11%	-
LiOAc	NR	-	Cs_2CO_3	26%	95:5
Li ₃ PO ₄	NR	-	CsOAc	11%	-

^{*a*} Conditions: **1a** (0.1 mmol), **2a** (1.5 equiv), Pd(OAc)₂ (10 mol%), **L25** (20 mol%), Ag₂CO₃ (1.5 equiv), K₂HPO₄ (1.5 equiv), BQ (0.5 equiv), H₂O (10.0 equiv), *t*-BuOH (1.0 mL), 80 °C, air, 12 h. ^{*b*} ¹H NMR yields, using CH₂Br₂ as an internal standard.

Screening of loading of reagents^{*a,b*}

	+ Ferrir -	Pd(L	OAc) ₂ (10 mol%) .25 (20 mol%)	MeO ₂ C		
[™]	MeO ₂ C	Ag BC	9 ₂ CO ₃ , K ₂ HPO ₄ Q, H ₂ O, <i>t</i> -BuOH			Н
1a	2a	8	0 °C, air, 12 h		3a	
Change	Yield		Ва	ise	Yield	
No Change	70%		Ag ₂ CO ₃ (1.0 equiv)	57%	
K ₂ HPO ₄ (1.0 equiv)	61%		Ag ₂ CO ₃ (2.0 equiv)	68%	
K ₂ HPO ₄ (2.0 equiv)	67%		ArBpin (1	1.0 equiv)	57%	
K ₂ HPO ₄ (3.0 equiv)	46%		ArBpin (2	2.0 equiv)	70%	

^{*a*} Conditions: **1a** (0.1 mmol), **2a** (1.5 equiv), Pd(OAc)₂ (10 mol%), **L25** (20 mol%), Ag₂CO₃ (1.5 equiv), K₂HPO₄ (1.5 equiv), BQ (0.5 equiv), H₂O (10.0 equiv), *t*-BuOH (1.0 mL), 80 °C, air, 12 h. ^{*b*} ¹H NMR yields, using CH₂Br₂ as an internal standard.

3.3 Optimization of Conditions of Arylation for Cyclobutanecarboxylic Acid

Screening of Solvent and Temperature^{*a,b*}

Et 0 4a	ЮН ⁺ _{MeO2} C 2a	Pd(OAc)2 (10 m) L36 (20 mo) Ag2CO3, K2H BQ, H2O, t-B 60 °C, air, 12	mol%) I%) IPO4 BuOH 2 h	OH OH 5a CO ₂ Me
Entry	Solvent	Temperature	Yield	er
1	t-BuOH	60 °C	62%	94:6
2	t-AmylOH	60 °C	38%	85:15
3	THF	60 °C	23%	86:14
4	Dioxane	60 °C	12%	-
5	MeCN	60 °C	N.R.	-
6	HFIP	60 °C	32%	64:36
7	DMF	60 °C	N.R.	-
8	t-BuOH	80 °C	60%	90:10
9	t-BuOH	50 °C	46%	94:6

^{*a*} Conditions: **4a** (0.1 mmol), **2a** (1.5 equiv), Pd(OAc)₂ (10 mol%), **L36** (20 mol%), Ag₂CO₃ (2.0 equiv), K₂HPO₄ (1.5 equiv), BQ (0.5 equiv), H₂O (5.0 equiv), *t*-BuOH (1.0 mL), 60 °C, air, 12 h. ^{*b*} ¹H NMR yields, using CH₂Br₂ as an internal standard.

Screening of loading of reagents^{*a,b*}

Еt Он + М 4а	eO ₂ C 2a	Pd(OAc) ₂ (10 mol%) L36 (20 mol%) Ag ₂ CO ₃ , K ₂ HPO ₄ BQ, H ₂ O, <i>t</i> -BuOH 60 °C, air, 12 h Ft OH Gt OH CO_2Me
Change	Yield	Base Yield
No Change	62%	Ag ₂ CO ₃ (1.0 equiv) 53%
K ₂ HPO ₄ (1.0 equiv)	50%	Ag ₂ CO ₃ (2.0 equiv) 62%
K ₂ HPO ₄ (2.0 equiv)	52%	ArBpin (1.0 equiv) 51%
K ₂ HPO ₄ (3.0 equiv)	43%	ArBpin (2.0 equiv) 62%

^{*a*} Conditions: **4a** (0.1 mmol), **2a** (1.5 equiv), Pd(OAc)₂ (10 mol%), **L36** (20 mol%), Ag₂CO₃ (2.0 equiv), K₂HPO₄ (1.5 equiv), BQ (0.5 equiv), H₂O (5.0 equiv), *t*-BuOH (1.0 mL), 60 °C, air, 12 h. ^{*b*} ¹H NMR yields, using CH₂Br₂ as an internal standard.

3.4 Optimization of Conditions of Vinylation for Cyclopropanetanecarboxylic Acid

Screening of Ag Salts and Pd source^{*a,b*}

н,Он 6а	Ph、 + Ph	Bpin -	Pd(O L2 Ag ₂ BQ, 80	Ac) ₂ (10 mol%) 8 (20 mol%) CO ₃ , K ₂ HPO ₄ H ₂ O, <i>t</i> -BuOH ⁰C, air, 12 h	Ph Ph Ph 8a	Цон
Ag Salt	Yield	er		Pd source	Yield	er
no change	48%	96:4		PdCl ₂	18%	-
AgOAc	19%	-		Pd(TFA) ₂	52%	95:5
AgOPiv	12%	-		$Pd(MeCN)_4(BF_4)_2$	63%	98:2
AgTEA	7%	_		Pd(MeCN) ₂ Cl ₂	53%	97:4
, (g , t	7 70			Pd(PhCN) ₂ Cl ₂	52%	96:4
AgF	17%	-		[Pd(allyl)Cl] ₂	71%	98:2
Ag ₂ O	29%	96:4		Pd(pph ₃) ₂ Cl ₂	54%	96:4

^{*a*} Conditions: **6a** (0.1 mmol), **7a** (2.0 equiv), Pd (10 mol%), **L28** (20 mol%), Ag (1.5 equiv), K₂HPO₄ (1.5 equiv), BQ (0.5 equiv), H₂O (2.0 equiv), *t*-BuOH (1.0 mL), 80 °C, air, 12 h. ^{*b*} ¹H NMR yields, using CH₂Br₂ as an internal standard.

Screening of Ligand^{*a,b*}

^a Conditions: 6a (0.1 mmol), 7a (2.0 equiv), [Pd(allyl)Cl]₂ (5 mol%), Ligand (20 mol%), Ag₂CO₃ (1.5 equiv),

K₂HPO₄ (1.5 equiv), BQ (0.5 equiv), H₂O (2.0 equiv), *t*-BuOH (1.0 mL), 80 °C, air, 12 h. b ¹H NMR yields, using CH₂Br₂ as an internal standard.

General procedure for enantioselective arylation of cyclopropanecarboxylic acid: A 2-dram vial equipped with a magnetic stir bar was charged with $Pd(OAc)_2$ (2.2 mg, 10 mol%) and L25 (9.4 mg, 20 mol%) in *t*-BuOH (1.0 ml) and then stirred at the rate of 300 rpm at room temperature for 5 min. The appropriate cyclopropanecarboxylic acid substrate (0.10 mmol), Ag₂CO₃ (41.4 mg, 0.15 mmol), K₂HPO₄ (26.0 mg, 0.15 mmol), Aryl-Bpin (0.15 mmol), BQ (5.4 mg, 0.05 mmol), H₂O (18.0 mg, 1.0 mmol)was then added. Subsequently the vial was capped and closed tightly. The reaction mixture was then stirred at the rate of 300 rpm at 80 °C for 12 h. After being allowed to cool to room temperature, the mixture was diluted with ethyl acetate and 0.1 ml of acetic acid was then added. The mixture was passed through a pad of Celite with ethyl acetate as the eluent to remove any insoluble precipitate. The resulting solution was concentrated, and the residual mixture was dissolved with a minimal amount of acetone and loaded onto a preparative TLC plate. The pure product was then isolated using preparative TLC with ethyl acetate and hexane (1/4 to 1/1) as the eluent and 1% v/v of acetic acid as additive.

(1R,2S)-2-(4-(methoxycarbonyl)phenyl)cyclopropane-1-carboxylic acid (3a)

Substrate **1** was arylated following the general arylation procedure (eluent: hexane/ethyl acetate = 2/1 with 1% v/v of acetic acid). The product was obtained as a white solid (70% yield).

The enantiomeric purity of the substrate was determined by SFC analysis (CHIRALPAK[®] AS-3 column, 30% ^{*i*}PrOH / CO₂, flow rate 2 mL/min, retention time 1.825 min (major) and 2.171 min (minor), 97:3 er); $[\alpha]_D^{20} = -6.7$ (c = 1.0, CHCl₃).

¹H NMR (600 MHz, CDCl₃) δ 7.92 (d, *J* = 8.3 Hz, 2H), 7.29 (d, *J* = 7.8 Hz, 2H), 3.91 (s, 3H), 2.63 (q, *J* = 8.5 Hz, 1H), 2.08 (ddd, *J* = 9.2, 7.8, 5.6 Hz, 1H), 1.69 (dt, *J* = 7.6, 5.4 Hz, 1H), 1.42 (ddd, *J* = 8.5, 7.8, 5.1 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 176.11, 167.05, 141.35, 129.30, 129.23, 128.59, 52.02, 26.32, 21.65, 12.24.

HRMS (ESI-TOF) m/z Calcd for C₁₂H₁₃O₄⁺ [M+H]⁺ 221.0808, found 221.0814.

(1R,2S)-2-(4-acetylphenyl)cyclopropane-1-carboxylic acid (3b)

Substrate **1** was arylated following the general arylation procedure (eluent: hexane/ethyl acetate = 2/1 with 1% v/v of acetic acid). The product was obtained as a white solid (62% yield).

The enantiomeric purity of the substrate was determined by SFC analysis (CHIRALPAK[®] AS-3 column, 5% ^{*i*}PrOH / CO₂, flow rate 2 mL/min, retention time 9.023 min (major) and 14.154 min (minor), 98:2 er);

¹H NMR (600 MHz, CDCl₃) δ 7.84 (d, *J* = 8.3 Hz, 2H), 7.32 (d, *J* = 8.1 Hz, 2H), 2.64 (q, *J* = 8.5 Hz, 1H), 2.58 (s, 3H), 2.10 (ddd, *J* = 9.3, 7.8, 5.6 Hz, 1H), 1.71 (dt, *J* = 7.8, 5.4 Hz, 1H), 1.44 (td, *J* = 8.2, 5.2 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 197.95, 175.99, 141.63, 135.66, 129.47, 128.04, 26.58, 26.32, 21.70, 12.29.

HRMS (ESI-TOF) m/z Calcd for C₁₂H₁₃O₃⁺ [M+H]⁺ 205.0859, found 205.0857.

with literature.

OH

Substrate **1** was arylated following the general arylation procedure (eluent: hexane/ethyl acetate = 5/1 with 1% v/v of acetic acid). The product was obtained as a pale-yellow solid (69% yield).

The enantiomeric purity of the substrate was determined by SFC analysis (CHIRALPAK[®] OJ-3 column, 5% ^{*i*}PrOH / CO₂, flow rate 1 mL/min, retention time 4.897 min (major) and 5.495 min (minor), 97:3 er);

¹H NMR (600 MHz, CDCl₃) δ 7.49 (d, *J* = 8.5 Hz, 2H), 7.33 (d, *J* = 8.4 Hz, 2H), 2.64 (q, *J* = 8.6 Hz, 1H), 2.09 (ddd, *J* = 9.3, 7.7, 5.6 Hz, 1H), 1.69 (dt, *J* = 7.7, 5.4 Hz, 1H), 1.43 (ddd, *J* = 8.7, 7.8, 5.2 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 176.43, 140.02 (q, *J* = 1.5 Hz), 129.59, 128.97 (q, *J* = 31.5 Hz), 124.82 (q, *J* = 3 Hz), 124.22 (q, *J* = 270 Hz), 26.09, 21.58, 12.16. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.69.

HRMS (ESI-TOF) m/z Calcd for $C_{11}H_{10}F_3O_2^+$ [M+H]+231.0627, found 231.0631.

The absolute stereochemistry was assigned based on comparing the specific rotation of **3m** with literature.

(1R,2S)-2-(4-nitrophenyl)cyclopropane-1-carboxylic acid (3d)

Substrate **1** was arylated following the general arylation procedure (eluent: hexane/ethyl acetate = 2/1 with 1% v/v of acetic acid). The product was obtained as a pale-yellow solid (63% yield).

The enantiomeric purity of the substrate was determined by SFC analysis (CHIRALPAK[®] OJ-3 column, 5% ^{*i*}PrOH / CO₂, flow rate 2 mL/min, retention time 5.160 min (major) and 5.715 min (minor), 97:3 er);

¹H NMR (600 MHz, CDCl₃) δ 8.11 (d, *J* = 8.8 Hz, 2H), 7.39 (d, *J* = 8.7 Hz, 2H), 2.67 (q, *J* = 8.5 Hz, 1H), 2.15 (ddd, *J* = 9.3, 7.8, 5.6 Hz, 1H), 1.72 (dt, *J* = 7.7, 5.5 Hz, 1H), 1.53 - 1.47 (m,

1H); ¹³C NMR (150 MHz, CDCl₃) δ 175.87, 146.84, 143.71, 130.14, 123.13, 26.05, 21.90, 12.57.

HRMS (ESI-TOF) m/z Calcd for C₁₀H₁₀NO₄⁺ [M+H]⁺ 208.0604, found 208.0607. The absolute stereochemistry was assigned based on comparing the specific rotation of **3m** with literature.

юн

Substrate **1** was arylated following the general arylation procedure (eluent: hexane/ethyl acetate = 2/1 with 1% v/v of acetic acid). The product was obtained as a pale-yellow solid (66% yield).

The enantiomeric purity of the substrate was determined by SFC analysis (CHIRALPAK[®] AS-3 column, 5% ^{*i*}PrOH / CO₂, flow rate 2 mL/min, retention time 6.706 min (major) and 12.382 min (minor), 97:3 er);

¹H NMR (600 MHz, CDCl₃) δ 7.54 (d, *J* = 8.3 Hz, 2H), 7.33 (d, *J* = 8.2 Hz, 2H), 2.64 (q, *J* = 8.5 Hz, 1H), 2.12 (ddd, *J* = 9.2, 7.8, 5.6 Hz, 1H), 1.69 (dt, *J* = 7.8, 5.5 Hz, 1H), 1.51 - 1.40 (m,

1H); ¹³C NMR (150 MHz, CDCl₃) δ 176.23, 141.55, 131.68, 130.06, 118.90, 110.52, 26.28, 21.82, 12.27.

HRMS (ESI-TOF) m/z Calcd for C₁₁H₁₀NO₂⁺ [M+H]⁺ 188.0706, found 188.0704. The absolute stereochemistry was assigned based on comparing the specific rotation of **3m** with literature.

$(1R,\!2S)\text{-}2\text{-}(4\text{-}fluorophenyl) cyclopropane\text{-}1\text{-}carboxylic\ acid\ (3f)$

Substrate **1** was arylated following the general arylation procedure (eluent: hexane/ethyl acetate = 5/1 with 1% v/v of acetic acid). The product was obtained as a pale-yellow solid (51% yield).

The enantiomeric purity of the substrate was determined by SFC analysis (CHIRALPAK[®] OJ-3 column, 5% ^{*i*}PrOH / CO₂, flow rate 2 mL/min, retention time 3.394 min (major) and 5.098 min (minor), 97:3 er);

¹H NMR (600 MHz, CDCl₃) δ 7.20 (dd, J = 8.4, 5.5 Hz, 2H), 6.93 (t, J = 8.7 Hz, 2H), 2.59 (q,

J = 8.5 Hz, 1H), 2.05 (ddd, J = 9.3, 7.9, 5.5 Hz, 1H), 1.63 (dt, J = 7.6, 5.4 Hz, 1H), 1.38 (ddd, J = 8.7, 7.7, 5.1 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 175.84, 161.74 (d, J = 243 Hz), 131.58 (d, J = 1.5 Hz), 130.75 (d, J = 7.5 Hz), 114.80 (d, J = 22.5 Hz), 25.70, 21.22, 12.21; ¹⁹F NMR (376 MHz, CDCl₃) δ -116.34.

HRMS (ESI-TOF) m/z Calcd for $C_{10}H_{10}FO_2^+$ [M+H]⁺181.0659, found 181.0658.

The absolute stereochemistry was assigned based on comparing the specific rotation of **3m** with literature.

Substrate **1** was arylated following the general arylation procedure (eluent: hexane/ethyl acetate = 5/1 with 1% v/v of acetic acid). The product was obtained as a pale-yellow solid (70% yield).

The enantiomeric purity of the substrate was determined by SFC analysis (CHIRALPAK[®] OJ-3 column, 5% ^{*i*}PrOH / CO₂, flow rate 2 mL/min, retention time 4.726 min (major) and 6.986 min (minor), 97:3 er);

¹H NMR (600 MHz, CDCl₃) δ 7.22 (d, *J* = 8.5 Hz, 2H), 7.17 (d, *J* = 8.1 Hz, 2H), 2.58 (q, *J* = 8.5 Hz, 1H), 2.08 – 2.03 (m, 1H), 1.64 (dt, *J* = 7.7, 5.4 Hz, 1H), 1.39 (ddd, *J* = 8.7, 7.7, 5.1 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 175.83, 134.40, 132.56, 130.59, 128.10, 25.82, 21.34, 12.15.

HRMS (ESI-TOF) m/z Calcd for $C_{10}H_{10}ClO_2^+$ [M+H]⁺197.0364, found 197.0362.

The absolute stereochemistry was assigned based on comparing the specific rotation of **3m** with literature.

(1R,2S)-2-(p-tolyl)cyclopropane-1-carboxylic acid (3h)

Substrate **1** was arylated following the general arylation procedure (eluent: hexane/ethyl acetate = 5/1 with 1% v/v of acetic acid). The product was obtained as a pale-yellow solid (62%)

yield).

The enantiomeric purity of the substrate was determined by SFC analysis (CHIRALPAK[®] OJ-3 column, 5% ^{*i*}PrOH / CO₂, flow rate 2 mL/min, retention time 5.470min (major) and 7.932 min (minor), 99:1 er);

¹H NMR (600 MHz, CDCl₃) δ 7.13 (d, *J* = 7.7 Hz, 2H), 7.05 (d, *J* = 7.7 Hz, 2H), 2.59 (q, *J* = 8.6 Hz, 1H), 2.30 (s, 3H), 2.06 – 2.00 (m, 1H), 1.64 (dt, *J* = 7.8, 5.4 Hz, 1H), 1.35 (td, *J* = 8.2, 4.9 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 175.58, 136.28, 132.85, 129.09, 128.69, 26.17, 21.23, 21.09, 12.06.

HRMS (ESI-TOF) m/z Calcd for $C_{11}H_{13}O_2^+$ [M+H]⁺ 177.0910, found 177.0905.

(1R,2S)-2-(4-(trifluoromethoxy)phenyl)cyclopropane-1-carboxylic acid (3i) Substrate 1 was arylated following the general arylation procedure (eluent: hexane/ethyl

acetate = 3/1 with 1% v/v of acetic acid). The product was obtained as a pale-yellow solid (73% yield).

The enantiomeric purity of the substrate was determined by SFC analysis (CHIRALPAK[®] OJ-3 column, 3% ^{*i*}PrOH / CO₂, flow rate 1 mL/min, retention time 6.532 min (major) and 8.508 min (minor), 97:3 er);

¹H NMR (600 MHz, CDCl₃) δ 7.22 (d, *J* = 8.7 Hz, 2H), 7.08 (d, *J* = 8.3 Hz, 2H), 2.58 (q, *J* = 8.5 Hz, 1H), 2.04 (ddd, *J* = 9.1, 7.7, 5.6 Hz, 1H), 1.62 (dt, *J* = 7.7, 5.4 Hz, 1H), 1.38 (td, *J* = 8.2, 5.1 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 176.88, 147.98 (q, *J* = 1.5 Hz), 134.70, 130.58, 120.47 (q, *J* = 255 Hz), 120.37, 25.69, 21.45, 12.12; ¹⁹F NMR (376 MHz, CDCl₃) δ -58.12.

HRMS (ESI-TOF) m/z Calcd for C₁₁H₁₀F₃O₃⁺ [M+H]⁺ 247.0577, found 247.0579.

 $(1R,\!2S)\text{-}2\text{-}(3\text{-}(trifluoromethyl)phenyl)cyclopropane-1\text{-}carboxylic \ acid \ (3j)$

Substrate **1** was arylated following the general arylation procedure (eluent: hexane/ethyl acetate = 5/1 with 1% v/v of acetic acid). The product was obtained as a pale-yellow oil (77% yield).

The enantiomeric purity of the substrate was determined by SFC analysis (CHIRALPAK[®] OJ-3 column, 5% ^{*i*}PrOH / CO₂, flow rate 1 mL/min, retention time 4.529 min (major) and 5.711 min (minor), 92:8 er);

¹H NMR (600 MHz, CDCl₃) δ 7.48 (s, 1H), 7.46 (d, J = 7.6 Hz, 1H), 7.39 (d, J = 7.8 Hz, 1H), 7.34 (t, J = 7.7 Hz, 1H), 2.64 (q, J = 8.6 Hz, 1H), 2.08 (ddd, J = 9.2, 7.8, 5.6 Hz, 1H), 1.68 (dt, J = 7.7, 5.4 Hz, 1H), 1.43 (ddd, J = 8.7, 7.8, 5.2 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 176.38, 136.92, 132.59, 130.28 (q, J = 31.5 Hz), 128.31, 126.11 (q, J = 4.5 Hz), 124.11 (q, J = 270 Hz), 123.62 (q, J = 4.5 Hz), 26.06, 21.40, 12.22; ¹⁹F NMR (376 MHz, CDCl₃) δ -62.90.

HRMS (ESI-TOF) m/z Calcd for $C_{11}H_{10}F_3O_2^+$ [M+H]⁺231.0627, found 231.0628.

(1R,2S)-2-(3-(methoxycarbonyl)phenyl)cyclopropane-1-carboxylic acid (3k)

Substrate **1** was arylated following the general arylation procedure (eluent: hexane/ethyl acetate = 2/1 with 1% v/v of acetic acid). The product was obtained as a white solid (67% yield).

The enantiomeric purity of the substrate was determined by SFC analysis (CHIRALPAK[®] OJ-3 column, 5% ^{*i*}PrOH / CO₂, flow rate 2 mL/min, retention time 4.789 min (major) and 6.673 min (minor), 95:5 er);

¹H NMR (600 MHz, CDCl₃) δ 7.93 (s, 1H), 7.87 (d, *J* = 7.8 Hz, 1H), 7.40 (d, *J* = 7.6 Hz, 1H), 7.30 (t, *J* = 7.7 Hz, 1H), 3.91 (s, 3H), 2.64 (q, *J* = 8.5 Hz, 1H), 2.10 – 2.03 (m, 1H), 1.70 (dt, *J* = 7.7, 5.4 Hz, 1H), 1.41 (td, *J* = 8.2, 5.1 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 175.83, 167.06, 136.33, 133.70, 130.62, 129.87, 128.09, 127.97, 52.08, 26.11, 21.28, 12.15.

HRMS (ESI-TOF) m/z Calcd for $C_{12}H_{13}O_4^+$ [M+H]⁺ 221.0808, found 221.0807.

$(1R,\!2S)\text{-}2\text{-}(2\text{-}(methoxycarbonyl)phenyl)cyclopropane-1\text{-}carboxylic acid (3l)$

Substrate **1** was arylated following the general arylation procedure (eluent: hexane/ethyl acetate = 2/1 with 1% v/v of acetic acid). The product was obtained as a white solid (54% yield).

The enantiomeric purity of the substrate was determined by SFC analysis (CHIRALPAK[®] OJ-3 column, 5% ^{*i*}PrOH / CO₂, flow rate 2 mL/min, retention time 3.271 min (major) and 4.985 min (minor), 99:1 er);

¹H NMR (600 MHz, CDCl₃) δ 7.83 (d, *J* = 7.8 Hz, 1H), 7.41 (t, *J* = 7.6 Hz, 1H), 7.32 (d, *J* = 7.7 Hz, 1H), 7.30 – 7.25 (m, 1H), 3.82 (s, 3H), 2.98 (q, *J* = 8.6 Hz, 1H), 2.12 (ddd, *J* = 9.3, 7.7, 5.4 Hz, 1H), 1.60 (dt, *J* = 8.0, 5.2 Hz, 1H), 1.43 (td, *J* = 8.1, 5.0 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 177.08, 167.76, 137.61, 131.58, 131.08, 130.88, 130.08, 126.76, 51.95, 26.30, 21.71, 13.43.

HRMS (ESI-TOF) m/z Calcd for $C_{12}H_{13}O_4^+$ [M+H]⁺ 221.0808, found 221.0807.

Substrate **1** was arylated following the general arylation procedure (eluent: hexane/ethyl acetate = 5/1 with 1% v/v of acetic acid). The product was obtained as a pale-yellow solid (68% yield).

The enantiomeric purity of the substrate was determined by SFC analysis (CHIRALPAK[®] OJ-3 column, 5% ^{*i*}PrOH / CO₂, flow rate 2 mL/min, retention time 5.287 min (major) and 11.697 min (minor), 98:2 er);

¹H NMR (600 MHz, CDCl₃) δ 7.26 – 7.22 (m, 4H), 7.20 (td, *J* = 5.9, 2.4 Hz, 1H), 2.62 (q, *J* = 8.6 Hz, 1H), 2.04 (ddd, *J* = 9.3, 7.7, 5.6 Hz, 1H), 1.66 (dt, *J* = 7.7, 5.3 Hz, 1H), 1.37 (ddd, *J* = 8.7, 7.7, 5.0 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 176.04, 135.91, 129.24, 127.94, 126.76, 26.48, 21.26, 12.00.

HRMS (ESI-TOF) m/z Calcd for C₁₀H₁₁O₂⁺ [M+H]⁺ 163.0754, found 163.0752.

Substrate 1 was arylated following the general arylation procedure (eluent: hexane/ethyl acetate = 2/1 with 1% v/v of acetic acid). The product was obtained as a white solid (66% yield).

The enantiomeric purity of the substrate was determined by SFC analysis (CHIRALPAK[®] OJ-3 column, 5% ^{*i*}PrOH / CO₂, flow rate 1 mL/min, retention time 8.903 min (major) and 10.053 min (minor), 97:3 er);

¹H NMR (600 MHz, CDCl₃) δ 8.51 (s, 1H), 8.10 (s, 2H), 3.93 (s, 6H), 2.66 (s, 1H), 2.13 (d, J = 7.4 Hz, 1H), 1.75 (s, 1H), 1.46 (s, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 166.28, 161.00, 134.71, 130.27, 129.23, 116.15, 52.36, 24.68, 24.52, 12.32.

HRMS (ESI-TOF) *m/z* Calcd for C₁₄H₁₃O₆⁻ [M-H]⁻ 277.0712, found 277.0719.

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	8.903	MM	0.3549	2.26563e4	1064.05310	97.0697
2	10.053	MM	0.3360	683.93158	33.92376	2.9303
_						
	NBoc					
\land	0					
	, , , , , , , , , , , , , , , , , , , 					
	V					

(1R,2S)-2-(1-(tert-butoxycarbonyl)-1H-indol-7-yl)cyclopropanecarboxylic acid (30) Substrate 1 was arylated following the general arylation procedure (eluent: hexane/ethyl acetate = 2/1 with 1% v/v of acetic acid). The product was obtained as a white solid (47% yield).

The enantiomeric purity of the substrate was determined by SFC analysis (CHIRALPAK[®] AS-3 column, 5% ^{*i*}PrOH / CO₂, flow rate 1 mL/min, retention time 16.895 min (major) and 19.070 min (minor), 99:1 er);

¹H NMR (600 MHz, CDCl₃) δ 8.00 (s, 1H), 7.55 (d, *J* = 3.4 Hz, 1H), 7.42 (dd, *J* = 1.8, 0.9 Hz, 1H), 7.21 (dd, *J* = 8.5, 1.8 Hz, 1H), 6.49 (dd, *J* = 3.6, 0.8 Hz, 1H), 2.72 (q, *J* = 8.6 Hz, 1H), 2.08 – 2.02 (m, 1H), 1.74 – 1.70 (m, 1H), 1.66 (s, 9H), 1.41 – 1.37 (m, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 180.47, 175.83, 149.77, 130.43, 130.20, 126.03, 125.72, 121.42, 114.60, 107.25, 28.19, 26.56, 21.32, 12.26, 9.05.

HRMS (ESI-TOF) *m/z* Calcd for C₁₇H₁₈NO₄⁻ [M-H]⁻ 300.1236, found 300.1228.

2

18.171 MM

The absolute stereochemistry was assigned based on comparing the specific rotation of **3m** with literature.

1.1199 1900.02429

28.27714

48.7981

The enantiomeric purity of the substrate was determined by SFC analysis (CHIRALPAK[®] AD-3 column, 20% ^{*i*}PrOH / CO₂, flow rate 2 mL/min, retention time 6.300 min (major) and 7.776 min (minor), 98:2 er);

¹H NMR (600 MHz, CDCl₃) δ 7.96 (d, *J* = 8.3 Hz, 2H), 7.48 – 7.41 (m, 2H), 7.35 (td, *J* = 7.9, 5.7 Hz, 4H), 7.31 – 7.27 (m, 1H), 3.93 (s, 3H), 2.89 (t, *J* = 8.4 Hz, 1H), 2.26 (dd, *J* = 7.8, 5.0 Hz, 1H), 1.70 (dd, *J* = 9.0, 5.0 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 175.85, 167.05, 141.33, 139.32, 130.19, 129.37, 129.20, 128.66, 128.38, 127.66, 52.06, 37.83, 34.38, 19.25.

HRMS (ESI-TOF) m/z Calcd for C₁₈H₁₆O₄Na⁺ [M+Na]⁺ 319.0941, found 319.0943.

(1R,2R)-2-(4-(methoxycarbonyl)phenyl)-1-(4-(trifluoromethyl)phenyl)cyclopropane-1-ca rboxylic acid (3q)

Substrate **1q** was arylated following the general arylation procedure (eluent: hexane/ethyl acetate = 2/1 with 1% v/v of acetic acid). The product was obtained as a white solid (69% yield).

The enantiomeric purity of the substrate was determined by SFC analysis (CHIRALPAK[®] AD-3 column, 20% ^{*i*}PrOH / CO₂, flow rate 2 mL/min, retention time 2.741 min (major) and 3.339 min (minor), 97:3 er);

¹H NMR (600 MHz, CDCl₃) δ 7.96 (d, J = 8.4 Hz, 2H), 7.60 (d, J = 8.1 Hz, 2H), 7.55 (d, J = 8.1 Hz, 2H), 7.35 (d, J = 8.0 Hz, 2H), 3.93 (s, 3H), 2.88 (t, J = 8.5 Hz, 1H), 2.31 (dd, J = 7.9, 5.2 Hz, 1H), 1.72 (dd, J = 9.0, 5.2 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 175.49, 167.02, 143.07, 140.67, 130.63, 129.87 (q, J = 33.0 Hz), 129.98, 129.76, 129.54, 129.43, 129.18, 128.87, 125.35 (q, J = 3.0 Hz), 123.97 (q, J = 270 Hz), 52.12, 37.41, 34.51, 19.20; ¹⁹F NMR (376 MHz, CDCl₃) δ -62.82.

HRMS (ESI-TOF) m/z Calcd for C₁₉H₁₆F₃O₄⁺ [M+H]⁺ 365.0995, found 365.0994.

(1R,2R)-1-butyl-2-(4-(methoxycarbonyl)phenyl)cyclopropane-1-carboxylic acid (3r) Substrate 1r was arylated following the general arylation procedure (eluent: hexane/ethyl acetate = 2/1 with 1% v/v of acetic acid). The product was obtained as a pale-yellow solid (63% yield).

The enantiomeric purity of the substrate was determined by SFC analysis (CHIRALPAK[®] AD-3 column, 20% ^{*i*}PrOH / CO₂, flow rate 2 mL/min, retention time 3.240 min (major) and 3.738 min (minor), 95:5 er);

¹H NMR (600 MHz, CDCl₃) δ 7.89 (d, *J* = 8.4 Hz, 2H), 7.21 (d, *J* = 8.2 Hz, 2H), 3.90 (s, 3H), 2.38 (t, *J* = 8.0 Hz, 1H), 2.06 – 1.98 (m, 1H), 1.88 (ddd, *J* = 7.5, 5.0, 1.0 Hz, 1H), 1.52 – 1.39 (m, 2H), 1.35 – 1.26 (m, 3H), 1.18 (dd, *J* = 8.7, 5.1 Hz, 1H), 0.91 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 177.71, 167.10, 142.12, 129.14, 129.02, 128.22, 35.27, 33.44, 33.23, 29.74, 22.72, 18.63, 13.93.

HRMS (ESI-TOF) m/z Calcd for C₁₆H₂₀O₄⁺ [M+H]⁺ 277.1434, found 277.1437.

(1R,2R)-2-(4-(methoxycarbonyl)phenyl)-1-(3-phenylpropyl)cyclopropane-1-carboxylic acid (3s)

Substrate **1s** was arylated following the general arylation procedure (eluent: hexane/ethyl acetate = 2/1 with 1% v/v of acetic acid). The product was obtained as a pale-yellow oil (44% yield).

The enantiomeric purity of the substrate was determined by SFC analysis (CHIRALPAK[®] AD-3 column, 20% ^{*i*}PrOH / CO₂, flow rate 2 mL/min, retention time 7.675 min (major) and 8.768 min (minor), 96:4 er);

¹H NMR (600 MHz, CDCl₃) δ 7.88 (d, J = 8.3 Hz, 2H), 7.28 (t, J = 7.6 Hz, 2H), 7.22 – 7.15 (m, 5H), 3.88 (s, 3H), 2.63 (t, J = 7.7 Hz, 2H), 2.36 (t, J = 8.1 Hz, 1H), 2.05 (ddd, J = 13.7, 10.9, 5.1 Hz, 1H), 1.93 – 1.76 (m, 3H), 1.37 (ddd, J = 13.8, 11.0, 5.2 Hz, 1H), 1.16 (dd, J = 13.8)
8.7, 5.0 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 177.54, 167.08, 141.97, 141.91, 129.15, 129.05, 128.31, 128.29, 125.77, 51.97, 35.78, 35.14, 33.55, 32.98, 29.17, 18.78. HRMS (ESI-TOF) *m*/*z* Calcd for C₂₁H₂₃O₄⁺ [M+H]⁺ 339.1591, found 339.1595. The absolute stereochemistry was assigned based on comparing the specific rotation of **3m** with literature.

(1R,2R)-1-(5-chloropentyl)-2-(4-(methoxycarbonyl)phenyl)cyclopropane-1-carboxylic acid (3t)

Substrate **1t** was arylated following the general arylation procedure (eluent: hexane/ethyl acetate = 2/1 with 1% v/v of acetic acid). The product was obtained as a pale-yellow oil (62% yield).

The enantiomeric purity of the substrate was determined by SFC analysis (CHIRALPAK[®] AD-3 column, 20% ^{*i*}PrOH / CO₂,flow rate 2 mL/min, retention time 4.489 min (major) and 5.300 min (minor), 96:4 er);

¹H NMR (600 MHz, CDCl₃) δ 7.89 (d, *J* = 8.4 Hz, 2H), 7.22 (d, *J* = 8.1 Hz, 2H), 3.90 (s, 3H), 3.53 (t, *J* = 6.7 Hz, 2H), 2.39 (t, *J* = 8.1 Hz, 1H), 2.04 (ddd, *J* = 14.5, 10.6, 4.2 Hz, 1H), 1.92 – 1.86 (m, 1H), 1.79 (p, *J* = 6.8 Hz, 2H), 1.57 – 1.42 (m, 4H), 1.33 (ddd, *J* = 13.8, 10.5, 5.4 Hz, 1H), 1.20 (dd, *J* = 8.7, 5.1 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 177.61, 167.06, 141.89, 129.14, 129.03, 128.28, 51.98, 44.95, 35.36, 33.53, 33.01, 32.34, 26.86, 26.82, 18.72. HRMS (ESI-TOF) *m/z* Calcd for C₁₇H₂₂ClO₄⁺ [M+H]⁺ 325.1201, found 325.1205.

The absolute stereochemistry was assigned based on comparing the specific rotation of **3m**

(1R,2R)-1-((benzyloxy)methyl)-2-(4-(methoxycarbonyl)phenyl)cyclopropane-1-carboxyli c acid (3u)

Substrate **1u** was arylated following the general arylation procedure (eluent: hexane/ethyl acetate = 2/1 with 1% v/v of acetic acid). The product was obtained as a pale-yellow solid (57% yield).

The enantiomeric purity of the substrate was determined by SFC analysis (CHIRALPAK[®] AS-3 column, 20% ^{*i*}PrOH / CO₂, flow rate 2 mL/min, retention time 2.835 min (major) and 3.830 min (minor), 98:2 er);

¹H NMR (600 MHz, CDCl₃) δ 7.90 (d, *J* = 8.0 Hz, 2H), 7.37 – 7.27 (m, 5H), 7.24 (d, *J* = 8.0 Hz, 2H), 4.58 (s, 2H), 3.87 (d, *J* = 12.2 Hz, 4H), 3.59 (d, *J* = 10.1 Hz, 1H), 2.58 (t, *J* = 8.3 Hz, 1H), 1.96 (dd, *J* = 7.7, 5.1 Hz, 1H), 1.41 (dd, *J* = 8.9, 5.1 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 175.29, 167.00, 141.19, 137.70, 129.23, 129.13, 128.53, 128.43, 127.78, 127.68, 73.15, 71.85, 51.98, 32.79, 31.00, 16.76.

HRMS (ESI-TOF) m/z Calcd for C₂₀H₂₁O_{5⁺} [M+H]⁺ 341.1383, found 341.1383.

The absolute stereochemistry was assigned based on comparing the specific rotation of **3m** with literature.

3.6 Enantioselective Arylation of Cylcobutanecarboxylic acid

General procedure for enantioselective arylation of cyclobutanecarboxylic acid:

A 2-dram vial equipped with a magnetic stir bar was charged with $Pd(OAc)_2$ (2.2 mg, 10 mol%) and L36 (7.4 mg, 20 mol%) in *t*-BuOH (1.0 ml) and then stirred at the rate of 300 rpm at room temperature for 5 min. The appropriate cyclopropanecarboxylic acid substrate (0.10 mmol), Ag₂CO₃ (55.2 mg, 0.2 mmol), K₂HPO₄ (26.0 mg, 0.15 mmol), Aryl-Bpin (0.15 mmol), BQ (5.4 mg, 0.05 mmol), H₂O (9.0 mg, 0.5 mmol) was then added. Subsequently the vial was capped and closed tightly. The reaction mixture was then stirred at the rate of 300 rpm at 60 °C for 12 h. After being allowed to cool to room temperature, the mixture was diluted with ethyl acetate and 0.1 ml of acetic acid was then added. The mixture was passed through a pad of Celite with ethyl acetate as the eluent to remove any insoluble precipitate. The resulting solution was concentrated, and the residual mixture was dissolved with a minimal amount of acetone and loaded onto a preparative TLC plate. The pure product was then isolated using preparative TLC with ethyl acetate and hexane (1/4 to 1/1) as the eluent and 1% v/v of acetic acid as additive.

(1R,2R)-1-ethyl-2-(4-(methoxycarbonyl)phenyl)cyclobutanecarboxylic acid (5a) Substrate 4 was arylated following the general arylation procedure (eluent: hexane/ethyl acetate = 2/1 with 1% v/v of acetic acid). The product was obtained as a pale-yellow solid (62% vield).

The enantiomeric purity of the substrate was determined by SFC analysis (CHIRALPAK[®] AS-3 column, 15% ^{*i*}PrOH / CO₂, flow rate 1 mL/min, retention time 4.910 min (miner) and 5.923 min (major), 94:6 er); $[\alpha]_D^{20} = -11.8$ (c = 1.0, CHCl₃).

¹H NMR (600 MHz, CDCl₃) δ 7.94 (d, *J* = 8.4 Hz, 2H), 7.24 (d, *J* = 8.2 Hz, 2H), 3.89 (s, 3H), 3.57 (t, *J* = 8.9 Hz, 1H), 2.54 (td, *J* = 10.5, 3.9 Hz, 1H), 2.50 – 2.43 (m, 1H), 2.24 (dtd, *J* = 11.5, 8.9, 3.9 Hz, 1H), 2.17 (dt, *J* = 14.4, 7.2 Hz, 1H), 1.92 – 1.86 (m, 1H), 1.79 – 1.73 (m, 1H), 0.86 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 177.15, 167.05, 145.89, 129.45, 128.45, 127.33, 56.43, 51.98, 50.03, 32.25, 25.37, 21.18, 9.08.

HRMS (ESI-TOF) m/z Calcd for C₁₅H₁₇O₄⁻ [M-H]⁻ 261.1127, found 261.1132.

(1R,2R)-2-(4-acetylphenyl)-1-ethylcyclobutanecarboxylic acid (5b)

Substrate **4** was arylated following the general arylation procedure (eluent: hexane/ethyl acetate = 2/1 with 1% v/v of acetic acid). The product was obtained as a colorless oil (65% yield).

The enantiomeric purity of the substrate was determined by SFC analysis (CHIRALPAK[®] OJ-3 column, 5% ^{*i*}PrOH / CO₂, flow rate 2 mL/min, retention time 4.255 min (miner) and 5.859 min (major), 93:7 er);

¹H NMR (600 MHz, CDCl₃) δ 7.86 (d, *J* = 8.3 Hz, 2H), 7.26 (s, 2H), 3.57 (t, *J* = 8.8 Hz, 1H), 2.57 (s, 3H), 2.54 (dd, *J* = 10.9, 4.1 Hz, 1H), 2.47 (dd, *J* = 11.2, 8.8 Hz, 1H), 2.27 – 2.23 (m, 1H), 2.17 (d, *J* = 6.2 Hz, 1H), 1.92 – 1.87 (m, 1H), 1.77 (dd, *J* = 13.6, 7.2 Hz, 1H), 0.86 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 197.86, 177.29, 146.20, 135.55, 128.26, 127.52,

56.43, 50.01, 32.27, 26.54, 25.41, 21.22, 9.10.

HRMS (ESI-TOF) m/z Calcd for C₁₅H₁₇O₃⁻ [M-H]⁻261.1127, found 261.1132.

The absolute stereochemistry was assigned based on comparing the specific rotation of **5u** with literature.

Substrate **4** was arylated following the general arylation procedure (eluent: hexane/ethyl acetate = 2/1 with 1% v/v of acetic acid). The product was obtained as a pale-yellow solid (43% yield).

The enantiomeric purity of the substrate was determined by SFC analysis (CHIRALPAK[®] OJ-3 column, 5% ^{*i*}PrOH / CO₂, flow rate 1 mL/min, retention time 9.557 min (miner) and 10.402 min (major), 94:6 er);

¹H NMR (600 MHz, CDCl₃) δ 8.13 (d, *J* = 8.7 Hz, 2H), 7.32 (d, *J* = 8.3 Hz, 2H), 3.61 (t, *J* = 8.8 Hz, 1H), 2.57 – 2.53 (m, 1H), 2.49 – 2.43 (m, 1H), 2.29 (ddd, *J* = 9.1, 7.1, 4.4 Hz, 1H), 2.19 – 2.15 (m, 1H), 1.95 – 1.91 (m, 1H), 1.80 – 1.75 (m, 1H), 0.86 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 177.10, 148.26, 146.72, 128.12, 123.35, 56.52, 49.63, 32.24, 25.39, 21.23, 9.03.

HRMS (ESI-TOF) *m/z* Calcd for C₁₃H₁₄NO₄⁻ [M-H]⁻ 248.0923, found 248.0923.

The absolute stereochemistry was assigned based on comparing the specific rotation of 5u with literature.

(1R,2R)-2-(4-cyanophenyl)-1-ethylcyclobutanecarboxylic acid (5d)

Substrate 4 was arylated following the general arylation procedure (eluent: hexane/ethyl acetate = 2/1 with 1% v/v of acetic acid). The product was obtained as a white solid (50%)

yield).

The enantiomeric purity of the substrate was determined by SFC analysis (CHIRALPAK[®] AS-3 column, 5% ^{*i*}PrOH / CO₂, flow rate 2 mL/min, retention time 4.597 min (miner) and 6.464 min (major), 95:5 er);

¹H NMR (600 MHz, CDCl₃) δ 7.54 (d, *J* = 8.3 Hz, 2H), 7.25 (d, *J* = 8.2 Hz, 2H), 3.55 (t, *J* = 8.8 Hz, 1H), 2.51 (ddd, *J* = 11.4, 9.6, 4.2 Hz, 1H), 2.42 (dq, *J* = 11.7, 9.0 Hz, 1H), 2.25 (dtd, *J* = 11.5, 8.9, 4.2 Hz, 1H), 2.17 – 2.11 (m, 1H), 1.90 (dt, *J* = 11.5, 8.8 Hz, 1H), 1.75 (dt, *J* = 13.3, 7.4 Hz, 1H), 0.86 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 178.94, 146.04, 131.86, 128.06, 118.93, 110.31, 56.48, 49.85, 32.17, 25.23, 20.96, 9.06.

HRMS (ESI-TOF) m/z Calcd for C₁₄H₁₄NO₂⁻ [M-H]⁻ 228.1025, found 228.1023.

(1R,2R)-1-ethyl-2-(4-fluorophenyl)cyclobutanecarboxylic acid (5e)

Substrate **4** was arylated following the general arylation procedure (eluent: hexane/ethyl acetate = 5/1 with 1% v/v of acetic acid). The product was obtained as a pale-yellow oil (62% yield).

The enantiomeric purity of the substrate was determined by SFC analysis (CHIRALPAK[®] OJ-3 column, 5% ^{*i*}PrOH / CO₂, flow rate 2 mL/min, retention time 2.639 min (miner) and 6.111 min (major), 95:5 er);

¹H NMR (600 MHz, CDCl₃) δ 7.11 (ddd, J = 6.0, 5.4, 2.7 Hz, 2H), 6.93 (t, J = 8.7 Hz, 2H), 3.48 (t, J = 9.0 Hz, 1H), 2.52 – 2.46 (m, 1H), 2.43 – 2.35 (m, 1H), 2.20 (dtd, J = 11.4, 9.0, 4.0 Hz, 1H), 2.16 – 2.10 (m, 1H), 1.86 – 1.80 (m, 1H), 1.70 (dt, J = 13.3, 7.4 Hz, 1H), 0.84 (t, J = 7.4 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 178.73, 161.67 (d, J = 243 Hz), 136.07 (d, J = 3.0 Hz), 128.74 (d, J = 7.5 Hz), 114.85 (d, J = 21 Hz), 56.42, 49.54, 32.14, 25.14, 21.52, 9.09; ¹⁹F NMR (376 MHz, CDCl₃) δ -116.70.

HRMS (ESI-TOF) m/z Calcd for C₁₃H₁₄FO₂⁻ [M-H]⁻ 221.0978, found 221.0979.

(1R,2R)-2-(4-chlorophenyl)-1-ethylcyclobutanecarboxylic acid (5f)

Substrate 4 was arylated following the general arylation procedure (eluent: hexane/ethyl acetate = 5/1 with 1% v/v of acetic acid). The product was obtained as a white solid (63% yield).

The enantiomeric purity of the substrate was determined by SFC analysis (CHIRALPAK[®] OJ-3 column, 5% ^{*i*}PrOH / CO₂, flow rate 2 mL/min, retention time 3.581 min (miner) and 7.103 min (major), 92:8 er);

¹H NMR (600 MHz, CDCl₃) δ 7.22 (d, *J* = 8.5 Hz, 2H), 7.09 (d, *J* = 8.1 Hz, 2H), 3.48 (t, *J* = 9.0 Hz, 1H), 2.53 – 2.47 (m, 1H), 2.44 – 2.34 (m, 1H), 2.23 – 2.17 (m, 1H), 2.15 – 2.10 (m, 1H), 1.85 (dt, *J* = 11.4, 8.9 Hz, 1H), 1.75 – 1.67 (m, 1H), 0.85 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 178.68, 138.92, 132.33, 128.64, 128.20, 56.38, 49.58, 32.19, 25.22, 21.36, 9.10.

HRMS (ESI-TOF) m/z Calcd for C₁₃H₁₄ClO₂⁻ [M-H]⁻ 237.0682, found 237.0687.

Substrate **4** was arylated following the general arylation procedure (eluent: hexane/ethyl acetate = 5/1 with 1% v/v of acetic acid). The product was obtained as a white solid (62% yield).

The enantiomeric purity of the substrate was determined by SFC analysis (CHIRALPAK[®] OD-3 column, 10% ^{*i*}PrOH / CO₂, flow rate 2 mL/min, retention time 5.720 min (major) and 7.662 min (minor), 95:5 er);

¹H NMR (600 MHz, CDCl₃) δ 7.56 – 7.54 (m, 2H), 7.48 (d, *J* = 8.3 Hz, 2H), 7.42 – 7.39 (m, 2H), 7.33 – 7.30 (m, 1H), 7.25 (d, *J* = 8.1 Hz, 2H), 3.55 (t, *J* = 8.9 Hz, 1H), 2.56 – 2.45 (m, 2H), 2.24 – 2.16 (m, 2H), 1.88 – 1.83 (m, 1H), 1.76 – 1.72 (m, 1H), 0.84 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 178.01, 140.91, 139.58, 139.38, 128.66, 127.75, 127.05, 126.96, 126.77, 56.46, 50.02, 32.27, 25.33, 21.44, 9.16.

HRMS (ESI-TOF) *m/z* Calcd for C₁₉H₁₉O₂⁻ [M-H]⁻ 279.1385, found 279.1388.

(1R,2R)-1-ethyl-2-(p-tolyl)cyclobutanecarboxylic acid (5h)

Substrate **1** was arylated following the general arylation procedure (eluent: hexane/ethyl acetate = 5/1 with 1% v/v of acetic acid). The product was obtained as a white solid (54% yield).

The enantiomeric purity of the substrate was determined by SFC analysis (CHIRALPAK[®] OJ-3 column, 5% ^{*i*}PrOH / CO₂, flow rate 2 mL/min, retention time 3.734 min (miner) and 7.674 min (major), 92:8 er);

¹H NMR (600 MHz, CDCl₃) δ 7.06 (s, 4H), 3.47 (t, *J* = 9.0 Hz, 1H), 2.53 – 2.48 (m, 1H), 2.45 – 2.39 (m, 1H), 2.29 (s, 3H), 2.21 – 2.13 (m, 2H), 1.85 – 1.79 (m, 1H), 1.73 – 1.68 (m, 1H), 0.84 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 178.49, 137.38, 136.06, 128.80, 127.19, 56.47, 50.12, 32.22, 25.31, 21.55, 21.03, 9.13.

HRMS (ESI-TOF) m/z Calcd for C₁₄H₁₇O₂⁻ [M-H]⁻217.1229, found 217.1226.

The absolute stereochemistry was assigned based on comparing the specific rotation of **5u** with literature.

(1R,2R)-1-ethyl-2-(4-(trifluoromethoxy)phenyl)cyclobutaneca (5i)

Substrate **1** was arylated following the general arylation procedure (eluent: hexane/ethyl acetate = 5/1 with 1% v/v of acetic acid). The product was obtained as a pale-yellow oil (56% yield).

The enantiomeric purity of the substrate was determined by SFC analysis (CHIRALPAK[®] OJ-3 column, 4% ^{*i*}PrOH / CO₂, flow rate 1 mL/min, retention time 5.888 min (miner) and 8.670 min (major), 93:7 er);

¹H NMR (600 MHz, CDCl₃) δ 7.17 (d, J = 8.3 Hz, 2H), 7.09 (d, J = 7.8 Hz, 2H), 3.51 (t, J =

9.0 Hz, 1H), 2.52 – 2.46 (m, 1H), 2.40 (dtd, J = 11.5, 9.5, 8.5 Hz, 1H), 2.25 – 2.19 (m, 1H), 2.17 – 2.11 (m, 1H), 1.88 – 1.83 (m, 1H), 1.74 – 1.69 (m, 1H), 0.84 (t, J = 7.4 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 178.86, 147.89, 139.15, 128.58, 120.50, 120.47 (q, J = 255 Hz), 56.41, 49.48, 32.15, 25.19, 21.41, 9.01; ¹⁹F NMR (376 MHz, CDCl₃) δ -58.14.

HRMS (ESI-TOF) m/z Calcd for C₁₄H₁₄F₃O₃⁻ [M-H]⁻ 287.0895, found 287.0898.

The absolute stereochemistry was assigned based on comparing the specific rotation of 5u with literature.

 $(1R,2R) \hbox{-} 1-ethyl-2-(3-(methoxycarbonyl)phenyl)cyclobutanecarbox\ (5j)$

Substrate **1** was arylated following the general arylation procedure (eluent: hexane/ethyl acetate = 2/1 with 1% v/v of acetic acid). The product was obtained as a white solid (64% yield).

The enantiomeric purity of the substrate was determined by SFC analysis (CHIRALPAK[®] AD-3 column, 10% ^{*i*}PrOH / CO₂, flow rate 1 mL/min, retention time 9.159 min (major) and 10.557 min (minor), 89:11 er);

¹H NMR (600 MHz, CDCl₃) δ 7.85 (d, *J* = 7.7 Hz, 1H), 7.82 (s, 1H), 7.35 (d, *J* = 7.7 Hz, 1H), 7.29 (t, *J* = 7.7 Hz, 1H), 3.90 (s, 3H), 3.55 (t, *J* = 8.8 Hz, 1H), 2.53 – 2.43 (m, 2H), 2.25 – 2.19 (m, 1H), 2.15 (dt, *J* = 14.5, 7.2 Hz, 1H), 1.89 – 1.84 (m, 1H), 1.75 – 1.70 (m, 1H), 0.83 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 178.60, 167.17, 140.78, 131.73, 129.87, 128.59, 128.12, 127.92, 56.39, 52.05, 49.86, 32.20, 25.25, 21.23, 9.09.

HRMS (ESI-TOF) m/z Calcd for C₁₅H₁₇O₄⁻ [M-H]⁻ 261.1127, found 261.1130.

(1R,2R)-1-ethyl-2-(2-(methoxycarbonyl)phenyl)cyclobutanecarboxylic acid (5k)

Substrate **1** was arylated following the general arylation procedure (eluent: hexane/ethyl acetate = 2/1 with 1% v/v of acetic acid). The product was obtained as a colorless oil (60% yield).

The enantiomeric purity of the substrate was determined by SFC analysis (CHIRALPAK[®] OJ-3 column, 5% ^{*i*}PrOH / CO₂, flow rate 2 mL/min, retention time 3.181 min (miner) and 4.768 min (major), 92:8 er);

¹H NMR (600 MHz, CDCl₃) δ 7.69 (dd, J = 7.8, 1.5 Hz, 1H), 7.62 – 7.59 (m, 1H), 7.54 (td, J = 7.6, 1.4 Hz, 1H), 7.28 (td, J = 7.6, 1.2 Hz, 1H), 3.96 (s, 3H), 3.91 – 3.87 (m, 1H), 2.80 (d, J = 12.1 Hz, 1H), 2.42 – 2.38 (m, 1H), 2.25 – 2.20 (m, 2H), 1.97 – 1.92 (m, 2H), 0.92 (t, J = 7.4 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 174.90, 171.37, 141.55, 132.75, 130.48, 129.59, 127.18, 126.72, 55.95, 53.03, 45.81, 31.05, 25.13, 21.05, 9.07.

HRMS (ESI-TOF) m/z Calcd for C₁₅H₁₇O₄⁻ [M-H]⁻261.1127, found 261.1122.

(1R,2R)-1-ethyl-2-(naphthalen-1-yl)cyclobutanecarboxylic acid (5l)

Substrate **1** was arylated following the general arylation procedure (eluent: hexane/ethyl acetate = 5/1 with 1% v/v of acetic acid). The product was obtained as a colorless oil (56% yield).

The enantiomeric purity of the substrate was determined by SFC analysis (CHIRALPAK[®] AD-3 column, 10% ^{*i*}PrOH / CO₂, flow rate 1 mL/min, retention time 14.396 min (major) and 17.263 min (minor), 92:8 er);

¹H NMR (600 MHz, CDCl₃) δ 8.08 (d, J = 8.4 Hz, 1H), 7.81 (d, J = 8.0 Hz, 1H), 7.68 (d, J = 8.1 Hz, 1H), 7.50 – 7.43 (m, 2H), 7.41 (d, J = 7.1 Hz, 1H), 7.36 (t, J = 7.6 Hz, 1H), 4.40 (t, J = 9.1 Hz, 1H), 2.76 – 2.67 (m, 1H), 2.57 – 2.51 (m, 1H), 2.37 – 2.32 (m, 1H), 2.20 (dtd, J = 11.5, 8.6, 3.1 Hz, 1H), 1.96 – 1.88 (m, 2H), 0.85 (t, J = 7.4 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 178.08, 136.09, 133.64, 132.39, 128.64, 127.25, 125.67, 125.36, 125.28, 123.82, 123.66, 57.96, 45.41, 32.49, 24.95, 20.91, 9.38.

HRMS (ESI-TOF) m/z Calcd for $C_{17}H_{17}O_2^-$ [M-H]⁻253.1229, found 253.1225.

The absolute stereochemistry was assigned based on comparing the specific rotation of 5u with literature.

16

17

18

mir

1 15

14

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	용
1	14.396	BV	0.4351	1.18436e4	419.91861	91.3963
2	17.263	MM	0.5120	1114.90845	36.29034	8.6037

(1R,2R)-1-ethyl-2-(naphthalen-2-yl)cyclobutanecarboxylic acid (5m)

Substrate **1** was arylated following the general arylation procedure (eluent: hexane/ethyl acetate = 5/1 with 1% v/v of acetic acid). The product was obtained as a colorless oil (58% yield).

The enantiomeric purity of the substrate was determined by SFC analysis (CHIRALPAK[®] IC-3 column, 10% ^{*i*}PrOH / CO₂, flow rate 2 mL/min, retention time 3.941 min (major) and 5.166 min (minor), 92:8 er);

¹H NMR (600 MHz, CDCl₃) δ 7.78 – 7.74 (m, 2H), 7.66 (d, J = 8.5 Hz, 1H), 7.58 (s, 1H), 7.45 – 7.38 (m, 2H), 7.27 (dd, J = 8.5, 1.8 Hz, 1H), 3.65 (t, J = 8.8 Hz, 1H), 2.59 – 2.48 (m, 2H), 2.25 (ddd, J = 10.9, 2.9, 1.4 Hz, 1H), 2.20 – 2.15 (m, 1H), 1.89 – 1.83 (m, 1H), 1.75 (dt, J = 13.4, 7.4 Hz, 1H), 0.77 (t, J = 7.4 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 178.20, 138.03, 133.29, 132.39, 127.81, 127.54, 127.51, 126.14, 125.79, 125.52, 125.35, 56.50, 50.38, 32.33, 25.36, 21.35, 9.06.

HRMS (ESI-TOF) m/z Calcd for C₁₇H₁₇O₂⁻ [M-H]⁻ 253.1229, found 253.1227.

(1R,2R)-2-(3,5-bis(methoxycarbonyl)phenyl)-1-ethylcyclobutanecarboxylic acid (5n)

Substrate 1 was arylated following the general arylation procedure (eluent: hexane/ethyl acetate = 2/1 with 1% v/v of acetic acid). The product was obtained as a white solid (60% yield).

The enantiomeric purity of the substrate was determined by SFC analysis (CHIRALPAK[®] IC-3 column, 10% ^{*i*}PrOH / CO₂, flow rate 2 mL/min, retention time 5.983 min (major) and 7.467 min (minor), 92:8 er);

¹H NMR (600 MHz, CDCl₃) δ 8.49 (t, *J* = 1.6 Hz, 1H), 8.02 (dd, *J* = 1.6, 0.6 Hz, 2H), 3.92 (s, 6H), 3.60 (t, *J* = 8.5 Hz, 1H), 2.56 – 2.48 (m, 2H), 2.28 – 2.22 (m, 1H), 2.20 – 2.13 (m, 1H), 1.92 – 1.86 (m, 1H), 1.77 – 1.71 (m, 1H), 0.82 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 178.03, 166.28, 141.46, 132.71, 130.34, 129.09, 56.43, 52.30, 49.48, 32.17, 25.26, 21.18, 9.01.

HRMS (ESI-TOF) m/z Calcd for C₁₇H₁₉O₆⁻ [M-H]⁻ 319.1182, found 319.1180.

(1R,2R)-2-(1-(tert-butoxycarbonyl)-1H-indol-7-yl)-1-ethylcyclobutanecarboxylic acid (50)

Substrate **1** was arylated following the general arylation procedure (eluent: hexane/ethyl acetate = 2/1 with 1% v/v of acetic acid). The product was obtained as a pale-yellow solid (42% yield).

The enantiomeric purity of the substrate was determined by SFC analysis (CHIRALPAK[®] OJ-3 column, 5% ^{*i*}PrOH / CO₂, flow rate 2 mL/min, retention time 3.688 min (miner) and 5.836 min (major), 91:9 er);

¹H NMR (600 MHz, CDCl₃) δ 7.99 (s, 1H), 7.53 (d, *J* = 3.5 Hz, 1H), 7.36 (dd, *J* = 1.7, 0.8 Hz, 1H), 7.13 (d, *J* = 8.6 Hz, 1H), 6.49 (dd, *J* = 3.7, 0.8 Hz, 1H), 3.61 (t, *J* = 8.6 Hz, 1H), 2.53 – 2.51 (m, 1H), 2.25 – 2.20 (m, 1H), 2.20 – 2.16 (m, 1H), 1.88 – 1.79 (m, 2H), 1.74 – 1.71 (m,

1H), 1.66 (s, 9H), 0.81 (t, J = 7.3 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 182.67, 178.39, 149.78, 134.81, 130.53, 125.89, 124.05, 119.25, 114.65, 107.37, 56.65, 50.40, 32.23, 29.41, 28.18, 25.26, 21.69, 9.11.

HRMS (ESI-TOF) m/z Calcd for C₂₀H₂₄NO₄⁻ [M-H]⁻ 342.1705, found 342.1700.

The absolute stereochemistry was assigned based on comparing the specific rotation of 5u with literature.

 $(1R,2R) \hbox{-} 1-butyl \hbox{-} 2-(4-(methoxycarbonyl)phenyl) cyclobutane carboxylic acid (5p)$

Substrate **4p** was arylated following the general arylation procedure (eluent: hexane/ethyl acetate = 2/1 with 1% v/v of acetic acid). The product was obtained as a pale-yellow oil (60% yield).

The enantiomeric purity of the substrate was determined by SFC analysis (CHIRALPAK®

IC-3 column, 10% ^{*i*}PrOH / CO₂, flow rate 2 mL/min, retention time 5.918 min (major) and 6.620 min (minor), 86:14 er);

¹H NMR (600 MHz, CDCl₃) δ 7.95 (d, *J* = 8.4 Hz, 2H), 7.24 (s, 2H), 3.90 (s, 3H), 3.78 – 3.71 (m, 2H), 3.15 – 3.09 (m, 1H), 2.71 – 2.67 (m, 1H), 2.16 – 2.11 (m, 2H), 1.61 (p, *J* = 7.7 Hz, 2H), 1.47 (dt, *J* = 14.6, 7.3 Hz, 2H), 1.26 – 1.24 (m, 1H), 1.00 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 173.68, 167.01, 145.95, 129.40, 128.25, 126.91, 61.87, 52.02, 43.98, 38.44, 28.13, 27.02, 23.37, 14.04.

HRMS (ESI-TOF) m/z Calcd for C₁₇H₂₁O₄⁻ [M-H]⁻ 289.1440, found 289.1436.

(1R,2R)-1-(4-chlorophenyl)-2-(4-(methoxycarbonyl)phenyl)cyclobutanecarboxylic acid (5q)

Substrate **4q** was arylated following the general arylation procedure (eluent: hexane/ethyl acetate = 2/1 with 1% v/v of acetic acid). The product was obtained as a pale-yellow oil (53% yield).

The enantiomeric purity of the substrate was determined by SFC analysis (CHIRALPAK[®] OJ-3 column, 5% ^{*i*}PrOH / CO₂, flow rate 2 mL/min, retention time 16.200 min (miner) and 19.175 min (major), 94:6 er);

¹H NMR (600 MHz, CDCl₃) δ 8.00 (d, *J* = 8.1 Hz, 2H), 7.41 (d, *J* = 8.2 Hz, 2H), 7.33 (d, *J* = 6.6 Hz, 2H), 7.25 (d, *J* = 8.5 Hz, 2H), 4.17 (t, *J* = 9.4 Hz, 1H), 3.92 (s, 3H), 2.99 – 2.93 (m, 1H), 2.69 – 2.63 (m, 1H), 2.38 – 2.30 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 175.96, 166.91, 145.48, 142.42, 132.91, 129.73, 129.07, 128.52, 127.91, 127.74, 58.68, 52.12, 50.13, 28.68, 23.15.

HRMS (ESI-TOF) m/z Calcd for C₁₉H₁₆ClO₄⁻ [M-H]⁻ 343.0737, found 343.0734.

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	0/0
1	17.497	BB	0.4760	1321.17957	40.77972	49.8186
2	20.794	BB	0.5283	1330.80139	35.26552	50.1814

(1S,2R)-2-(4-(methoxycarbonyl)phenyl)-1-phenethylcyclobutanecarboxylic acid (5r) Substrate 4r was arylated following the general arylation procedure (eluent: hexane/ethyl acetate = 2/1 with 1% v/v of acetic acid). The product was obtained as a pale-yellow oil (65% yield).

The enantiomeric purity of the substrate was determined by SFC analysis (CHIRALPAK[®] IC-3 column, 10% ^{*i*}PrOH / CO₂, flow rate 2 mL/min, retention time 9.028 min (major) and 11.620 min (minor), 93:7 er);

¹H NMR (600 MHz, CDCl₃) δ 7.93 (d, J = 8.4 Hz, 2H), 7.29 (t, J = 7.6 Hz, 2H), 7.24 – 7.15 (m, 5H), 3.79 (s, 3H), 3.60 (t, J = 8.6 Hz, 1H), 2.62 – 2.42 (m, 5H), 2.27 – 2.20 (m, 1H), 2.03 – 1.89 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 178.42, 166.98, 145.32, 141.68, 129.44, 128.56, 128.42, 128.37, 127.32, 125.95, 55.97, 51.92, 50.56, 41.80, 31.41, 26.01, 21.33.

HRMS (ESI-TOF) m/z Calcd for C₂₁H₂₁O₄⁻ [M-H]⁻ 337.1440, found 337.1438.

CO₂Me

(1S,2R)-2-(4-(methoxycarbonyl)phenyl)-1-(2-phenoxyethyl)cyclobutanecarboxylic acid (5s)

Substrate **4s** was arylated following the general arylation procedure (eluent: hexane/ethyl acetate = 2/1 with 1% v/v of acetic acid). The product was obtained as a colorless oil (52% yield).

The enantiomeric purity of the substrate was determined by SFC analysis (CHIRALPAK[®] IC-3 column, 10% ^{*i*}PrOH / CO₂, flow rate 2 mL/min, retention time 11.010 min (major) and 13.789 min (minor), 84:16 er);

¹H NMR (600 MHz, CDCl₃) δ 7.94 (d, *J* = 8.1 Hz, 2H), 7.26 – 7.22 (m, 4H), 6.95 – 6.90 (m, 1H), 6.84 (d, *J* = 7.8 Hz, 2H), 4.03 – 3.94 (m, 2H), 3.87 (s, 3H), 3.73 (t, *J* = 9.0 Hz, 1H), 2.68 – 2.53 (m, 3H), 2.26 (td, *J* = 7.1, 3.2 Hz, 2H), 2.15 – 2.07 (m, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 177.97, 167.02, 158.53, 145.11, 129.48, 129.44, 128.65, 127.31, 120.76, 114.36, 64.31, 52.01, 50.36, 38.15, 26.23, 24.86, 21.76.

HRMS (ESI-TOF) *m/z* Calcd for C₂₁H₂₂NaO₅⁺ [M+Na]⁺ 377.1365, found 377.1369.

(1R,2R)-1-((1,3-dioxoisoindolin-2-yl)methyl)-2-(4-(methoxycarbonyl)phenyl)cyclobutane carboxylic acid (5t)

Substrate **4t** was arylated following the general arylation procedure (eluent: hexane/ethyl acetate = 2/1 with 1% v/v of acetic acid). The product was obtained as a white solid (57% yield).

The enantiomeric purity of the substrate was determined by SFC analysis (CHIRALPAK[®] AS-3 column, 10% ^{*i*}PrOH / CO₂, flow rate 2 mL/min, retention time 6.848 min (miner) and 8.144 min (major), 93:7 er);

¹H NMR (600 MHz, CDCl₃) δ 7.97 (d, J = 7.1 Hz, 2H), 7.90 (dd, J = 5.4, 3.1 Hz, 2H), 7.77 (dd, J = 5.5, 3.0 Hz, 2H), 7.44 (d, J = 6.5 Hz, 2H), 4.20 (d, J = 15.3 Hz, 1H), 4.01 (d, J = 12.8

Hz, 1H), 3.89 (s, 3H), 3.81 – 3.76 (m, 1H), 2.61 – 2.55 (m, 1H), 2.41 (t, J = 10.2 Hz, 1H), 2.09 (dd, J = 18.4, 9.5 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 185.59, 168.98, 167.10, 144.93, 134.31, 131.88, 129.52, 128.65, 127.47, 123.59, 123.45, 52.01, 45.70, 29.69, 29.21, 23.79, 21.18.

HRMS (ESI-TOF) m/z Calcd for C₂₂H₁₈NO₆⁻ [M-H]⁻ 392.1134, found 392.1127.

The absolute stereochemistry was assigned based on comparing the specific rotation of 5u with literature.

(1R,2S)-2-(4-(methoxycarbonyl)phenyl)cyclobutanecarboxylic acid (5u)

Substrate **4u** was arylated following the general arylation procedure (eluent: hexane/ethyl acetate = 2/1 with 1% v/v of acetic acid). The product was obtained as a white solid (61% yield).

The enantiomeric purity of the substrate was determined by SFC analysis (CHIRALPAK[®] AS-3 column, 15% ^{*i*}PrOH / CO₂, flow rate 1 mL/min, retention time 5.554 min (major) and 7.770 min (minor), 92:8 er);

1H NMR (600 MHz, CDCl₃) δ 7.94 (d, *J* = 8.4 Hz, 2H), 7.25 (d, *J* = 8.2 Hz, 2H), 4.04 – 3.98 (m, 1H), 3.90 (s, 3H), 3.54 (q, *J* = 3.2, 2.4 Hz, 1H), 2.65 – 2.57 (m, 1H), 2.36 – 2.28 (m, 2H), 2.28 – 2.21 (m, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 177.78, 167.09, 146.06, 129.50, 128.36, 127.13, 52.00, 44.56, 42.27, 24.44, 20.53.

HRMS (ESI-TOF) m/z Calcd for C₁₃H₁₃O₄⁻ [M-H]⁻233.0814, found 233.0806.

The absolute stereochemistry was assigned based on comparing the specific rotation of 5u with literature.

3.7 Enantioselective Vinylation of Cylcopropanecarboxylic acid and Cylcobutanecarboxylic acid

General procedure for enantioselective Vinylation of cyclopropanecarboxylic acid and cyclobutanecarboxylic acid: A 2-dram vial equipped with a magnetic stir bar was charged with $[Pd(allyl)Cl]_2(1.9mg, 5 mol\%)$ and L28 (11.7 mg, 20 mol%) in *t*-BuOH (1.0 ml) and then stirred at the rate of 300 rpm at room temperature for 5 min. The appropriate acid substrate (0.10 mmol), Ag₂CO₃ (41.4 mg, 0.15 mmol), K₂HPO₄ (26.0 mg, 0.15 mmol), Vinyl-Bpin (0.2 mmol), BQ (5.4 mg, 0.05 mmol), H₂O (3.6 mg, 0.2 mmol)was then added. Subsequently the vial was capped and closed tightly. The reaction mixture was then stirred at the rate of 300 rpm at 80 °C for 12 h. After being allowed to cool to room temperature, the mixture was diluted with ethyl acetate and 0.1 ml of acetic acid was then added. The mixture was passed through a pad of Celite with ethyl acetate as the eluent to remove any insoluble precipitate. The resulting solution was concentrated, and the residual mixture was dissolved with a minimal amount of acetone and loaded onto a preparative TLC plate. The pure product was then isolated using preparative TLC with ethyl acetate and hexane (1/4 to 1/1) as the eluent and 1% v/v of acetic acid as additive.

(1R,2S)-2-((Z)-1,2-diphenylvinyl)cyclopropanecarboxylic acid (8a)

Substrate **6a** was vinylated following the general vinylation procedure (eluent: hexane/ethyl acetate = 5/1 with 1% v/v of acetic acid). The product was obtained as a colorless oil (71% yield).

The enantiomeric purity of the substrate was determined by SFC analysis (CHIRALPAK[®] IC-3 column, 10% ^{*i*}PrOH / CO₂, flow rate 2 mL/min, retention time 4.352 min (minor) and 5.836 min (major), 98:2 er);

¹H NMR (600 MHz, CDCl₃) δ 7.18 – 7.11 (m, 5H), 7.07 (dt, *J* = 4.9, 1.8 Hz, 3H), 6.96 – 6.90 (m, 2H), 6.55 (s, 1H), 2.38 (q, *J* = 8.8, 8.1 Hz, 1H), 2.05 – 2.00 (m, 1H), 1.70 (dt, *J* = 7.9, 5.3 Hz, 1H), 1.31 (td, *J* = 8.0, 5.1 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 176.52, 140.97, 136.93, 135.51, 129.77, 129.28, 128.61, 128.41, 127.83, 127.05, 126.49, 30.91, 21.45, 12.34. HRMS (ESI-TOF) *m*/*z* Calcd for C₁₈H₁₅O₂⁻ [M-H]⁻263.1072, found 263.1068.

(1R,2S)-2-((E)-1-phenylprop-1-en-2-yl)cyclopropanecarboxylic acid (8b)

Substrate **6b** was vinylated following the general vinylation procedure (eluent: hexane/ethyl acetate = 5/1 with 1% v/v of acetic acid). The product was obtained as a white solid (70% yield).

The enantiomeric purity of the substrate was determined by SFC analysis (CHIRALPAK[®] OJ-3 column, 5% ^{*i*}PrOH / CO₂, flow rate 2 mL/min, retention time 11.153 min (major) and 18.721 min (minor), 97:3 er);

¹H NMR (600 MHz, CDCl₃) δ 7.28 (dd, J = 8.2, 7.1 Hz, 2H), 7.21 – 7.16 (m, 3H), 6.43 (s, 1H), 2.19 – 2.14 (m, 1H), 1.96 – 1.91 (m, 1H), 1.86 (s, 3H), 1.58 (dt, J = 7.7, 5.2 Hz, 1H), 1.23 (td, J = 8.0, 5.0 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 176.64, 137.87, 132.66, 128.85, 128.57, 128.00, 126.20, 30.85, 19.86, 18.65, 12.48.

HRMS (ESI-TOF) *m/z* Calcd for C₁₃H₁₃O₂⁻ [M-H]⁻ 201.0916, found 201.0915.

The absolute stereochemistry was assigned based on comparing the specific rotation of 3m

(1R,2S)-2-((E)-1-phenylbut-1-en-2-yl)cyclopropanecarboxylic acid (8c)

Substrate **6c** was vinylated following the general vinylation procedure (eluent: hexane/ethyl acetate = 5/1 with 1% v/v of acetic acid). The product was obtained as a colorless oil (63% yield).

The enantiomeric purity of the substrate was determined by SFC analysis (CHIRALPAK[®] OJ-3 column, 5% ^{*i*}PrOH / CO₂, flow rate 2 mL/min, retention time 7.637 min (major) and 10.295 min (minor), 94:6 er);

¹H NMR (600 MHz, CDCl₃) δ 7.30 – 7.26 (m, 2H), 7.20 – 7.17 (m, 1H), 7.17 – 7.14 (m, 2H), 6.39 (s, 1H), 2.32 (dq, *J* = 15.0, 7.6 Hz, 1H), 2.21 – 2.15 (m, 2H), 1.97 (ddd, *J* = 9.3, 7.7, 5.4 Hz, 1H), 1.57 (dt, *J* = 7.8, 5.2 Hz, 1H), 1.26 – 1.21 (m, 1H), 1.08 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 177.08, 137.91, 137.59, 128.67, 128.13, 128.02, 126.21, 28.23, 25.18, 20.59, 12.79, 11.73.

HRMS (ESI-TOF) m/z Calcd for $C_{14}H_{15}O_2^-$ [M-H]⁻215.1072, found 215.1070.

The absolute stereochemistry was assigned based on comparing the specific rotation of **3m** with literature.

п-Ви

Substrate **6d** was vinylated following the general vinylation procedure (eluent: hexane/ethyl acetate = 5/1 with 1% v/v of acetic acid). The product was obtained as a colorless oil (61% yield).

The enantiomeric purity of the substrate was determined by SFC analysis (CHIRALPAK[®] OD-3 column, 5% ^{*i*}PrOH / CO₂, flow rate 1 mL/min, retention time 15.860 min (minor) and 18.022 min (major), 92:8 er);

¹H NMR (600 MHz, CDCl₃) δ 7.29 – 7.26 (m, 2H), 7.21 – 7.12 (m, 3H), 6.41 (s, 1H), 2.32 (ddd, *J* = 13.9, 10.2, 6.4 Hz, 1H), 2.20 – 2.09 (m, 2H), 1.96 (ddd, *J* = 9.3, 7.7, 5.4 Hz, 1H), 1.60 – 1.54 (m, 1H), 1.51 – 1.47 (m, 1H), 1.33 – 1.20 (m, 4H), 0.85 (t, *J* = 7.4 Hz, 3H); ¹³C

NMR (150 MHz, CDCl₃) δ 176.78, 137.97, 136.60, 128.69, 128.56, 128.00, 126.17, 31.83, 30.28, 28.58, 22.78, 20.49, 13.88, 12.05.

HRMS (ESI-TOF) m/z Calcd for C₁₆H₁₉O₂⁻ [M-H]⁻ 243.1385, found 243.1384.

The absolute stereochemistry was assigned based on comparing the specific rotation of **3m** with literature.

(1R,2S)-2-(3-methylbut-2-en-2-yl)cyclopropanecarboxylic acid (8e)

Me

Substrate **6e** was vinylated following the general vinylation procedure (eluent: hexane/ethyl acetate = 5/1 with 1% v/v of acetic acid). The product was obtained as a colorless oil (50% yield).

The enantiomeric purity of the substrate was determined by SFC analysis (CHIRALPAK[®] IG-3 column, 5% MeOH/CO₂, flow rate 4 mL/min, retention time 1.834 min (miner) and 2.081 min (major), 95:5 er);

¹H NMR (600 MHz, CDCl₃) δ 2.05 (t, *J* = 8.9 Hz, 1H), 1.92 (ddd, *J* = 8.9, 7.8, 5.3 Hz, 1H),

1.74 (s, 3H), 1.66 (s, 3H), 1.64 (s, 3H), 1.36 (dt, J = 8.0, 5.1 Hz, 1H), 1.22 – 1.18 (m, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 177.63, 130.57, 122.31, 27.08, 20.92, 20.86, 20.78, 18.25, 14.44. HRMS (ESI-TOF) *m*/*z* Calcd for C₉H₁₅O₂⁺ [M+H]⁺ 155.1072, found 155.1065. The absolute stereochemistry was assigned based on comparing the specific rotation of **3m** with literature.

Area Summarized by Name

	SampleName	ent1	ent2	ee	Ent1	Ent2
1	HL-5e-rac	47.61	52.39	-4.78	136687	150408
2	HL-5e-chiral	5.22	94.78	-89.55	45185	819942

$(1R,\!2S)\text{-}2\text{-}(cyclohex\text{-}1\text{-}en\text{-}1\text{-}yl)cyclopropanecarboxylic acid (8f)$

Substrate **6f** was vinylated following the general vinylation procedure (eluent: hexane/ethyl acetate = 5/1 with 1% v/v of acetic acid). The product was obtained as a colorless oil (47% yield).

The enantiomeric purity of the substrate was determined by SFC analysis (CHIRALPAK[®] AS-3 column, 10% ^{*i*}PrOH / CO₂, flow rate 1 mL/min, retention time 7.816 min (major) and 9.113 min (minor), 98:2 er);

¹H NMR (600 MHz, CDCl₃) δ 5.60 (dq, J = 4.1, 1.9 Hz, 1H), 2.07 – 1.96 (m, 3H), 1.91 (t, J = 8.5 Hz, 1H), 1.82 (ddd, J = 9.2, 7.6, 5.5 Hz, 2H), 1.64 – 1.49 (m, 4H), 1.40 (dt, J = 7.7, 5.2 Hz, 1H), 1.10 (td, J = 8.0, 4.8 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 176.01, 131.41, 125.03, 28.74, 28.25, 24.74, 22.43, 21.94, 18.80, 10.91.

HRMS (ESI-TOF) m/z Calcd for $C_{10}H_{15}O_2^+$ [M+H]⁺ 167.1072, found 167.1065.

The absolute stereochemistry was assigned based on comparing the specific rotation of **3m** with literature.

(1R,2S)-2-(1-(tert-butoxycarbonyl)-1,2,3,6-tetrahydropyridin-4-yl)cyclopropanecarboxyl ic acid (8g)

Substrate **6g** was vinylated following the general vinylation procedure (eluent: hexane/ethyl acetate = 2/1 with 1% v/v of acetic acid). The product was obtained as a colorless oil (51% yield).

The enantiomeric purity of the substrate was determined by SFC analysis (CHIRALPAK[®] IC-3 column, 10% ^{*i*}PrOH / CO₂, flow rate 2 mL/min, retention time 6.855 min (major) and

8.383 min (minor), 97:3 er);

¹H NMR (600 MHz, CDCl₃) δ 5.53 (s, 1H), 3.99 – 3.81 (m, 2H), 3.55 (dt, *J* = 12.8, 5.4 Hz, 1H), 3.31 (s, 1H), 2.21 – 2.13 (m, 1H), 1.96 (q, *J* = 8.3 Hz, 2H), 1.86 (ddd, *J* = 9.1, 7.7, 5.5 Hz, 1H), 1.46 (s, 9H), 1.41 (dt, *J* = 7.9, 5.2 Hz, 1H), 1.16 (td, *J* = 8.1, 4.9 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 176.84, 155.02, 131.07, 122.19, 79.55, 31.91, 29.68, 28.46, 27.63, 22.68, 14.11, 11.61.

HRMS (ESI-TOF) m/z Calcd for C₁₄H₂₀NO₄⁻ [M-H]⁻ 266.1392, found 266.1392.

The absolute stereochemistry was assigned based on comparing the specific rotation of **3m** with literature.

(1S,2R)-2-((Z)-1,2-diphenylvinyl)cyclobutanecarboxylic acid (8h)

Substrate **6h** was vinylated following the general vinylation procedure (eluent: hexane/ethyl acetate = 2/1 with 1% v/v of acetic acid). The product was obtained as a colorless oil (61% yield).
The enantiomeric purity of the substrate was determined by SFC analysis (CHIRALPAK[®] OJ-3 column, 5% ^{*i*}PrOH / CO₂, flow rate 2 mL/min, retention time 7.478 min (major) and 9.876 min (minor), 88:12 er);

¹H NMR (600 MHz, CDCl₃) δ 7.19 (ddd, J = 4.3, 2.3, 1.2 Hz, 3H), 7.14 – 7.09 (m, 2H), 7.05 – 7.03 (m, 3H), 6.95 – 6.89 (m, 2H), 6.47 (s, 1H), 3.81 – 3.74 (m, 1H), 3.28 – 3.20 (m, 1H), 2.78 – 2.70 (m, 1H), 2.14 (dddd, J = 9.4, 7.9, 5.9, 3.4 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 178.51, 141.42, 140.20, 137.07, 129.24, 128.75, 128.36, 127.78, 127.02, 126.91, 126.33, 45.18, 44.40, 24.50, 20.21.

HRMS (ESI-TOF) m/z Calcd for C₁₉H₁₇O₂⁻ [M-H]⁻277.1229, found 277.1226.

The absolute stereochemistry was assigned based on comparing the specific rotation of 5u with literature.

To a solution of tert-butyl ((1R,2R)-2-(4-(trifluoromethyl)phenyl)cyclopropyl)carbamate (46 mg, 0.2 mmol, 97:3 er.) and Et₃N (31 uL, 0.22 mmol) in anhydrous *t*-BuOH (1 mL) was added diphenylphosphoryl azide (47 uL, 0.22 mmol) dropwise. The reaction was heated at 80 0 C and stirred for 48 h before cooling to r.t. and concentrating in vacuo. Et₂O (20 mL) and water (40 mL) were added. The organic portion was isolated and the aqueous phase was extracted with Et₂O (2 × 30 mL). The organics extracts were combined, washed with sat. aq. NaHCO₃ (20 mL) and brine (20 mL), dried over Na₂SO₄ and concentrated in vacuo. The residue was purified by flash column chromatography (5 % EtOAc/hexane) to yield the title compound (43.3 mg, 72 %) as an white solid. ¹H NMR (600 MHz, CDCl₃) δ 7.53 (d, *J* = 8.1 Hz, 2H), 7.32 (d, *J* = 7.9 Hz, 2H), 4.35 (s, 1H), 2.97 (s, 1H), 2.28 (d, *J* = 9.0 Hz, 1H), 1.37 (dt, *J* = 8.9, 6.8 Hz, 1H), 1.28 (s, 9H), 1.08 (s, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 156.17, 141.13, 129.01, 128.46 (q, *J* = 36.0 Hz), 124.83 (q, *J* = 4.5 Hz), 124.31(q, *J* = 270.0 Hz), 79.59, 29.65, 28.07, 22.43, 12.14; ¹⁹F NMR (375 MHz, CDCl₃) δ -62.62. [α]_D ²⁰ = 13.2 (c = 1.0, CHCl₃). The enantiomeric purity of the substrate was determined by SFC analysis (CHIRALPAK[®] OD-3 column, 10% [†]PrOH / CO₂, flow rate 2 mL/min, retention time 3.020 min (miner) and

4. Reference

- 1. Xiao, K.-J.; Lin, D. W.; Miura, M.; Zhu, R.-Y.; Gong, W.; Wasa, M.; Yu, J.-Q. J. Am. Chem. Soc. 2014, 136, 8138.
- 2. Li, J.; Luo, S.; Cheng, J. P. J. Org. Chem. 2009, 74, 1747.
- 3. Ishihara, K.; Nakano, K. J. Am. Chem. Soc. 2005, 127, 10504.
- 4. Nagamine, T.; Inomata, K.; Endo, Y. Heterocycles 2008, 76, 1191.
- 5. Wasa, M.; Engle, K. M.; Lin, D. W.; Yoo, E. J.; Yu, J.-Q. J. Am. Chem. Soc. 2011, 133, 19598.
- 6. Santen Pharmaceutical Co., Ltd *EP2119703* 2009, A1.
- 7. Wyeth US2008/255192 2008, A1
- 8. Giri, R.; Wasa, M.; Breazzano, S. P.; Yu, J.-Q. Org. Lett. 2006, 8, 5685.
- Jahngen, E. G. E.; Phillips, D.; Kobelski, R. J.; Demko, D. M. J. Org. Chem. 1983, 48, 2472.
- 10. Chen, K.; Li, Z.-W.; Shen, P.-X.; Zhao, H.-W.; Shi, Z.-J. Chem. Eur. J. 2015, 21, 7389.
- 11. Schiefer, I. T.; Abdul-Hay, S.; Wang, H.; Vanni, M.; Qin, Z.; Thatcher, G. R. J. J. Med. Chem. 2011, 54, 2293.
- 12. Elling, G.R.; Hahn, R. C.; Schwab, G. J. Am. Chem. Soc. 1973, 17, 5659.
- Wu, Q.-F.; Shen, P.-X.; He, J.; Wang, X.-B.; Zhang, F.; Shao, Q.; Zhu, R.-Y.; Mapelli, C.; Qiao, J. X.; Poss, M. A.; Yu, J.-Q. *Science* 2017, *355*, 499.
- 14. Shen, P.-X.; Hu, L.; Shao, Q.; Hong, K.; Yu. J.-Q. J. Am. Chem. Soc. 2018, 140, 6545.

5. X-Ray Crystallographic Data of Compounds

Figure S1 X-Ray Structure 5p

Table 1. Crystal data and structure refinement for 5p			
CCDC number	1870087		
Empirical formula	$C_{13}H_{14}O_4$		
Formula weight	234.24		
Temperature	100.0 K		
Wavelength	1.54178 Å		
Crystal system	Trigonal		
Space group	P31		
Unit cell dimensions	a = 15.8015(7) Å	= 90°.	
	b = 15.8015(7) Å	= 90°.	
	c = 16.3042(10) Å	= 120°.	
Volume	3525.5(4) Å ³		
Ζ, Ζ'	12, 4		
Density (calculated)	1.324 Mg/m ³		
Absorption coefficient	0.815 mm ⁻¹		
F(000)	1488		
Crystal size	0.20 x 0.17 x 0.11 mm ³		
Theta range for data collection	3.229 to 68.408°.		
Index ranges	-18<=h<=19, -19<=k<=19, -19<=l<=19		
Reflections collected	52265		
Independent reflections	8620 [R(int) = 0.0417]		
Completeness to theta = 67.679°	100.0 %		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	0.7531 and 0.6705		
Refinement method	Full-matrix least-squares on F ²		

Data / restraints / parameters	8620 / 4 / 634
Goodness-of-fit on F ²	1.039
Final R indices [I>2sigma(I)] R indices (all data) Absolute structure parameter	R1 = 0.0398, wR2 = 0.1082 R1 = 0.0413, wR2 = 0.1097 0.08(5)
Extinction coefficient	n/a
Largest diff. peak and hole	0.328 and -0.171 e.Å ⁻³

6. NMR Spectra

0 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -22 f1 (ppm)

