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Supplementary Note 1: Procedure for smoothing the experimental 

spectra and comparing them to the simulation. 

 
Supplementary Figure 1: Smoothing of the FTIR spectra and its comparison with full-

wave simulations. (a) Transmission spectrum,  𝑇, for 2290 nm length antenna on h-BN slab 

(dashed blue line) and the one for the bare h-BN slab, 𝑇0 (dashed black line). The vertical 

dashed lines indicate the frequencies of TO and LO phonons (low and high frequencies, 

respectively). (b) Difference transmission spectrum, 𝛥𝑇 = 𝑇0 − 𝑇/ max(𝑇0 − 𝑇). (c) 

Difference transmission spectrum smoothed by the moving average method using 25 

elements. (d-g) Comparison between the experimental 𝛥𝑇 and simulated extinction cross 

section, 𝜎, for antennas of the following lengths: (d) 2400 nm, (e) 2290 nm (f) 2070 nm and 

(g) 1960 nm. 

 

We have performed the Fourier-transform infrared spectroscopy (FTIR) transmission 

experiments for the bare h-BN flake (with a thickness of 55 nm) and for the same flake 

with the gold rod antennas on top (with a rod thickness of 50 nm and a width of 175 nm). 

The experimental spectrum obtained from the bare h-BN flake (dashed black line in 

Supplementary Figure 1a) and the one obtained from bare h-BN flake with a gold rod 

antenna (of 2290 nm length) on top (dashed blue line in Supplementary Figure 1a) are very 

similar, and thus the effect of the antenna is difficult to distinguish. To better represent the 

effect of the antenna, we subtract and normalize the spectra, Δ𝑇 = (𝑇0 − 𝑇)/ max(𝑇0 − 𝑇) 

(Supplementary Figure 1b), where 𝑇0 denotes the transmission through the h-BN flake, and 

𝑇 denotes the transmission through the h-BN flake with the antenna on top. The difference 



transmission spectra show the two peaks, which are analyzed in the main text and in 

Section S4 below. To remove the noise from the spectra, we perform a moving average 

over 25 elements (50 cm
-1

), obtaining the smoothed spectra shown in Supplementary Figure 

1c. The averaged difference transmission spectra are then compared with the simulated 

extinction cross section, 𝜎, for antennas of different lengths (see Methods). The experiment 

(Supplementary Figure 1d-g, solid lines) and theory (Supplementary Figure 1d-g, dashed 

lines) are in an excellent agreement. The positions of the peaks (red and blue squares in Fig. 

2a) are found from the smoothed experimental spectra. 

Supplementary Note 2: Dispersion and reflection phase of the waveguide 

mode propagating along the infinite gold rod on the h-BN slab 

We interpret the measured resonances in the antenna as constructive interference of 

multiple reflections of the waveguide modes from the edges of the antenna (Fabry-Perot 

resonances). To that end we found both the wavevector, 𝑘𝑤, and reflection phase, 𝜑, of the 

mode propagation along the infinite gold rod on the h-BN slab by means of full-wave 

simulations. The calculated wavevector as a function of frequency, 𝑘𝑤(𝜔), is shown in 

Supplementary Figure 2a. At low and high frequencies the dispersion 𝑘𝑤(𝜔) tends to the 

wavevectors of the mode of a gold waveguide over an isotropic slab with the dielectric 

permittivities ϵ⊥(0) and ϵ⊥(∞) respectively. Inside the Reststrahlen band the dispersion of 

the mode shows a back-bending behavior, which is associated with high absorption of the 

mode. In the frequency range of the back-bending, the difference transmission spectra for 

antennas of different lengths show an anti-crossing feature (see Fig 2a). Notice that in some 

frequency ranges, due to the strong losses (and, in particular, due to the radiation losses) we 

have not been able to find the solutions for 𝑘𝑤(𝜔) (so that the curve Fig 2a has 

discontinuities). 

In order to compare the mode dispersion with the results of the measurements, we find the 

reflection phase of the mode propagating in a truncated waveguide. For that we define the 

vertical electric field of the mode travelling along the semi-infinite waveguide (the region 

x < 0) as: 

𝑬𝒛(𝑥, 𝑦, 𝑧) = (𝒆𝒊𝒌𝒘𝑥 + 𝒓𝑬𝒆−𝒊𝒌𝒘𝑥)𝑭(𝑦, 𝑧),              (1) 

where x = 0 is the end of the semi-infinite gold rod and 𝐹(𝑦, 𝑧) accounts for the transverse 

field distribution of the waveguide mode, and the term 𝑟𝐸𝑒−𝑖𝑘𝑤𝑥 in the parenthesis accounts 

for the reflection from the end of the waveguide (𝑥 = 0). The reflection coefficient can be 

written as 𝑟𝐸 = |𝑟𝐸|𝑒𝑖𝑘𝑤𝜑, where φ is the reflection phase. We calculate the phase by 

means of full-wave simulations. By subtracting the incident field from the total field given 

by Eq. (1), the reflection coefficient 𝑟𝐸 is obtained. The extracted phase, 𝜑(𝜔), is shown in 

Supplementary Figure 2b (we show 𝜑(𝜔) only for those frequencies for which we 

managed to reliably separate the mode reflected at the end of the waveguide from the total 



field). The reflection phase 𝜑(𝜔) presents values around 
3π

12
. By plugging in the average 

value of the phase, 𝜙 =
3π

12
, into the Fabry-Perot resonance condition, 𝐿 ∙ 𝑘𝑤(𝜔) + 𝜑(𝜔) =

𝜋 (with 𝐿 being the antenna length), we obtain the relation between the frequency and 

inverse antenna length (solid blue line in Fig. 2a), presenting an excellent agreement with 

the maxima in the difference transmission spectra (bright features in the colorplot in Fig. 

2a). 

 
 

Supplementary Figure 2: Calculated wavevector and reflection phase of the waveguide 

mode of the gold rod on the h-BN slab. (a) Wavevector of the waveguide mode, 𝑘𝑤, as a 

function of frequency. The waveguide presents an infinite gold rod (width 175 nm, height 

50 nm) on top of the 55 nm-thick h-BN slab. (b) Reflection phase of the mode, 𝜑(𝜔), found 

for the semi-infinite waveguide. The horizontal lines in (a) and (b) indicate the TO phonon 

(low frequency) and the LO phonon (high frequency), respectively. The dashed green lines 

trace the dispersion of the mode of the gold rod on the h-BN slab with the perpendicular 

permittivity, 𝜖⊥, set as 𝜖⊥(∞) and 𝜖⊥(0) at high and low frequencies, respectively. 
 

Supplementary Note 3: Polariton launching efficiency by the resonant 

antennas  

Our nanoimaging experiments and numeric simulations demonstrate that resonant gold 

antennas can be efficient launchers of hyperbolic phonon-polaritons in h-BN slabs (See Fig. 

5d and Fig. 6). We extend the analysis presented in Fig. 6, comparing the extinction cross 

section, 𝜎, with the launching cross section, 𝜎M0, the launching cross section normalized to 

the geometric area of the antenna, 𝜎M0/𝑆a, and the field enhancement on the bottom face of 

the antenna. Namely, in Supplementary Figure 3 we present the calculated 𝜎 (panel a), 𝜎M0 

(panel b), 𝜎M0/𝑆a (panel c), and the electric field enhancement (panel d) of the nanorod 

gold antenna on the h-BN slab as a function of frequency and inverse antenna length, 1/𝐿 

(colorplots). 



For a large part of frequencies within the Reststrahlen band, both normalized and non-

normalized 𝜎M0 clearly present an optimum in 1/𝐿. Both optima positions are blueshifted 

compared to the Fabry-Perot resonant condition. The optimum in 𝜎M0 correlates well with 

the electric field enhancement on the bottom face of the antenna (Supplementary Fig. 3d) 

In Supplementary Figure 4 we compare the normalized launching cross section, 𝜎M0/𝑆a, of 

the antennas with the non-resonant launchers: an infinitely long gold stripe (dashed blue 

curve) and a gold disk (dashed black curve) with the geometric area, 𝑆d, equal to the 

geometric cross-section of the antenna, 𝑆a. The resonant antenna shows about one order of 

magnitude better launching efficiency (reaching 𝜎M0/𝑆a~ 4) compared to both metal disks 

(𝜎M0/𝑆𝑑~ 0.7 in the maximum, which is consistent with Ref. 1) and metal stripes (𝜎M0/

𝑆stripe~ 0.25 in the maximum). 

 

 
Supplementary Figure 3: Simulated extinction and launching cross sections. (a) The 

extinction cross section as a function of the inverse antenna length, 1/𝐿, and frequency, 𝜔. 

(b) The launching cross section as a function of 1/𝐿 and 𝜔. (c) The launching cross section 

normalized to the antenna’s geometric cross section, as a function of 1/𝐿 and 𝜔. (d) The 

electric field enhancement, calculated on the bottom face of the antenna, as a function of 

1/𝐿 and 𝜔. The thickness of the h-BN layer is 55 nm and all the antennas have the 

thickness of 50 nm and the width of 175 nm. The horizontal white lines in (a)-(d) mark the 

positions of the TO and LO phonons. 

 



 
 

Supplementary Figure 4: Simulated launching efficiency of the resonant antenna 

compared with that of other launchers. The normalized launching efficiency for the 

antenna of the length L=2.29m (red line), for the disk with the same geometric cross-

section as that of the antenna (dash-dot blue line) and for the stripe with the same width 

and height as those of the antenna (black dash dotted line). The thickness of the h-BN layer 

is 55 nm, while all the metallic structures have a thickness of 50 nm. The width of the stripe 

and the antenna is 0.175 m. 

 

 

Supplementary Note 4: Model for strongly coupled classical harmonic 

oscillators 

In order to analyze the difference transmission spectra of the resonant Au antennas on top 

of h-BN slabs, Δ𝑇, we phenomenologically describe the coupling of the antenna modes and 

the phonon polaritons via the model of coupled classical harmonic oscillators. To that end, 

we start with the equations of motion (for the displacement, 𝑥) of each oscillator: 

𝑥̈𝐻𝑃ℎ𝑃 + 𝛾𝐻𝑃ℎ𝑃𝑥̇𝐻𝑃ℎ𝑃 + 𝜔𝐻𝑃ℎ𝑃
2 𝑥𝐻𝑃ℎ𝑃 − 2𝑔𝜔𝑥𝑆𝑃𝑃 = 𝐹𝐻𝑃ℎ𝑃

𝑥̈𝑆𝑃𝑃 + 𝛾𝑆𝑃𝑃𝑥̇𝑆𝑃𝑃 + 𝜔𝑆𝑃𝑃
2 𝑥𝑆𝑃𝑃 − 2𝑔𝜔𝑥𝐻𝑃ℎ𝑃 = 𝐹𝑆𝑃𝑃

      , (2) 

where 𝜔𝐻𝑃ℎ𝑃 , 𝜔𝑆𝑃𝑃 represent the resonance frequencies, 𝛾𝐻𝑃ℎ𝑃 , 𝛾𝑆𝑃𝑃 the damping ratios, 

corresponding to HPhP and SPP modes respectively, in the realistic electromagnetic 

problem. The coupling strength is 𝑔. In the right-hand side of Eq. (2), 𝐹𝐻𝑃ℎ𝑃 and 𝐹𝑆𝑃𝑃 are 

the driving forces of the oscillators. Assuming a temporal dependence 𝑒−𝑖𝜔𝑡, Eq. (2) 

becomes 



 
 

Supplementary Figure 5: Fitting the experimental extinction spectra with the model of 

two oscillators. Experimental extinction spectra of antennas of the length L = 2400, 2290, 

2070 and 1960 nm from top to bottom (solid blue lines). The solid red curves represent the 

fitting to the classical oscillators model, given by Eq. (6). 
 

−𝜔2𝑥𝐻𝑃ℎ𝑃−𝑖𝛾𝐻𝑃ℎ𝑃𝜔𝑥𝐻𝑃ℎ𝑃 + 𝜔𝐻𝑃ℎ𝑃
2 𝑥𝐻𝑃ℎ𝑃 − 2𝑔𝜔𝑥𝑆𝑃𝑃 = 𝐹𝐻𝑃ℎ𝑃

−𝜔2𝑥𝑆𝑃𝑃 − 𝑖𝛾𝑆𝑃𝑃𝜔𝑥𝑆𝑃𝑃 + 𝜔𝑆𝑃𝑃
2 𝑥𝑆𝑃𝑃 − 2𝑔𝜔𝑥𝐻𝑃ℎ𝑃 = 𝐹𝑆𝑃𝑃 .

     (3) 

We solve the system for the positions xHPhP and xSPP, obtaining 

(
𝑥𝐻𝑃ℎ𝑃

𝑥𝑆𝑃𝑃
) = 𝐴−1 (

𝐹𝐻𝑃ℎ𝑃

𝐹𝑆𝑃𝑃
)     (4) 

where A =  [
−ω2 − iγHPhPω + ωHP

2 −2gω̅

−2gω̅ −ω2 − iγSPPω + ωSPP
2 ] with 𝜔̅  =

 𝜔𝐻𝑃ℎ𝑃 + 𝜔𝑆𝑃𝑃

2
  . 

The normalized difference spectra then can be approximated as
2
 

Δ𝑇 ∝ 〈𝐹𝑆𝑃𝑃 ⋅ 𝑥̇𝑆𝑃𝑃 + 𝐹𝐻𝑃ℎ𝑃 ⋅ 𝑥̇𝐻𝑃ℎ𝑃〉    (5) 

which then using Eq. (4) can be explicitly written as 

Δ𝑇 ∝ 𝜔𝐹𝐻𝑃ℎ𝑃
2 Im [

−𝜔2 − 𝑖𝛾𝑆𝑃𝑃𝜔 + 𝜔𝑆𝑃𝑃
2

det 𝐴
] + 2𝜔𝐹𝐻𝑃ℎ𝑃𝐹𝑆𝑃𝑃Im [

2𝑔𝜔

det 𝐴
]

+ 𝜔𝐹𝑆𝑃𝑃
2 Im [

−𝜔2 − 𝑖𝛾𝐻𝑃ℎ𝑃𝜔 + 𝜔𝐻𝑃ℎ𝑃
2

det 𝐴
].      (6) 



We use Eq. (6) to fit the difference transmission spectra obtained experimentally, as 

illustrated in Supplementary Figure 5. The frequencies of the eigenmodes of the system, 

𝜔±, obtained from the condition det 𝐴 = 0, read 

𝜔± =
1

2
(𝜔𝐻𝑃ℎ𝑃 + 𝜔𝑆𝑃𝑃) ±

1

2
Re [√4|𝑔|2 + [𝛿 + 𝑖 (

𝛾𝑆𝑃𝑃

2
−

𝛾𝐻𝑃ℎ𝑃

2
)]

2

] .     (7) 

In Supplementary Figure 6a we show the positions of the peaks, 𝜔+ and 𝜔−, extracted from 

the experimental data (circular and square symbols), the maxima of the spectra 

corresponding to Eq. (6) (thin dashed lines), and the 𝜔± calculated according to Eq. (7) 

(solid lines). In the same panel, the values of 𝜔𝐻𝑃ℎ𝑃 and 𝜔𝑆𝑃𝑃 (frequencies of the 

uncoupled oscillators) are shown by the thick dashed lines.  

As previously reported
2
, the splitting between the eigenfrequencies, 𝜔±, found form Eq. 7 

is smaller than that found from the positions of the maxima of the spectra given by Eq. 6. 

The extracted values of 𝛾𝐻𝑃ℎ𝑃 , 𝛾𝑆𝑃𝑃 and 𝑔 are shown in Supplementary Figure 6b. Recall 

that two typical conditions for strong coupling can be defined as
3,4

 𝐶1 =
|𝑔|

(𝛾𝐻𝑃ℎ𝑃−𝛾𝑆𝑃𝑃 )
>

0.25 and, the more restrictive one, 𝐶2 =
|𝑔|

(𝛾𝑆𝑃𝑃+𝛾𝑆𝑃𝑃 )
> 0.25. According to the results 

presented in Supplementary Figure 6b, both conditions are fulfilled, as illustrated in 

Supplementary Figure 6c by plotting 𝐶1 and 𝐶2, as a function of frequency. 



 
Supplementary Figure 6: Analysis of the coupling between SPPs and HPhPs according 

to the classical oscillators model. (a) Frequencies of the peaks, 𝜔+ and 𝜔− according to 

the experiment (red and black symbols), according to the fitting by Eq. (6) (thin dashed 

lines), and its eigenfrequencies according to Eq. (7) (thin solid lines). Thick dashed lines 

correspond to the fitted values of 𝜔𝐻𝑃ℎ𝑃 and 𝜔𝑆𝑃𝑃. (b) The fitted values of the coupling 

strength, 𝑔, and the dissipative terms, 𝛾𝑆𝑃𝑃 and 𝛾𝑐, obtained from the experimental data. 

The dashed lines are guides to the eye. (c) Conditions for the strong coupling, 𝐶1 and 𝐶2 

(black and red symbols, respectively; lines are a guide to the eye). The white background 

indicates the zone where the strong coupling regime is reached. 
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