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Supplementary Note 1: Details of the density functional theory calculations

We performed electronic structure calculations for the R3c ground state structure of LiOsO3 based on density func-
tional theory (DFT) within the revised Perdew–Burke–Ernzerhof exchange-correlation functional revised for solids1

as implemented in the Vienna Ab initio Simulation Package2 with the projector-augmented wave method3 to treat
the core and valence electrons using the following electronic configurations 1s2 2s1 (Li), 6s1 5d7 (Os), and 2s22p4

(O), and a 550 eV plane wave cutoff. An 11 × 11 × 11 Monkhorst-Pack k-point mesh4 and Gaussian smearing of
20 meV width was used for the Brillouin zone sampling and integrations. For structure optimization we relaxed the
lattice constants and the atomic positions to have forces less than 0.1 meV A−1. The crystallographic parameters of
the relaxed R3c structure are given in Supplementary Table I while the crystal structure is shown in Figure 1a of the
main text.

Atom x y z Wyckoff position Site symmetry

Li 0.00000 0.00000 0.21443 6a D3

Os 0.00000 0.00000 0.00013 6a S6

O 0.00339 0.63367 0.25255 18b C2

Supplementary Table I: Crystallographic parameters of the R3c phase Wyckoff positions are given in units of
the lattice constants.

Supplementary Note 2: Demonstration that the photo-carrier dynamics are not strongly energy
dependent

To ensure that the photo-carrier dynamics of LiOsO3 are not strongly energy dependent, we performed time-resolved
reflectivity experiments as a function of probe pulse energy. The experiment was conducted at T = 80 K with the
pump pulse energy maintained at 1.56 eV and fluence F = 0.5 mJ/cm2 while the probe pulse energy was varied with
the fluence maintained at F = 20 µJ/cm2. Supplementary Figure 1 displays the normalized measured reflectivity
transients as a function of probe energy with fits to the bi-exponential model (dashed lines). One can see that the
relaxation dynamics do not vary significantly throughout the low energy manifold of states of LiOsO3.
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Supplementary Figure 1: Probe energy dependent relaxation dynamics Normalized reflectivity transients
taken at T = 80 K as a function of probe pulse energy. Black dashed lines are fits to the bi-exponential model.
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Supplementary Note 3: Demonstration that the experiment is not resolution limited

The Gaussian instrument resolution of the experiment can be determined by fitting the acquired normalized reflec-
tivity transients with a Gaussian function for times t < 0 and projecting this fit to times t > 0. This fit represents
the fastest response that the experiment can be expected to reliably measure. Supplementary Figures 2a-f display
the measured reflectivity transients, normalized by their negative peak values, at several representative temperatures.
Also shown is the Gaussian instrument resolution as a black dashed line. One can see that the instrument resolu-
tion is faster than the relaxation of the measured reflectivity transients at all temperatures, demonstrating that our
measurements are not resolution limited.
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Supplementary Figure 2: Demonstration that the experiment is not resolution limited a-f, Normalized
reflectivity transients at several representative temperatures with the Gaussian instrument resolution (black dashed
line) superimposed on the data.
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Supplementary Note 4: Details of the bi-exponential fits

A qualitative understanding of the temperature dependence of the measured reflectivity transients were obtained
by fitting the data to a bi-exponential model given by,

∆R

R
= Af exp (−t/τf) +As exp (−t/τs) + C (1)

where Af, As, τf, and τs are the amplitudes and decay constants of the fast and slow relaxation components identified
in LiOsO3 respectively and C is a constant which captures heat diffusion out of the probed region of the sample.
Supplementary Figure 3 displays fits of the reflectivity transients to the bi-exponential model at two representative
temperatures. Experimental data is shown as black circles while bi-exponential fits of the data are shown as teal
dashed lines. Also shown are each component of the fit with the corresponding fitting coefficients listed in the bottom
right. Supplementary Figure 3a displays the data and fit at T = 300 K, where we find that a single exponential
is sufficient to describe the data. However, as the temperature is reduced, the slow relaxation component grows in
amplitude and must be accounted for in the fit. Supplementary Figure 3b shows the data and fit at T = 120 K, a
temperature near where the slow relaxation is maximum.
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Supplementary Figure 3: Sample fits to the bi-exponential model a,b Reflectivity transients (black circles) at
two representative temperatures, a, T = 300 K and b, T = 120 K, with the corresponding fits to the bi-exponential
model (teal dashed lines). Individual components of the fits are shown as dashed lines while their corresponding
fitting coefficients listed in the bottom right.

Supplementary Note 5: Calculated heat diffusion timescale

The background term C in the bi-exponential model (Supplementary Equation 1) describes heat diffusion into the
bulk of the material to depths larger than the penetration depth at the probe wavelength. An estimate for this
timescale is given by,

tc =
δ2s dCp

Mκe
(2)

where δs is penetration depth at the probe wavelength, d is the density, Cp is the lattice heat capacity, M = 245.17
g/mol is the molar mass, and κe is the thermal conductivity5.

Aside from the lattice heat capacity6 these quantities have yet to be reported in LiOsO3. However, estimates
can be made using values from comparable materials or relations with already reported quantities. The density is
estimated to be d = 4.65 g/cm3 from isostructural LiNbO3. An estimate of the thermal conductivity is provided by
the Wiedemann-Franz law, which relates κe to the resistivity as κe = LTe/ρ, where L = 2.44×10−8 W Ω K−2 is the
Lorentz number. From the reported resistivity6, we estimate κe = 0.4 W m−1 K−1 at T = 100 K. The resistivity
can also be used to calculate the penetration depth at the probe wavelength (See Supplementary Equation 6 below),
which we estimate to be δs ≈ 100 nm at T = 100 K and λ = 1350 nm.

Inserting these values into Supplementary Equation 2 results in an expected heat diffusion timescale of tc = 24 ns.
As this timescale is well in excess of our measurement time of 10 ps, C is well approximated by a time-independent
constant.
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Supplementary Note 6: Raw fluence dependent data
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Supplementary Figure 4: Fluence dependent relaxation dynamics a, Reflectivity transients of LiOsO3 as a
function of pump fluence measured at T = 80 K with the pump pulse energy maintained at 1.56 eV while the probe
pulse energy and fluence were maintained at 0.83 eV and F = 20 µJ/cm2 respectively. Curves have been offset
vertically for clarity. Black dashed lines are fits to the bi-exponential model. b, Fluence dependence of the constant
C in the bi-exponential model. Error bars derive from the χ2 of the bi-exponential fits.
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Supplementary Note 7: Verification of rapid photocarrier thermalization

Thermalization models of transient reflectivity experiments require that the excited photocarriers initially thermalize
to Fermi-Dirac distribution before thermalization with the lattice begins. To estimate the timescale for electron-
electron thermalization in LiOsO3, we follow the calculation outlined in Ref. 7.

In the context of Fermi liquid theory, the timescale needed for a Fermi gas to thermalize to a temperature T can
be approximated by,

tth ≈
1

2K(kBT )2
(3)

where K is the electron-electron scattering rate derived from the angular averaged electron-electron scattering prob-
ability. An estimate for K via the random phase approximation is given by,

K =
π2
√

3

128

ωp

E2
F

(4)

where ωp is the plasma frequency and EF is the Fermi energy.
The plasma frequency of LiOsO3 was measured to be ωp ≈ 90 THz in the reflectivity experiments of Lo Vecchio et

al.8,9. An estimate for the charge density can then be made from ωp via the Drude model of conduction in metals
as n = ε0m

∗ωp
2/e2. Inserting ωp into this expression, assuming m∗/me = 1, results in a carrier density of n ≈ 1024

electrons / m3, revealing LiOsO3 to be a low carrier density metal. An estimate for EF can be made from the carrier
density by assuming the weakly interacting Fermi gas relation,

EF = (3π2)2/3
~2

2m∗n
2/3 (5)

which results in a Fermi energy of only EF ≈ 4 meV.
With ωp and EF determined, we can now estimate the electron-electron scattering rate K. Inserting EF and

ωp into Supplementary Equation 4 gives an estimated electron-electron scattering rate of K ≈ 4700 fs−1 eV−2.
The initial electronic temperature was determined in our three temperature model to be is Te,i ≈ 270 K - 340 K
(See Supplementary Equation 7 below). At these temperatures, with the estimated electron-electron scattering rate
considered, Supplementary Equation 3 suggests that excited photocarriers are expected to thermalize within tth ≈
1 fs after initial excitation, a typical timescale for thermalization in metals. As this is significantly shorter than the
duration of our pump pulse, tp ≈ 100 fs, excited photocarriers are expected to thermalize well before our pump pulse
has left the sample, thereby satisfying the necessary initial conditions of the three-temperature model.

While the calculation presented above was performed assuming a non-interacting system, it should be noted that
the true strength of electronic correlations in LiOsO3 is currently an open question8,10. However, the calculation
presented above remains valid even if electronic correlations are large, as a larger m∗ would only increase K and
therefore further decrease tth.
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Supplementary Note 8: Details of the three temperature model

Construction of the three-temperature model begins by inputting reported values for the relevant physical properties
of LiOsO3. Supplementary Figures 5a-c show the temperature dependent a, unit cell volume, b, total lattice heat
capacity, and c, resistivity as reported by Shi et al.6. Supplementary Figure 5d displays the temperature dependent
skin depth at our probe wavelength of λ = 1350 nm which was calculated from the reported resistivity via the relation,

δs =

√
2ρ

ωµ

√√
1 + (ρωε)2 + ρωε (6)

where µ and ε are the relative permeability and permittivity of LiOsO3 respectively. As the magnetic susceptibility of
LiOsO3 shows no signs of magnetic ordering6, we assume µ = 1 in our model. The relative permittivity was assumed
to be ε ≈ 10, a typical value for conventional metals.
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Supplementary Figure 5: Inputs of the three temperature model Temperature dependent a, unit cell volume,
b, heat capacity, and c, resistivity reported by Shi. et al.6. d, Calculated skin depth at our probe pulse wavelength
of λ = 1350 nm from the resistivity via Supplementary Equation 6.

The model assumes that the excited photocarriers strongly couple to only a subset of the phonon spectrum, which
then in turn decay anharmonicly to the remainder of the phonon spectrum. The heat capacity of the excited photo-
carriers is assumed to be linear in temperature throughout our model and given by Ce = γTe with γ = 7.72 mJ/mol
K2 as reported by Shi et al.6. The heat capacities of the strongly coupled phonons (SCPs) and the weakly coupled
phonons (WCPs) are constructed by partitioning the total lattice heat capacity Cp as Cs = αCp and Cw = (1−α)Cp

respectively, where the parameter α < 1. In constructing our model we found that the equilibrium temperature of
the lattice and photocarriers was sometimes above the temperature range of the heat capacity measurement of Shi
et al.6. The total lattice heat capacity was extrapolated to higher temperatures by fitting the heat capacity outside
the transition region with a third order polynomial function and extending this fit to T = 350 K, similar to the fits
presented in Figure 3(a) of Ref. 6. Above T = 350 K, the lattice heat capacity was assumed to be temperature
independent with a value of Cp = 9.5×105 mJ / mol K, in accordance with the law of Dulong-Petit.
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Supplementary Figure 6: Initial temperatures and phonon-phonon coupling of the three-temperature
model a, Initial electronic (blue circles) and lattice (red squares) temperatures as a function of the initial
experiment temperature in the three temperature model. b, The phonon-phonon coupling gpp extracted from the
three-temperature model. Error bars derive from the χ2 of the three-temperature model fits.

The initial conditions of the model are the initial electronic and lattice temperatures immediately after excitation by
the pump pulse. The initial lattice temperatures are simply the temperature of the experiment. The initial electronic
temperatures are given by11,

Te,i =
1

δs

∫ δs

0

[√
T 2
i +

2(1−R)F

δsγ
exp (−z/δs)

]
dz (7)

where F = 0.5 mJ /cm2 is the pump pulse fluence, R is the reflectivity at the pump wavelength, Ti is the experiment
temperature, z is the depth into the sample, and integration is performed over one penetration depth δs. We estimate
that the reflectivity R ≈ 0.1 and is very nearly temperature independent at our pump pulse wavelength of λ = 800
nm from the reflectivity experiments of Lo Vecchio et al.8. Supplementary Figure 6a displays the initial temperatures
of the electronic (blue circles) and lattice (red squares) subsystems in our three temperature model.

Relaxation then occurs through heat exchange between the electronic and two lattice thermal baths described as
captured by the equations,

2Ce
∂Te
∂t

= −gep(Te − Ts) + I(t, z) +∇ · [κe∇Te] (8)

Cs
∂Ts
∂t

= gep(Te − Ts)− gpp(Ts − Tw) (9)

Cw
∂Tw
∂t

= gpp(Ts − Tw) (10)

where Te, Ts, and Tw are the time dependent electronic and lattice temperatures respectively and gep and gpp are the
electron-phonon and phonon-phonon couplings. I(t, z) is the laser source term given by,

I(t, z) =
2ln(2)(1−R)F

πtpδs
exp [−4ln(2)(

t

tp
)
2

− z

δs
] (11)

where tp = 100 fs is the pulse duration. R in this case now refers to the reflectivity at our probe pulse wavelength of
λ = 1350nm, which we estimate to be R = 0.35 from Lo Vecchio et al.8. The last term in Supplementary Equation
8 describes heat diffusion out of the probed region of the sample. An estimate for the thermal conductivity κe was
obtained by assuming LiOsO3 obeys the Wiedemann-Franz law which relates κe to the resistivity as κe = LTe/ρ,
where L = 2.44×10−8 WΩK−2 is the Lorentz number. Using this relation we estimate the thermal conductivity of
LiOsO3 to be κe = 0.4 W/m/K at Te = 100K.

Solving the model under the experimentally dictated initial conditions gives the transient electronic and lattice
temperatures, which are displayed as a function of initial experiment temperature in Supplementary Figure 7. Model
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Supplementary Figure 7: Transient temperatures of the three-temperature model Solutions of the
three-temperature model at various initial experiment temperatures as indicated by the color scale at the top.
Panels a-c display the transient a, electronic Te, b, strongly coupled phonon Ts, and c, weakly coupled phonon Tw
temperatures respectively.

reflectivity transients were then constructed by assuming the conventional11,12 linear combination of the electronic
and lattice temperatures as,

∆R

R
= aTe + b[αTs + (1− α)Tw] (12)

where a and b are determined by matching the initial and final values of the experimental reflectivity transients. These
model reflectivity transients were then convolved with a normalized Gaussian of the form,

g(t) =
1

tp
√

2π
exp [−(

t√
2tp

)2] (13)

where again tp = 100 fs is our pulse duration, to simulate the effects of our pump and probe pulses. Finally, the
model reflectivity transients were then fit to the experimental data via a least squares regression algorithm with gep,
gpp and α as fully relaxed fitting coefficients.

Supplementary Figure 6b displays the phonon-phonon coupling constant gpp extracted from the three-temperature
model. The phonon-phonon coupling can be seen to decrease as the polar transition is approached, suggesting that
the lattice becomes overall more harmonic as the temperature is reduced. However, gpp increases in the polar phase.
It is unclear where this increase originates but it is possible that such an increase could stem from relaxed phonon
coupling selection rules in the polar phase due to broken inversion symmetry, which would permit additional coupling
channels that were symmetry forbidden above the transition.
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Supplementary Note 9: Comparison of the electron-phonon coupling function to the Eg phonon
linewidths

First principles electron-phonon coupling theory predicts that the linewidths of coupled phonons scale with the
electron-phonon coupling function as gep ∝ (~Γph)1/2 in the zero momentum limit13. Such a comparison was vital in
determining which phonon modes constitute the strongly coupled phonons in LiOsO3. Supplementary Figure 8 shows
a comparison between our extracted temperature dependent electron-phonon coupling and the scaled square roots
of the linewidths of the a, 1Eg, b, 2Eg, and c, average Eg phonon modes as labeled by their representations in the
centrosymmetric R3̄c space group and reported by Jin et al.14. One can see that the temperature dependence of both
quantities display strong similarities. Their correlation is better observed by plotting the normalized electron-phonon
coupling versus the normalized square roots of the Eg phonon linewidths, which are shown in Supplementary Figures

8d-f. The black dashed lines represent the limit of perfect correlation gep ∝ Γ
1/2
ph . These plots demonstrate the strong

correlation between these two quantities.
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Supplementary Figure 8: Identification of the strongly coupled phonons The temperature dependent
electron-phonon coupling function gep extracted from our three-temperature model plotted with the scaled square
roots of the a, 1Eg, b, 2Eg, and c, average Eg phonon linewidths reported via Raman spectroscopy14. d-f, Plots of
the normalized gep versus the normalized square roots of the Eg phonon linewidths showing a strong correlation

between these two quantities. Black dashed lines represent the limit of perfect correlation gep ∝ Γ
1/2
ph . Error bars

derive from the χ2 of the three-temperature model fits.
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Supplementary Note 10: Details of the displacive soft mode model of the weakly coupled heat
capacity

From the three-temperature model analysis, we concluded that the itinerant electrons of LiOsO3 are decoupled from
a significant portion of the total lattice heat capacity. We argued that at temperatures T < 250 K, at which point
the other optical phonon modes are expected to be largely frozen out, the decoupled heat capacity can be mostly
attributed to that of the A2u polar mode. That is,

1− α ≈ CA2u/Cp (14)

where CA2u is the heat capacity of the A2u polar mode and Cp is the temperature dependent total lattice heat capacity
of LiOsO3 as reported by Shi et al.6.

To model 1 - α, the polar mode was treated as an Einstein phonon whose temperature dependent heat capacity is
given by

CA2u = A(
~ω
kBT

)
e~ω/kBT

[e~ω/kBT − 1]2
(15)

where A is a proportionality constant and ~ω is the energy of the polar mode. Supplementary Equation 15 was
inserted into Supplementary Equation 14 and fit to 1 - α with the phonon frequency as the only free parameter. The
proportionality constant A was chosen such that the polar mode energy softened to zero at the transition as expected
for a displacive mode. Fitting the data in this fashion allows one to extract the temperature dependent heat capacity
and frequency of the polar mode which was shown in the inset of Figure 4d of the main text.

Supplementary Note 11: Phonon dispersions of the polar R3c phase
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Supplementary Figure 9: Phonon dispersions of the R3c phase of LiOsO3 The polar A2u mode and the
doubly degenerate 1Eg and 2Eg modes, which transform as 1A1, 2E, and 5E respectively in the polar phase in
accordance with the notation of14, are highlighted. Only the polar mode can be defined as longitudinal (L) or
transverse (T) in the Brillouin zone, as the other modes exhibit both longitudinal and transverse components
throughout the Brillouin zone.
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