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Supplementary Text 

Supplementary Note 1:  OAM conservation in the holographic reconstruction process 

According to Fourier integral theorem, the complex amplitude distribution of electric field in 

the hologram plane can be decomposed into an infinite number of plane-wave spatial frequency 

components as: 
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where (x, y) and (kx, ky) represent the orthogonal coordinates in the image plane and hologram 

plane, respectively. Equation S1 can be expressed as a Fourier transform of the field 

distribution in the hologram plane: 

( , ) ( ( , ))H x yE x y E k k=                                                    (S2) 

In the Fourier optics, the electric fields in the hologram plane and image plane form a Fourier 

pair, as such, the complex amplitude distribution of electric field in the image plane satisfies 

( , ) ( ( , ))I H x yE x y E k k=                                                     (S3) 

which indicates that the spatial frequency distribution of a hologram physically equals to the 

complex amplitude distribution in the image plane in the Fourier transform holography, namely,  

( , ) ( , )IE x y E x y=                                                           (S4) 

        When an incident beam carrying the OAM is used for the holographic reconstruction, the 

constituent spatial-frequency components of the hologram are further superposed with a helical 

phase wavefront: 

 ( , ) ( , ) exp( )OAM

H x y H x yE k k E k k il= •                                              (S5) 
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where l is the topological charge of the OAM mode and φ is the azimuthal angle in the polar 

coordinate system. Inserting Equation S5 into S2, we can obtain the spatial frequency 

distribution of the hologram based on an incident OAM beam: 

( , ) ( ( , )) ( ( , )) (exp( ))OAM OAM

H x y H x yE x y E k k E k k il=  =                              (S6) 

where * denotes the convolution operation. Based on relationship in Equation S4, we can arrive 

at the relationship between the electric fields in the image plane and hologram plane based on 

an OAM incident beam:  

( , ) ( ( , )) (exp( )) ( , ) (exp( ))OAM

I H x y IE x y E k k il E x y il =   =                               (S7) 

which indicates that the OAM-reconstructed electric field in the image plane is a convolution 

between the electric field of a holographic image and the Fourier transform of a helical 

wavefront. Mathematically, the Fourier transform of a helical wavefront, which acts as the 

kernel function of the convolution, is simply copied in each pixel of the holographic image.  

           Owing to the cylindrical symmetry of an optical beam, the Fourier transform of a 

complex helical wavefront can be calculated as (53) 

1

0

( 1)
( , ) (exp( )) exp( ) ( )

Rl

l

k k
E il il J r rdr

f f
    

+−
=  =                                    (S8) 

where k=2π/λ is the wavenumber of incident light and f is the focal length of a Fourier lens, 

respectively. r and ρ are the radii in the hologram plane and image plane, respectively. The 

spatial frequency of a helical wavefront is represented by a doughnut-shaped intensity 

distribution in the image plane (Supplementary Figure 3). 

        Since the reconstruction is based on a convolution in the Fourier domain, the OAM 

property of the incident OAM beams are preserved in each pixel of the reconstructed 

holographic images (see Equation S7), if and only if the spatial sampling of the holographic 
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image ( , )IE x y  avoids spatial overlap of the helical wavefront kernel (see Equation S8). In 

Equation S8, the sampling period (p) is determined by the topological charge (l) of an OAM 

mode, the effective numerical aperture (NA=sin(atan(R/f))) of the hologram, and the 

wavenumber (k) of the incident light, respectively. In this paper, without the loss of generality, 

OAM-dependent sampling constants (p) were numerically characterized by calculating a 

hologram with an effective numerical aperture of 0.05 at a wavelength of 632 nm (Fig. 2A). 

 

Supplementary Note 2:  Numerical design of an OAM-conserving meta-hologram 

Based on the OAM-dependent sampling constant (p) in Fig. 2A, an OAM-conserving meta-

hologram can be designed. In this context, multiplying a desired image object with an OAM-

dependent two-dimensional (2D) Dirac comb function in the image plane gives rise to an 

OAM-conserving hologram with a discrete spatial frequency distribution. As such, the image 

target becomes two-dimensional entity field which can be written as
1
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denotes the total pixel number and d

iI denotes the desired peak intensity of ith pixel in the 

desired image. To numerically calculate the required phase distribution in an OAM-conserving 

meta-hologram, a two-dimensional Fourier transform based iterative phase retrieval method 

was used. To determine the pixel number in an experimentally fabricated meta-hologram with 

a physical size of 200 µm by 200 µm, we considered the subwavelength resolution (340 nm by 

340 nm) of the meta-hologram, which results in the pixel number of 588 by 588. Setting the 

reconstruction distance of meta-holograms as 2 mm turns out an effective numerical aperture 

of 0.05 of meta-holograms. To maximize the diffraction efficiency on the holographic image, 

a 2D weighting factor w defined as 1 1
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( 0 1w = ) is embedded in each phase-

retrieval iteration to individually manipulate the intensity distribution in each pixel of 
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holographic images, where n is the iteration number. Notably, to achieve the lensless 

reconstruction of a holographic image directly from a meta-hologram, the phase function of a 

Fourier transform holographic lens is further added on an OAM-conserving meta-hologram 

(Supplementary Figure 4) which was further digitized based on five different-sized GaN 

nanopillars. Accordingly, OAM-selective and -multiplexing meta-holograms have been 

designed, respectively. 

 

Supplementary Note 3:  Numerical design of an OAM-multiplexing meta-hologram 

To design an OAM-multiplexing hologram, an intensity-weighting factor was added onto each 

OAM-selective hologram to obtain a uniform intensity distribution among the OAM-

reconstructed holographic images. Specifically, a weighting factor 
n

iw  defined as 
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 ) was embedded in each iteration to iteratively optimize the intensity 

distribution of holographic images, where i=1, 2, 3, 4 and n represent four selected pixels from 

the multiplexing holographic images and the iteration number, respectively. As a result, a 

phase-only OAM-multiplexing meta-hologram capable of offering a uniform intensity 

distribution among the reconstructed holographic images can be designed, based on the 

relationship of 31 2 422 2 2
1 2 3 4arg( )ii i in n n n nw e w e w e w e   = + + +  , where φ1, φ2, φ3, and φ4 

represent the four multiplexing holographic images, respectively. 

 

Supplementary Note 4: Experimental characterization of absolute efficiency of meta-

holograms 

To characterize the efficiency of OAM metasurface holograms, we firstly measured the 

transmission efficiency of metasurfaces, ET=Pt/Pin, at different visible wavelengths, where Pt 

and Pin represent the optical power transmitted from a meta-hologram and from a bare substrate 
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by moving the meta-hologram in and out of an incident laser beam, respectively. Secondly, we 

characterized the diffraction efficiency of meta-holograms, ED=Pim/Pt, at different visible 

wavelengths, where Pim and Pt represent the amount of energy in a holographic image and the 

optical power transmitted from a meta-hologram, respectively. The measurement is realized by 

placing an aperture in an intermediate image plane in order to selectively monitor the optical 

power of the holographic image, thus removing the zero-order transmission. The absolute 

efficiency (E) of meta-holograms was calculated based on the relationship of E=ET*ED and 

plotted in Supplementary Figure 13. 

 

Supplementary Note 5: Numerical characterization of effective mode index of GaN 

nanopillars 

The resonant near-field patterns of the electric field inside the longitudinal plane of a GaN 

nanopillar with a height of 1 µm have been numerically characterized at a wavelength of 632 

nm, which indicate a large phase advancement reaching 2π (insets in Supplementary Figure 

14). The insets show the near-field electric field patterns of five selected nanopillars with radii 

of 76 nm, 80 nm, 86 nm, 94 nm, and 104 nm for the digitalization of our OAM meta-holograms. 

Considering the GaN nanopillar as a dielectric waveguide, we have performed the 

characterization of the effective mode index of nanopillars with a different radius 

(Supplementary Figure 14). The resultant large effective mode index change as a function of 

radius opens the possibility of a strong phase shift using GaN nanopillars, laying the physical 

foundation of the strong phase sensitivity to the radius of GaN nanopillars.  
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Supplementary Figure 1. Comparison of a conventional digital hologram with an OAM-

conserving hologram. (A) A conventional digital hologram with a quasi-continuous spatial 

frequency distribution breaks the helical wavefront carried by an incident OAM beam. The 

inset (left) shows a quasi-continuous spatial-frequency content of the hologram. The insets 

(right) show the phase and intensity distributions of an enlarged pixel in an OAM-reconstructed 

holographic image, respectively. (B) An OAM-conserving hologram with a discrete spatial 

frequency distribution, capable of preserving a helical wavefront from an incident OAM beam. 

The inset (left) shows a discrete spatial frequency distribution of an OAM-conserving 

hologram. The insets (right) show the phase and intensity distributions of an enlarged pixel in 

an OAM-reconstructed holographic image, respectively. 
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Supplementary Figure 2. Schematic design of OAM-conserving holograms through 

multiplying an object image with an OAM-dependent 2D Dirac comb function (a constant 

periodicity: p) in the image plane. The original “disc” and “car” images were obtained from 

Flaticon and Free Icons Library websites, respectively. 
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Supplementary Figure 3. Numerical characterization of the spatial frequency of different 

incident OAM beams represented by spiral phase plates with various topological charges. 

(A) The intensity cross-sections of spatial frequency distributions of different OAM modes. 

The dotted line labels out the positions used for defining the sampling constant (p) in Fig. 2A. 

(B) The intensity distributions of different incident OAM beams with various topological 

charges in the image plane. 
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Supplementary Figure 4. Design of an OAM-conserving meta-hologram (A) by 

superposing an OAM-conserving hologram (B) and a Fourier transform holographic lens 

(C). Diagrams in the bottom show phase distributions along blue lines labelled out in (A), (B), 

and (C), respectively. 
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Supplementary Figure 5. Schematic illustration of the lensless reconstruction of an OAM-

carrying holographic image from an OAM-conserving meta-hologram. R and f represent 

the radius and reconstruction distance of a meta-hologram, respectively. θ angle is used to 

calculate the effective numerical aperture of the meta-hologram. 
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Supplementary Figure 6. Optical setup for the experimental demonstration of 

metasurface OAM holography, where a spatial light modulator (SLM) is used to generate 

different incident OAM beams that are weakly focused by a lens (L1) down to OAM-

conserving (-selective and -multiplexing) meta-holograms. CCD: charge-coupled device. 

  



14 
 

 

Supplementary Figure 7. Microscopic optical images of an OAM-conserving meta-

hologram (A) and the incident OAM beams with topological charges of l=0, 1, and 2 (B), 

respectively.  
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Supplementary Figure 8. The interference of a spherical reference beam with OAM-

reconstructed holographic images, with the use of different OAM modes with topological 

charges of l=-2 (A), -1 (B), 1 (C), and 2 (D), respectively.  
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Supplementary Figure 9. Implementation of a fundamental mode filtering aperture array 

in the detector plane to further improve the OAM selectivity by an OAM-selective meta-

hologram. (A) The intensity distribution of a fundamental spatial mode in the image plane, 

where a denotes the size of a circular aperture. (B) Schematic of a fundamental mode filtering 

aperture array, where p labels out the periodicity of the aperture array. Inset: an enlarged 

circular aperture with a diameter of a.  
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Supplementary Figure 10. Numerical characterization of the impact of misalignment of 

an incident OAM beam with respect to an OAM-selective meta-hologram. (A) Schematic 

illustration of the misalignment between and an incident OAM beam and an OAM-selective 

meta-hologram. (B-D) Holographic reconstruction based on an OAM-selective meta-hologram 

with a spatial shift with respect to an OAM reconstruction beam. 
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Supplementary Figure 11. Design and numerical characterization of a 10-bit OAM-

multiplexing meta-hologram capable of massive reconstruction of up to 210 OAM-
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dependent holographic images. (A) Schematic of an OAM-coded image target and its 

resulting 10-bit OAM-multiplexing meta-hologram. Pseudo colors are used to visualize 

different OAM modes. (B) Reconstruction of an OAM-multiplexed holographic image based 

on a planar wavefront, leading to a holographic image carrying ten different OAM modes with 

topological charges spanning from -5 to 5. (C) Signal-to-noise ratio of different OAM modes 

in the holographic demultiplexing. (D-F) Exemplary holographic images reconstructed from 

the 10-bit OAM-multiplexing meta-hologram (9 out of 210), with the use of three (D), five (E), 

and seven (F) incident OAM beams, respectively. 
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Supplementary Figure 12. Numerical characterization of an OAM-multiplexing 

hologram capable of the lensless reconstruction of 10 distinctive OAM-dependent 

holographic images. (A) OAM-encoded image multiplexing based on 10 OAM states with a 

topological charge ranging from -5 to 5. (B) The reconstruction of a complex interference 

pattern from the 10 states OAM-multiplexing hologram through an incident beam with a planar 
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wavefront. (C) Numerical reconstruction of ten distinctive OAM-dependent holographic 

images through incident OAM beams with a topological charge from -5 to 5. 
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Supplementary Figure 13. Experimentally characterized absolute efficiency of four 

different OAM metasurface holograms. 
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Supplementary Figure 14. Numerical characterization of effective mode index and phase 

retardation of GaN nanopillars as function of the radius at a wavelength of 632 nm. Insets 

show the electric field distributions in a longitudinal plane inside the GaN nanopillars with 

radii of 76 nm, 80 nm, 86 nm, 94 nm, and 104 nm, respectively. 
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Supplementary Figure 15. Numerical characterization of the influence of the tapering 

effect of GaN nanopillars on the phase retardation. 

 

 


