SUPPLEMENTARY MATERIAL

Supplementary Table 1. HA DNA and protein sequences. In the DNA sequences, 15 bp overhangs used for cloning are shown in bold lowercase letters. In the mosaic HAs, sequences that have been altered compared to the H3 backbone sequence are highlighted in color-code depending on the antigenic site; red, site A; cyan, site B; magenta, site C; green, site D; yellow, site E. Adaptive mutations that occurred after viral rescue of the mH10/3 virus are highlighted in grey and in lowercase; the same adaptive mutations except the one located in site C were incorporated into the mH14/3 sequence. In the chimeric HAs, sequences changed to H10 or H14 are shown in lowercase letters, and one adaptive mutation in cH10/3 is highlighted in grey.

Construct	Sequence
mH10/3 DNA	ccgaagttgggggggGAGCAAAAGCAGGGGATAATTCTATTAACCATGAAGACTATCATTG
	CTTTGAGCTACATTCTATGTCTGGTTTTCGCTCAAAAAATTCCTGGAAATGACAATAGCA
	CGGCAACGCTGTGCCTTGGGCACCATGCAGTACCAAACGGAACGATAGTGAAAACAATCA
	CGAATGACCGAATTGAAGT <mark>C</mark> ACTAATGCTACTGAGCTGGTT <mark>GAGAGTACAGGCA</mark> C <mark>AAACA</mark>
	<mark>GATTATGTATGAAA</mark> CCTCATCAGATCCTTGATGGA <mark>GGC</mark> AACTGC <mark>CAT</mark> CTAATAGATGCTC
	TATTGGGAGACCCTCAGTGTGATGGCTTTCAAAATAAG <mark>ATG</mark> TGGGACCTTTTTGTTGAAC
	GAAGCAAAGCCTACAGCAGCTGTTACCCTTATGATGTGCCGGATTATGCCTCCCTTAGGT
	CACTAGTTGCCTCATCCGGCACACTGGAGTTCAACAACGAAAGCTTCAATTGGACTGGAG
	TCACTCAAAACGGAACAAGTTCTGCTTGCAT <mark>GAGGAATGGAGGGAATAGC</mark> TTCTTTAGTA
	GATTAAATTGGTTGACCCACTTAAAC <mark>CAA</mark> AAATACCCAGCATTGAACGTGACTATGCCAA
	ACAATGAACAATTTGACAAATTGTACATTTGGGGGGGTTCACCACCCGGGTACGGAC <mark>CAA</mark> G
	ACCAAATCTTCCCGTATGCTCAATCATCAGGAAGAATCACAGTATCTACC <mark>TCCACTTAC</mark> C
	AACAAaCTGTAATCCCAAATATCGGATCTAGACCCAGAATAAGGAATATCCCTAGCAGAA
	TAAGCATCTATTGGACAATAGTAAAACCGGGAGACATACTTTTGATTCACAGCACAGGGA
	ATCTAATTGCTCCTAGGGGTTACTTCAAA <mark>TTA</mark> CGA <mark>ATT</mark> GGG <mark>AGG</mark> AGCTCAATAATGAGAT
	CAGATGCA <mark>CCAATAGACAATAATTGTGAGTCCAAA</mark> TGCATCACTCCAAATGGAAGCATTC
	CCAATGACAAACCATTCCAAAATGTAAACAGGATCACATACGGGGGCCTGTCCCAGATATG
	TTAAGCATAGCACTCTGAAATTGGCAACAGGAATGCGAAATGTACCAGAGAAACAAAC
	GAGGCATATTTGGCGCAATAGCGGGTTTCATAGAAAATGGTTGGGAGGGA
	GTTGGTACGGTTTCAGGCATCAAAATTCTGAGGGAAGAGGACAAGCAGCAGATCTCAAAA
	GCACTCAAGCAGCAATCGATCAAATCAATGGGAAGCTGAATCGATTGATCGGGAAAACCA
	ACGAGAAATTCCATCAGATTGAAAAAGAATTCTCAGAAGTAGAAGGAAG
	TTGAGAAATATGTTGAGGACACTAAAATAGATCTCTGGTCATACAACGCGGAGCTTCTTG
	TTGCCCTGGAGAACCAACATACAATTGATCTAACTGACTCAGAAATGAACAAACTGTTTG
	AAAAAACAAAGAAGCAACTGAGGGAAAATGCTGAGGATATGGGCAATGGTTGTTTCAAAA
	TATACCACAAATGTGACAATGCCTGCATAGGATCAATAAGAAATGGAACTTATGACCACA
	ATGTGTACAGGGATGAAGCATTAAACAACCGGTTCCAGATCAAGGGAGTTGAGCTGAAGT
	CAGGGTACAAAGATTGGATCCTATGGATTTCCTTTGCCATATCATGTTTTTTGCTTTGTG
	TTGCTTTGTTGGGGTTCATCATGTGGGCCTGCCAAAAGGGCAACATTAGGTGCAACATTT
	GCATTTGAGTGCATTAATTAAAAACACCCTTGTTTCTACT aataacccggcggcc
mH10/3 protein	MKTIIALSYILCLVFAQKIPGNDNSTATLCLGHHAVPNGTIVKTITNDRIEVTNATELV <mark>E</mark>
•	<mark>STG</mark> TNRLCMKPHQILDG <mark>G</mark> NC <mark>H</mark> LIDALLGDPQCDGFQNK <mark>M</mark> WDLFVERSKAYSSCYPYDVPD
	YASLRSLVASSGTLEFNNESFNWTGVTQNGTSSAC <mark>MRNGGNS</mark> FFSRLNWLTHLN <mark>Q</mark> KYPAL
	NVTMPNNEQFDKLYIWGVHHPGTD <mark>Q</mark> DQIFPYAQSSGRITVST <mark>STY</mark> QQTVIPNIGSRPRIR
	NIPSRISIYWTIVKPGDILLIHSTGNLIAPRGYFK <mark>L</mark> R <mark>I</mark> G <mark>R</mark> SSIMRSDA <mark>PIDNNCESK</mark> CIT
	PNGSIPNDKPFQNVNRITYGACPRYVKHSTLKLATGMRNVPEKQTRGIFGAIAGFIENGW
	EGMVDGWYGFRHQNSEGRGQAADLKSTQAAIDQINGKLNRLIGKTNEKFHQIEKEFSEVE
	GRIQDLEKYVEDTKIDLWSYNAELLVALENQHTIDLTDSEMNKLFEKTKKQLRENAEDMG
	NGCFKIYHKCDNACIGSIRNGTYDHNVYRDEALNNRFQIKGVELKSGYKDWILWISFAIS
	CFLLCVALLGFIMWACQKGNIRCNICI

mH14/2 DNA	CCGAAGTTGGGGGGGATAATTCTATTAACCATGAAGACTATCATTG		
IIII14/3 DNA	CTTTGAGCTACATTCTATGTCTGGTTTTCGCTCAAAAAATTCCTGGAAATGACAATAGCA		
	CGGCAACGCTGTGCCTTGGGCACCATGCAGTACCAAACGGAACGATAGTGAAAACAATCA		
	CGAATGACCGAATTGAAGTCACTAATGCTACTGAGCTGGTTGAGACCGAACCACACTGATG		
	AACTGTGCCCAAGCCCTCATCAGATCCTTGATGGACAAGACTGCGACCTAATAGATGCTC		
	TATTGGGAGACCCTCAGTGTGATGGCTTTCAAAATAAG <mark>ACT</mark> TGGGACCTTTTTGTTGAAC		
	GAAGCAAAGCCTACAGCAGCTGTTACCCCTTATGATGTGCCGGATTATGCCTCCCTTAGGT		
	2002 CA DA CONTROCTA DA DECENARA CONCORCE CONCECCO CATALOGRA GORI I COCA		
	CTCAAGCAGCAATCGATCAAATCAATGGGAAGCTGAATCGATTGATCGGGAAAACCAACG		
	AGAAATTCCATCAGATTGAAAAAGAATTCTCAGAAGTAGAAGGAAG		
	AGAAATATGTTGAGGACACTAAAATAGATCTCTGGTCATACAACGCGGAGCTTCTTGTTG		
	CCCTGGAGAACCAACATACAATTGATCTAACTGACTCAGAAATGAACAAACTGTTTGAAA		
	AAACAAAGAAGCAACTGAGGGAAAATGCTGAGGATATGGGCAATGGTTGTTTCAAAATAT		
	ACCACAAATGTGACAATGCCTGCATAGGATCAATAAGAAATGGAACTTATGACCACAATG		
	TGTACAGGGATGAAGCATTAAACAACCGGTTCCAGATCAAGGGAGTTGAGCTGAAGTCAG		
	GGTACAAAGATTGGATCCTATGGATTTCCTTTGCCATATCATGTTTTTTGCTTTGTGTTG		
	CTTTGTTGGGGTTCATCATGTGGGCCTGCCAAAAGGGCAACATTAGGTGCAACATTTGCA		
	TTTGAGTGCATTAATTAAAAACACCCTTGTTTCTACT aataacccggcggcc		
mH14/3 protein	MKTIIALSYILCLVFAQKIPGNDNSTATLCLGHHAVPNGTIVKTITNDRIEVTNATELVE		
	TNHTDELCPSPHQILDGQDCDLIDALLGDPQCDGFQNKTWDLFVERSKAYSSCYPYDVPD		
	YASLRSLVASSGTLEFNNESFNWTGVTQNGTSSAC <mark>LRGGRNS</mark> FFSRLNWLTHLN <mark>G</mark> KYPAL		
	NVTMPNNEQFDKLYIWGVHHPGTD <mark>N</mark> DQIFPYAQSSGRITVST <mark>RSD</mark> QQTVIPNIGSRPRIR		
	NIPSRISIYWTIVKPGDILLIHSTGNLIAPRGYFK <mark>I</mark> RK <mark>GK</mark> SSIMRSDA <mark>RIGSCTSP</mark> CITP		
	NGSIPNDKPFQNVNRITYGACPRYVKHSTLKLATGMRNVPEKQTRGIFGAIAGFIENGWE		
	GMVDGWYGFRHQNSEGRGQAADLKSTQAAIDQINGKLNRLIGKTNEKFHQIEKEFSEVEG		
	$\tt RIQDLEKYVEDTKIDLWSYNAELLVALENQHTIDLTDSEMNKLFEKTKKQLRENAEDMGN$		
	GCFKIYHKCDNACIGSIRNGTYDHNVYRDEALNNRFQIKGVELKSGYKDWILWISFAISC		
	FLLCVALLGFIMWACQKGNIRCNICI		
cH10/3 DNA	ccgaagttgggggggAGCAAAAGCAGGGGATAATTCTATTAACCATGAAGACTATCATTG		
	CTTTGAGCTACATTCTATGTCTGGTTTTCGCTCAAAAAATTCCTGGAAATGACAATAGCA		
	CGGCAACGCTGTGCCTTGGGCACCATGCAGTACCAAACGGAACGATAGTGAAAACAATCA		
	CGAATGACCGAATTGAAGTTACTAATGCTACTGAGCTGGTTgagagtacagtcataaaca		
	gattatgtatgaaaggaagaaaacataaagacctgggcaactgccatccaatagggatgc		
	taatagggactccagcttgtgatctgcaccttacagggatgtgggacactctcattgaac		
	gagagaatgctattgcttactgctaccctggagctactgtaaatgtagaagcactaaggc		
	agaagataatggagagtggagggatcaacaagataagcactggcttcacttatggatctt		
	ccataaactcggccgggaccactagagcgtgcatgaggaatggagggaatagcttttatg		
	cagagettaagtggetggtatcaaagageaaaggaeaaaetteeeteagaeeaegaaea		
	cttacagaaatacagacacggctgaacacctcataatgtggggaattcatcacccttcta		
	gcactcaagagaagaatgatctatatggaacacaatcactgtccatatcaqtcqqqaqtt		
	ccacttaccggaacaattttgttccqqttqttqqaqcaaqacctcaqqtcaatqqacaaa		
	gtggcagaattgattttcactggacactagtacaqccagqtgacaacatcaccttctcac		
	acaatggggggcctgatagcaccgagccgagttagcaaattaatt		

	tccaatcagacgcaccaatagacaataattgtgagtccaaaTGCATCACTCCAAATGGAA
	GCATTCCCAATGACAAACCATTCCAAAATGTAAACAGGATCACATACGGGGCCTGTCCCA
	GATATGTTAAGCATAGCACTCTGAAATTGGCAACAGGAATGCGAAATGTACCAGAGAAAC
	AAACTAGAGGCATATTTGGCGCAATAGCGGGTTTCATAGAAAATGGTTGGGAGGGA
	TGGATGGTTGGTACGGTTTCAGGCATCAAAATTCTGAGGGAAGAGGACAAGCAGCAGATC
	TCAAAAGCACTCAAGCAGCAATCGATCAAATCAATGGGAAGCTGAATCGATTGATCGGGA
	AAACCAACGAGAAATTCCATCAGATTGAAAAAGAATTCTCAGAAGTAGAAGGAAG
	AGGACCTTGAGAAATATGTTGAGGACACTAAAATAGATCTCTGGTCATACAACGCGGAGC
	TTCTTGTTGCCCTGGAGAACCAACATACAATTGATCTAACTGACTCAGAAATGAACAAAC
	TGTTTGAAAAAACAAAGAAGCAACTGAGGGAAAATGCTGAGGATATGGGCAATGGTTGTT
	TCAAAATATACCACAAATGTGACAATGCCTGCATAGGATCAATAAGAAATGGAACTTATG
	ACCACAATGTGTACAGGGATGAAGCATTAAACAACCGGTTCCAGATCAAGGGAGTTGAGC
	TGAAGTCAGGGTACAAAGATTGGATCCTATGGATTTCCTTTGCCATATCATGTTTTTTGC
	TTTGTGTTGCTTTGTTGGGGTTCATCATGTGGGCCTGCCAAAAGGGCAACATTAGGTGCA
	ACATTTGCATTTGAGTGCATTAATTAAAAACACCCCTTGTTTCTACTaataacccggcggc
	C
cH10/2 protoin	- MKTITALSYTLCLVFAOKIPGNDNSTATLCLGHHAVPNGTIVKTITNDRIEVTNATELVe
chio/s protein	stginrlcmkgrkhkdlgnchpigmligtpacdlhltgmwdtlierenaiaycypgatyn
	vealrakimesaainkistaftvassinsaattracmrnaansfvaelkwlvskskaanf
	ngttntvrntdtaehlimwgibhosstgekndlvgtgslsisvgsstvrnnfvnvvgarn
	avnaasaridfhwtlvanadnitfshnaaliansryskliaralaiasdanidnneesk
	TTPNGSTPNDKPFONVNRTTYGACPRYVKHSTI.KLATGMRNVPEKOTRGIFGATAGFIEN
	VECPIONIEKYVEDTKIDIWSYNAELLVALENOHTIDI.TDSEMNKLEEKTKKOLBENAED
	MCNCCERTARCDNYCICSIDNCAADRWAADDYINNDEOIRCAETRSCARDMIIMISEY
	TSCELLCUALICETMWACOKONIDONICI
CH14/3 DNA	
	AAATATACCACAAATGTGACAATGCCTGCATAGGATCAATAAGAAATGGAACTTATGACC
	AGTCAGGGTACAAAGATTGGATCCTATGGATTTCCTTTGCCATATCATGTTTTTGCTTT
	GTGTTGCTTTGCTTGGGGGTTCATCATGTGGGGCCTGCCAAAAGGGCCAACATTAGGTGCAACA

	TTTGCATTTGAGTGCATTAATTAAAAACACCCTTGTTTCTACT aataacccggcggcc
cH14/3 protein	MKTIIALSYILCLVFAQKIPGNDNSTATLCLGHHAVPNGTIVKTITNDRIEVTNATELVe
· / · · · · ·	${\tt tnhtdelcpsplklvdgqdcdlingalgspgcdrlqdttwdvfierptavdtcypfdvpd$
	yqslrsilassgslefiaeqftwngvkvdgsssaclrggrnsffsrlnwltkatngnygp
	invtkentgsyvrlylwgvhhpssdneqtdlykvatgrvtvstrsdqisivpnigsrprv
	rnqsgrisiywtlvnpgdsiifnsignliaprghykiskstkstvlksdkrigsctspCI
	TPNGSIPNDKPFQNVNRITYGACPRYVKHSTLKLATGMRNVPEKQTRGIFGAIAGFIENG
	WEGMVDGWYGFRHQNSEGRGQAADLKSTQAAIDQINGKLNRLIGKTNEKFHQIEKEFSEV
	EGRIQDLEKYVEDTKIDLWSYNAELLVALENQHTIDLTDSEMNKLFEKTKKQLRENAEDM
	GNGCFKIYHKCDNACIGSIRNGTYDHNVYRDEALNNRFQIKGVELKSGYKDWILWISFAI
	SCFLLCVALLGFIMWACQKGNIRCNICI

Supplementary Table 2. Primers used in this study.

Primer	Purpose	Sequence (5' to 3')
pDZ_forward	Sequencing of plasmids	TACAGCTCCTGGGCAACGTGCTGG
pDZ_reverse	Sequencing of plasmids	AGGTGTCCGTGTCGCGCGTCGCC
H3_forward	Sequencing of PCR fragments	GGGAGCAAAAGCAGGGGATAATTC
H3_internal	Sequencing of plasmids and PCR	TACCCAGCATTGAACGTGAC
	fragments	
H3_reverse	Sequencing of PCR fragments	GGGTTATTAGTAGAAACAAGGGTGTTTTTAATTAATG

Supplementary Figure 1. Characterization of the hemagglutinin content of the different recombinant viruses, as determined by ELISA. Inactivated virus particles were diluted in phosphate-buffered saline (PBS) to the indicated concentrations and coated overnight onto ELISA plates. Recombinant H3 HA of HK2014 virus (H3N2) diluted in PBS was coated as a control. The next day, monoclonal antibody CR9114^{30,31} was used to quantify the HA protein. The bars represent the mean ± SD of measurements in triplicates.

Supplementary Figure 2. Serum antibody responses of vaccinated mice determined by ELISA. **a** Schematic representation of the HA protein. The globular head domain is located between residues C52 and C277 (H3 numbering) indicated blue. The stalk domain comprises the remaining portions of HA1 and HA2 subunits. SP, signal peptide; TM, transmembrane domain; CT, cytoplasmic tail. The HA1 proteins used in panels **b** and **c** comprise the HA1 region without signal peptide and carry a C-terminal hexahistidine tag. **b**,**c** IgG responses against recombinant HA1 proteins from the A/Hong Kong/4801/2014 (panel **b**) and A/Aichi/2/1968 (panel **c**) H3N2 viruses depicted as area under the curve (AUC). Data points represent sera of individual mice (15 per group), horizontal bars the geometric mean values. The dashed lines indicate the limit of detection (AUC=100), signals below this threshold were set to 100. Statistical significance was determined using Bonferroni-corrected ANOVA with **P*≤0.05, ***P*≤0.01, ****P*≤0.001. The mouse groups and immunization regime are explained in **Fig. 2** of the main text.

Supplementary Figure 3. Detection of serum IgG against various group 2 HAs. **a,b** Immunofluorescence microscopy. 293T cells transfected with plasmids expressing H4 HA of A/duck/Czechoslovakia/1956 (H4N6) (**a**) or H7 HA of A/Hunan/02285/2017 (H7N9) (**b**) were incubated with pooled sera of 15 mice per group diluted 1:50 or mAbs at 10 µg/mL. Binding was visualized with fluorescence-labeled secondary antibodies. Anti-H4 and anti-H7 mAbs were produced in-house, CR9114 is a pan anti-HA stalk antibody^{30,31}. **c** ELISA-inferred IgG responses of pooled sera against trimeric recombinant H15 HA from A/shearwater/West Australia/2576/1979 (H15N9), trimeric recombinant H10 HA from A/Jiangxi-Donghu/346-1/2013 (H10N8) and trimeric recombinant H14 HA from A/mallard/Gurjev/263/1982 (H14N5). **d** ELISA-inferred IgG1 and IgG2a responses of pooled sera against trimeric recombinant H3 HA from HK2014 (H3N2) virus. Data points in **c** and **d** represent the mean ± SD of pooled sera from 15 mice measured in triplicate

Supplementary Figure 4. Serum transfer and virus challenge studies in mice. A Mice (n=10) were immunized intramuscularly either twice with inactivated virus carrying wildtype H3 protein of the HK2014 virus (H3-wt), or with inactivated cH10/3 virus followed by cH14/3 virus, or twice with PBS. All immunizations were in three-week intervals in the presence of AddaVax adjuvant, and viruses were administered at a dose of 10 µg per immunization. Sera were obtained four weeks after the second vaccination, pooled, and used for serum transfer experiments displayed in panels **b-d**. **b** Mice (n=3-4) received 200 µL of pooled sera intraperitoneally (i.p.) and were challenged intranasally (i.n.) with 5 mLD₅₀ of X-31 (a reassortant virus with the HA and NA of A/Hong Kong/1/1968 and the internal proteins of PR8). Weight (panel **c**) and survival (panel **d**) were observed for 14 days post-infection. The weight curves show the mean with SD. In the survival plot, the proportion of surviving animals in each group is shown in parentheses and statistical significance was inferred by log rank Mantel-Cox tests against the PBS group with *P≤0.05.