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Figure S1  RF diameters across depth. The mean diameter and standard error of RFs measured 

across multiple electrode depths. The division between superficial and deep is indicated by the 

dotted line. The mean values for superficial units (8.4, n = 104) and deep units (8.6, n = 157) were 

statistically indistinguishable (P = 0.3256, unpaired T-test). 

 

Figure S2 Feature importance histograms for orientation decoding. Shown are separate 

histograms for superficial (n = 257) and deep units (n = 406) of the change in mean squared error 

(MSE) caused by permutation of information from a single unit. Also shown are probability 

density functions derived from the mean and standard deviation of each population’s MSE 

values, along with vertical lines placed at their means. Note that the distributions are unimodal 

and normally distributed, with few outliers. We found that the mean level of MSE change for 

superficial units was significantly higher than that of deep units (superficial = 0.129, deep = 0.108, 

P = 9.5 * 10-29 by Wilcoxon Rank Sum).  

 

Figure S3 Decoding orientation with single units. Neuron dropping curves are shown, using only 

single units. A) Data from both monkeys combined. B) and C) data are separated for the monkeys 

B and G. 

 

Figure S4 Feature importance histograms for attentional decoding. Same as figure S1, but for 

decoding attentional conditions. Decoding A) all three conditions, B) saccade preparation versus 

control, and C) covert attention versus control. All distributions are unimodal, normally 

distributed, and have few outliers. Using a Wilcoxon Rank Sum test, the distribution of deep units 

had a significantly higher mean than that of superficial units in all attentional conditions. A) Deep 
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= 0.073, superficial = 0.062, P = 2.7 * 10-16. B) Deep = 0.052, superficial = 0.048, P = 4.3*10-5. C) 

deep = 0.050, superficial = 0.044, P = 3*10-7. 

 

Figure S5 Behavioral decoding neuron dropping curves, separated by monkey. Decoding of 

behavioral conditions (covert, saccade and control) separated by monkeys B (left) and G (right).  

 



Supplementary Methods 

 

Cortical Column Laminar Recordings 

 

Electrode targeting: Use of MRI guidance to achieve perpendicularity    

We sought to achieve simultaneous recordings at sites located within a single cortical "column." In particular, 

the topographic organization of extrastriate visual cortex suggests that vertically separated neurons should 

have overlapping RFs, so we sought to record from a column principally by this definition. Since the cortical 

magnification factor (an estimate of how much cortical tissue corresponds to units of retinal space) is 

approximately 1 deg/mm (1), we could measure the approximate angle with the cortex by the distance between 

receptive fields measured on the deepest and most superficial recording contacts, and sought to keep this 

angle at 10 degrees or less, corresponding to a RF shift of ~0.5 degrees, given 2 mm thickness of cortex. 

 In order to achieve these perpendicular penetrations we employed an MRI targeting technique (2). We 

implanted the monkeys with custom built recording chambers made from PEEK-type plastic, rather than from 

titanium, to avoid "shadows" in the MRI images. While we did not employ ceramic skull screws, we took some 

care to ensure that the titanium skull screws and plates were not located close to the recording chamber and 

brain areas of interest. We filled a custom-made plastic cylinder with copper sulfate solution. We anesthetized 

the monkey and inserted this cylinder into the recording chamber, into which it fit snugly. We performed 

structural MRI imaging (1.5 Tesla; T-1 weighted image) to visualize the location and orientation of the 

recording chamber (visible due to the high-contrast copper sulfate solution within it) relative to the position of 

the prelunate gyrus within the brain. By manually identifying the contours of the prelunate gyrus, we could 

compute perpendicular vectors to it and project these back to the level of the electrode stage, thus identifying 

which penetration approach vectors were likely to yield perpendicular penetrations.    

      

Achieving desired approach vectors   

We employed a custom-built targeting device to angle and rotate the electrode into any desired orientation and 

position in three dimensions. The device consisted of a “double-eccentric” mechanism for positioning the 

electrode in the x-y plane of the well, a tilting mechanism, and a rotating mechanism. All four coordinates could 

be set with sub- millimeter precision using notches engraved in the device. The V4 recording chambers on 



both monkeys projected from the monkeys’ heads at an angle such that there was a unique point on the 

chamber’s perimeter at the lowest elevation. This point was identified computationally in the MRI images and 

was identified on the chamber itself by filling the chamber with saline solution until the liquid first contacted the 

lip of the chamber. With this point of alignment between the MRI images and the physical well, the exact X, Y, 

tilt, and rotation coordinates for an approach vector specified by the MRI images were geometrically 

determined.      

      

Electrode targeting: Assessing perpendicularity with RF overlap 

RF positions and extents were estimated by computing the number of multi-unit spikes recorded on each 

channel in the 200 ms period following stimulus onset for each of probe location in a RF-mapping task. During 

this task, subjects fixated a small (~0.3 d.v.a.) white dot against a medium gray background. On each trial the 

six flash positions were selected from one of the rows of the grid in random order.  A horizontally oriented 

grating was flashed for 50ms at each position, with a 150-250 ms variable delay between flashes. The flashes 

occurred at a total of 36 locations on a 6x6 grid with 3 d.v.a. spacing (total coverage 15x15 d.v.a.). If the 

subject maintained fixation within a 1.8 d.v.a. square window until after the sixth flash, he received a juice 

reward.  

The upper right position of the grid was at the fovea such that only the lower left visual field was 

covered by the mapping. This 6x6 matrix of response counts was cubic spline interpolated to produce the full 

“RF map” and a 75%-of-max contour was determined, defining the RF border. The center of mass of the 

portion of the RF map within the RF border was defined as the RF center. This analysis was performed after 

recording RF-mapping task responses but before the change-detection task, so that a stimulus position could 

be chosen at a location that fell within the RF borders for all channels. If such a position was found, the 

recording was included in further analyses. 

      

Electrode targeting: Depth alignment    

We lowered electrodes into the brain rapidly (~25 µm/sec) until one channel was in the cortex, based on visual 

examination of LFP and spiking activity being recorded concurrently. Then we advanced the electrode slowly 

(~5 µm/sec) until the uppermost electrode contact was near the point of entering the brain, being recorded 

during advancement. We withdrew the electrode 500µm to release compression of the brain caused by the 



electrode. During this brief withdrawal, no apparent change in the LFP or spiking activity was observed, 

confirming that this served to relax the cortex rather than change the position of the electrode relative to the 

brain. This manipulation qualitatively improved stability and recording quality. After reaching this position, the 

full-field flash task was run to assess the depth. 

During the full-field flash task, monkeys fixated a small (~0.3 d.v.a.) white dot against a black 

background. The monitor turned maximal white for one frame (~8ms) then back to black. The flash occurred 

six times per trial with variable delays in the range of 150-250ms. If the monkey maintained fixation within a 1.8 

d.v.a. square window until after the sixth flash, he received a juice reward. Approximately 30 trials, or 180 

flashes, were completed per day.  We computed the current source density (CSD) response to the full-field 

flashes. The CSD reflects the spatial and temporal position of current sources and sinks (i.e. where current 

flows into and out of the extracellular space, respectively) along the length of the electrode, given certain 

assumptions likely to be true for our recordings (3). The CSD can be computed discretely as the second spatial 

derivative of the LFP for each point in time, that is: 

      

! ! =  ∅ ! + ℎ − 2∅ ! + ∅(! − ℎ)
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where z is the position in depth, h is the distance between potential measurements (in our case, 150 

µm), and Φ (z) is the potential measured as a function of depth. We also calculated the CSD according to the 

inverse estimation method (4), and display the results of this calculation, which produces smoother, higher 

resolution plots of CSD, in figures for clarity. However, results were qualitatively indistinguishable with both 

methods. Borders between current sinks of interest were manually identified and channel depths were 

computed, in mm, relative to these borders.  

          

Depth registration      

In all included recordings, a prominent current sink was identified near the middle of the electrode, 

approximately 40-50 ms after flash onset. This was often followed by another sink just below the first, peaking 

approximately 100 ms after flash onset. These two sinks appeared in every included recording, and we 

therefore aligned the recordings on these functional markers of cortical lamina. In many recordings, further 



sinks were observed near the top of the probe at ~150 ms and near the bottom of the probe at ~50 ms. 

Because the widths of all four of these sinks, when present, were highly consistent from recording to recording, 

we assigned each channel a depth relative to this central feature.  

Depths were measured in millimeters, and positive depths indicate channels superficial relative to the 

CSD feature. In some sessions, further CSD recordings at deeper locations revealed that no further current 

sources or sinks of comparable magnitude could be identified below these CSD features, assuring us that our 

electrode covered the depth of cortex. Two alignments of these functionally defined layers with anatomical 

cortical layers seem possible. The uppermost sink could correspond to layer 2/3 (together), and the larger sink 

to layer 4 (Figure 1C). Alternately, the four visible sinks could correspond to layer 2, 3, 4, and 5 in order from 

superficial to deep. On the one hand, the first assignment seems reasonable as the thickness of the layers 

known histologically matches the thickness of these CSD features reasonably well, and our expectation from 

primary sensory areas is that layers 4 and 6 will have the earliest responses (5–7). However, the cortex may 

well be compressed around the electrode as it is inserted thus skewing the measured layer thicknesses. Layer 

2 and 3 are well-differentiated cytoarchitecturally in V4 unlike in V1, suggesting they may not appear as a 

single sink. Furthermore, the earliest driving visual inputs into V4 are probably not from the ventral stream (8), 

which project into layer 4 (9), and may instead arrive from the pulvinar nucleus of the thalamus (10, 11), which 

synapses into deep layer 3 (12). This would indicate that the lower sink may correspond with the N95 marker 

used in previous studies to identify the granular layer (6, 13–15).  

 

Data Analysis 

 

Tuning and Modulation Indices 

To determine the tuning of each single neuron, we calculated the firing rate on each trial during a 300 ms 

block, from 50 ms to 350 ms relative to stimulus onset. We then labeled the trials by stimulus orientation, and 

used a Kruskal-Wallis test to compare orientation distributions. If P < 0.005 we categorized the neuron as 

tuned. We then used a Chi-squared test to compare the proportion tuned in superficial versus deep layers. We 

also fit a Gaussian tuning function to the each neurons normalized (to the neuron’s maximum activity) average 



firing rate for the eight stimuli using parameters for amplitude (a), preferred orientation (b), width (c) and 

baseline (d). The formula was given by: 

 

! ! = ! × !!
(!!!) !

!

+ ! 

 

To obtain the parameters and goodness of fit measures, we used the Matlab fit function with nonlinear least 

squares, and constraints of 0 for the lower bound of all variables, and an upper bound of π for b and 8 for c. To 

determine if the neuron was well fit by the function, we used an adjusted R2 cutoff of 0.70. For each neuron, 

the averaged firing rates were rotated around π until the optimal fit was achieved. We then compared the 

function parameters of superficial and deep layer neurons.  As the sample sizes of superficial and deep 

neurons were unequal, we used bootstrapping without replacement to match the sample sizes, and repeated 

each test 1000 times. The reported p-values are the mean of those produced by a Wilcox signed-rank test.  

 

Attention Modulation 

For each neuronal unit, we calculated the mean firing rate during the cue epoch from -500 ms to 0ms relative 

to the blank period. For each unit, we then calculated the attention modulation indices for eye movement 

preparation and covert attention relative to the orthogonal control, using the standard formula: 

 

!"#$%&'(") !"#$% =  !""#$"%&$ –  !"#ℎ!"!#$%
!""#$"%&$ +  !"#ℎ!"!#!" 

  

We then used a mixed effects model with fixed effects for neural depth, attention condition and an interaction 

term (implemented with the R package nlme (16)). To make layer comparisons within this omnibus model, we 

used three orthogonal contrasts: superficial behavioral conditions, deep behavioral conditions and superficial 

neuronal units versus deep neuronal units. In all tests, we included a random intercept for each neuronal unit, 

to control for repeat measures.  

 

Stimulus and Attention Classification 



Feature Matrix 

We assembled a dataset composed of neuronal firing rates recorded across the columnar arrays and across 

multiple experimental sessions (23 sessions from Monkey G; 20 sessions from Monkey B; 86 superficial 

neurons; 181 deep neurons) for all units for which we recorded a minimum number of trials per orientation (N = 

20), or attention condition (N = 200). Each column of the feature matrix was a specific neuron’s firing rate, and 

each row of that column was the neuron’s firing rate on a specific trial. The rows of each column were aligned, 

so that they shared the same label for orientation or attention condition (depending on the epoch). The number 

of rows associated with each orientation or attention condition were matched, so that chance level was 12.5% 

for the orientation epoch and 33% for the cue epoch. Each neuronal unit had multiple columns in the feature 

matrix, corresponding to the number of bins in which firing rates were calculated. Trials within a tested 

condition were shuffled for each unit in order to destroy any possibility of correlation among simultaneously 

recorded units. The firing rates for the orientation epoch were calculated in two 150 ms time bins, from 50 ms 

following stimulus onset to 350 ms following stimulus onset. For attentional decoding during the cue epoch, 

firing rates were calculated in four 150 ms time bins, from 50 ms following stimulus onset to 650 ms following 

stimulus onset. This provided a gross temporal pattern which was noted to improve performance in Nandy et 

al. (2016) (17). When building feature matrices with variable population sizes, we randomly sampled a 

population that size from all available units. This process was repeated 100 times, generating a unique of 

feature matrix for each run of the decoder. 

 

Random Forest Classification 

We used a Random Forest decoder, similar to that used in Nandy et al. (2016) (17), as implemented by 

Matlabs (Mathworks TM) treebagger function. In addition to decoding based on firing rate, Random Forest can 

decode based on differences in firing rate variability, even when mean firing rates are equal (18, 19),. 

Furthermore, rather than comparing each orientation to the others in turn, the decoder simultaneously 

considers all orientations. The decoder’s decision trees were trained on bags of trials (matrix rows), selected 

through bootstrapping with replacement, and tested each decision tree on trials not included in the training 

bag. This out-of-bag (OOB) error was used as the performance measure. It is significantly more conservative 

than cross validation, but has the advantage of using all available data when training the decoder. 



Furthermore, the bootstrapped sampling method has the traditional advantages associated with bootstrapping, 

such as revealing the true underlying distribution from the available training data, and reducing the impact of 

outlier trials (19). The decoder then used a boosting method to create decision trees. At each branch point, a 

random subset of the features (square root of the total number of features) was chosen to calculate potential 

decision boundaries. Each of the features in the subset was used as a linear threshold for linearly partitioning 

the population of trials. The Gini impurity (GI) of the original sample, as well as of the two partitions was 

calculated using the formula: 

!" = 1 −  !!
!

!!!
 

 

Where J is the number of classes, and pi is the probability of choosing stimulus class i at random from the 

sample. The GI of the two partitions was averaged, and subtracted from the GI of the parent sample. The 

feature with the greatest decrease in GI was used at the decision boundary at that branch point. The use of a 

random subset of features reduces the influence of outlier features, allowing one to be less careful about the 

neurons selected for use in decoding. Stopping criteria for the decision trees was when either all the trials at a 

branch point had the same label (GI = 0), or there were only 5 trials at the branch point. We set the number of 

trees to 200. To determine these hyperparameters, we decoded orientation using all neurons from both 

monkeys, while varying the number of trees and the number of leaves. Performance was best with a stopping 

rule of 5 trials in a leaf, and began to asymptote with 200 trees. Thus, we fixed the hyperparameters to those 

values for all subsequent analyses. The decoder was trained and tested using each of the 100 feature 

matrices, producing a distribution of decoder performance.  

 

Neuron-dropping Curves 

We used neuron-dropping curves to assess the performance of the decoder. Also known as learning-curves, 

these are a standard tool in the machine learning to assess whether performance limitations are due to the 

decoder, or to the quantity of data. When computing these functions, the quantity of data used for decoding is 

varied and an error rate (or performance level) is plotted as a function of that quantity. The presence of an 

asymptote indicates that the decoder has reached maximal performance, whereas the absence of an 



asymptote indicates more data is needed. We then fit a saturating function and compared both the rate of rise, 

and the asymptotic value between populations. 

We created pseudo-populations, starting with 5 units, and then incrementing by 5 until the maximal 

number of available units was reached. For each population size, we randomly sampled the requisite number 

from the larger population with replacement, repeating this process 100 times to bootstrap a representative 

distribution. To this range of performance levels, we fit the saturating function, 

! ! =  !×!(!!×!) + !, 

where s is the size of the population, a controls the y intercept, b the slope and c specifies the function 

asymptote. This was implemented using the Matlab fit function with the method non-linear least squares. A 

confidence interval of 95% was derived from the fitting process.  

 

Timecourse Decoding  

To assess the decoder performance prior to an event of interest (stimulus onset or cue onset), we created a 

feature matrix using a single 150 bins of firing rate from each neuron for each trial. We then recalculated that 

bin using time steps of 25 ms, moving from a period of time prior to event of interest to a period subsequent. 

Behavior was decoded separately using each feature matrix and performance was measured using OOB error. 

The time value of each performance measure was assigned using the leading edge of the bin. This meant that 

if the bin ended, for example, at stimulus onset, the 150 ms prior to stimulus onset was used as the 

performance measure at time 0. We chose this as it is a much more conservative estimate of latency than 

choosing the center of the bin, or the tailing edge.  

 For both stimulus decoding, we swept the time period from 100 ms prior appearance of stimulus to 350 

ms after it. For behavioral decoding over time, we swept from 100 ms prior to the cue to 650 ms subsequent to 

the cue.  

 

Feature Importance 

We used a heavily validated permutation test to assess feature importance (18). In this method, the decoder is 

trained on a full set of valid features. The decoder is then tested by sequentially permuting the features, and 

measuring the change in mean-squared-error (MSE) caused by permuting that specific feature. This is 



repeated on several separately trained versions of the decoder until a distribution of MSE impacts is created 

for each feature. The measure of each feature’s importance is then taken as the mean of their MSE 

distribution.  

 To implement this method, we simplified the feature matrix so that a single feature was associated with 

each unit. This was done by creating a single bin for each unit that was 300ms in duration for orientation 

decoding, and 600ms in duration for attentional decoding. Given the unequal number of recorded units in 

superficial and deep populations and the need for matched population sizes to compare MSE, we capped 

population sizes at 257 units for orientation decoding and 215 units for attentional decoding. In the case of 

superficial units, this encompassed the entire population. In the case of deep units, we randomly subsampled 

from the full population on each trial. MSE distribution estimates for each unit were taken from 100 cycles of 

the decoder.  
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