Extended Experimental Procedures

Yeast strains and plasmids. The yeast strains and plasmids used in this study are listed in Table S1 and Table S2, respectively. The oligonucleotide sequences are listed in Table S3. The yeast strains were constructed by a PCR-based method or standard genetic crosses. Briefly, to create a plasmid with the wild-type $htb1^+$ gene and a selective marker, a 1.4 kb DNA fragment containing the full-length $htbl^+$ gene was amplified by high-fidelity pfu DNA polymerase (Cellgen Biolab) with GF1 and GF2 primers and then cloned into pFA6a-KanMX6 digested with BamHI and BglII. A 350 bp homologous fragment downstream of the $htb1^+$ gene was also amplified with GF3 and GF4 primers and cloned into SacI and SacII sites in pFA6a-KanMX6. Site-directed mutagenesis of the $htb1^+$ plasmid was conducted according to standard protocols (Stratagene). To induce homologous recombination with the genomic $htb1^+$ gene, 10 µg of htb1 DNA fragments with or without mutations were PCR-amplified from this plasmid with GF1 and GF4 primers and transformed into the wild-type strain by the lithium acetate method. G418-resistant colonies were isolated on YES plates containing 100 µg/ml of G418 (Sigma, A1720). A PCR analysis was performed to confirm whether homologous recombination occur, and DNA sequencing was performed to confirm the open reading frame (ORF) of htbl. For the histone H2B expression plasmid, the full-length S. pombe H2B ORF sequence was PCR-amplified with GF53 and GF54 primers and cloned into pET28a (Novagen) digested with BamHI and XhoI.

Yeast growth and assays of genomic instability. Cells of the fission yeast *S. pombe* were normally cultured in YES (yeast extract and supplements) or Edinburgh minimal 2 media (EMM) with supplements at 30°C. The cells cultured under replication stress conditions were first grown to middle log-phase ($OD_{600}=0.4$) and then treated with replication stress for the indicated times. For the assays of growth sensitivity to DNA damaging agents, the cells were grown overnight to saturation, and the culture was then diluted to $OD_{600}=0.4$ and grown for an additional 3 h. These log-phase cells were then harvested and plated at a five-fold serial dilution on YES plates containing the indicated DNA damaging agent. Clonal images were taken after three or four days of culture. The *Ura4* loss assay in rDNA was based on a previous report (1). The loss rate was determined with the fluctuation analysis calculator FALCOR and the median method (2).

Generation and purification of antibodies. Peptide sequences and antibody information are listed in Table S4 and Table S5, respectively. A rabbit polyclonal antibody was raised against a synthetic peptide of *S. pombe* H2B acetylated K33 (GL Biochem.) conjugated with keyhole limpet hemocyanin (KLH). This specific antibody was sequentially purified from crude serum with modified and unmodified H2BK33 peptides crosslinked to CNBr-activated Sepharose resin (GE Healthcare). The serum was first applied to a column of H2BK33 acetylation peptide. After a thorough washing, the antibody binding to the H2BK33 acetylation peptide was eluted with 50 mM glycine-HCl (pH 2.5) and immediately neutralized with 1 M Tris-HCl (pH 9.0).

The eluates were then applied to a second column of unmodified H2BK33 peptide. The flow-through fraction was collected and dialyzed against phosphate buffered saline (PBS). The antibody against *S. pombe* histone H2B was generated by immunizing rabbits with recombinant H2B. 6His-T7-H2B-6His was overexpressed in *Escherichia coli* (*E. coli*) BL21 (DE3) and purified with Ni-NTA columns (QIAGEN). The fractions containing H2B were dialyzed against PBS containing 40% glycerol and stored at -20°C.

Chemical propionylation and mass spectrometry analysis of histone proteins. To examine the histone modifications, chromatin extracts were subjected to PAGE-SDS electrophoresis to separate the histone proteins. The bands containing H2A, H2B, H3, and H4 were cut out, de-stained and dehydrated. MS analyses of histone proteins requires the proteins to be propionylated to neutralize the charge and block lysine residues. Thus, each gel slice was added to 200 µl propionic anhydride (Sigma, 240311) in NH₄HCO₃ (Sigma, A6141) buffer (pH 8.0) and incubated at 51°C for 30 min. The pH was immediately adjusted to 8 by adding concentrated ammonium hydroxide (Sigma). The propionylated histones were then digested with trypsin that only cleaves at arginine residues. The peptides were subjected to LC-electrospray ionization-tandem mass spectrometry. The collected data were searched with Sequest, analyzed by Proteome Discoverer (Thermo) and further validated manually.

Cell cycle and flow cytometry analyses. As described, we synchronized the *S*. *pombe* cells at the G1 phase with nitrogen starvation or at the G2/M phase with cdc25-22 at 36°C for 3.5 h. After the cells were released, the cell cycle progression was monitored by measuring the septation index (a septum is formed when cytokinesis occurs) and analyzing the DNA content with fluorescence activated cell sorting (FACS). For the FACS analysis, the cells were first fixed with cold 70% ethanol and then incubated with 4 µg/ml propidium iodide (PI) in 50 mM sodium citrate containing 10 µg/ml RNase A for several hours. Immediately prior to the FACS analysis, the cells were briefly sonicated and then analyzed with a FACSCalibur (BD) system for PI detection (FL2-A).

Preparation of whole-cell extracts and immunoblotting. Whole-cell extracts were prepared by the following procedure. A 10-ml cell culture ($OD_{600}=1.0$ (10 ODs)) was harvested, washed once with 1/4 volume of ice-cold 100% trichloroacetic acid (TCA) and resuspended in 500 µl of 10% TCA and 500 µl of acid-washed glass beads (Sigma, G-8772). The cells were disrupted by vortexing for 10 min. After centrifugation at 10,000 x *g* for 10 min, the cell pellets were completely resuspended in the 2x SDS loading buffer with 1 mM phenylmethylsulfonyl fluoride (PMSF, Sigma P7626), 10 mM sodium butyrate (NaB, Sigma V900464) and 10 nM trichostatin A (TSA, Beyotime S1893). The pH was adjusted by adding 1/5 volume of Tris buffer (pH=11), and then the sample was boiled at 95 °C for 5 min, run on a Tris-glycine SDS-polyacrylamide gel and transferred to a 0.2-µm PVDF membrane

(Millipore, immobilon-P^{SQ}). The blots were probed with primary and secondary antibodies and detected via SuperSignal West Pico chemiluminescence (Thermo, 34078). For the Western blotting analysis of H2BK33ac, the H2BK33ac antibody was pre-incubated with 0.5 μ g/ml unmodified H2BK33 peptide for 0.5 h at room temperature prior to the standard procedure. For the peptide competition assay, an approximately 20-fold molar excess of peptides (0.5 μ g/ml) relative to antibodies was used. For the dot blots, 2 μ l of the indicated amounts of histone H2B peptides were spotted onto 0.2- μ m PVDF membranes and detected using the same method applied for immunoblotting.

DNA combing analysis and microscopy imaging. DNA combing was modified from previous methods (3, 4). Briefly, the strain J2172 was labeled with 10 μ M 5-ethynyl-2'-deoxyuridine (EdU) (Molecular Probes, E10187), 200 μ g/ml 5-iodo-2'-deoxyuridine (IdU) (Sigma I7125) or 200 μ g/ml 5-chloro-2'-deoxyuridine (CIdU) (Sigma C6891) depending on the experimental requirements. The labelled cells were then embedded in agarose plugs, and genomic DNA was carefully extracted to prevent shearing. DNA adhered to the silanized glass coverslips (Genomic Vision, COV-001) in MES (Sigma, M2933) buffer (pH 6.2) and was stretched into fibers. Following heat crosslinking, the incorporated EdU was detected with the Click-iT EdU imaging kit (Molecular Probes, C10337). IdU and CIdU were detected by immunofluorescence using the indicated primary and secondary antibodies after DNA denaturation with 1M NaOH 22min. For staining with calcofluor white (Sigma, 18909) or 4',6-diamidino-2-phenylindole (DAPI) (Sigma), the cells were fixed with cold 70% ethanol, stained with calcofluor white or DAPI and washed with PBS just prior to imaging. All of the images were observed using DeltaVision Elite microscopy (Applied Precision). Six sections of the *z*-axis were deconvolved and projected with maximum intensity in SoftWoRx (GE Healthcare), and the images were analyzed by Volocity (PerkinElmer). The number of DNA fibers calculated per sample were shown in figures and two biological replicates were scored and statistically analyzed.

DNA combing analysis to measure the rate of stalled or collapsed forks

J2172 strains with cdc10-M17 and a K33R/Q or clr6-1 mutation were first synchronized at G1 at 36.5 °C for 3 h, and then 12.5 mM HU was added to the culture for 1 h before release. Upon cell release at 25°C, IdU (red) was added for 3 h. Then, IdU and HU were washed out and CIdU (green) was added for an additional 0.5 h. Chromatin DNA was subjected to DNA combing assays. The percentages of stalled or collapsed forks were calculated as counts of DNA tracts that had incorporated only IdU (red) divided by the total counts of DNA tracts.

Chromatin fractionation. Chromatin was isolated as previously described (5). The growth of log-phase cells was stopped by the addition of 0.2% sodium azide (NaN₃) on ice, and the cells were then resuspended in 1.2 M sorbitol and subjected to lyticase (Cellgen Biolabs) digestion at 30°C for approximately 30 min until more than 90% of

the cells became "ghosts" in 1% Triton X-100. The spheroplasts were resuspended in buffer A (50 mM Tris-HCl, pH 8.0, 100 mM KCl, 5 mM MgCl₂, 1 mM EDTA, 10% glycerol, 0.05% NP-40, 1 mM PMSF, 1 mM DTT, protease inhibitor cocktail for yeast extracts (Sigma, P8215), 10 mM NaB, and 10 nM TSA and lysed with 1% Triton X-100 (TX-100) (Amresco). After removing the cell debris and intact cells by centrifugation at 700g for 10 min, the supernatants as WCE were loaded onto a 30% sucrose cushion and centrifuged at 35,000 x g for 10 min. The chromatin pellet was suspended and washed twice by incubating with buffer A containing 0.25% TX-100 for 5 min. Chromatin were further digested by 1 unit/µl Benzonase nuclease (Novagen, 70746) for 10 min to remove the nucleic acids and release the chromatin-bound proteins.

Isolation of normal or HU-stalled replication forks. Cells with *cdc25-22* were synchronized to G2/M phase by incubating at 36.5°C for 3h and harvested as S phase cells with the highest septa percentage after releasing into 25°C for 80-90min (in the case of *clr6-1* mutation, release into S phase after 120min due to slow growth). For HU treated S phase cells, treated with 12.5mM HU 3.5h upon blocked *cdc25-22* releasing. Then cells were crosslinked with 1% formaldehyde (Sigma, F8775) at 25°C for 20 min and stopped by adding 1/20 volume of 2.5 M glycine. Chromatin was isolated. Then chromatin DNA was sonicated by Bioruptor (Diagenode) to average 700bp fragments (in the case of isolating oligonucleosomes and histones around forks for Western blotting assays, the average DNA was 1000-2000bp) and saved as input

sample. Replisome was immunoprecipitated (IP) with anti-HA beads (sigma, A2095) to Rpa1-HA or anti-Flag beads (Sigma, A2220) to DNA pol α -Spb70-3FLAG or DNA pol δ -Cdc1-3FLAG, and eluted with 1% SDS as IP sample. Both input and IP protein samples were incubated at 65°C for overnight for de-crosslinking and then boiled for immunoblotting.

Chromatin immunoprecipitation and quantitative PCR (ChIP-qPCR). The cdc25-22 cells arrested at G2/M were released into the S phase with or without HU. Cell samples were taken at the very beginning of S phase (just appearance of Septa) (-HU) or at 3.5h (+12.5 mM HU) after G2/M release. After crosslinking with 1% formaldehyde (Sigma, F8775) at 25°C for 20 min and stopped by adding 1/20 volume of 2.5 M glycine, Chromatin was prepared and sonicated to ~500 bp. A 1/10 fraction was saved as the input sample, and the DNA products were electrophoresed on 2% agarose gels to confirm that the size of the sheared DNA fragments was ~500bp in average. After pre-clearing the sheared chromatin with protein-A beads (GE Healthcare, 17-5280-01), the chromatin sample was incubated with specific antibody-conjugated beads (Sigma A2095 for HA beads) for 2 h or overnight at 4°C. Following extensive washing with a high level of salt and detergent, the immunoprecipitated chromatin was eluted with 200 µl TE containing 1% SDS and the input sample was added to 1% SDS. Then the samples were incubated at 65°C overnight for reverse crosslinking. After treatment with 100 µg/ml proteinase K (NEB, P8102) and 100 µg/ml RNase A (Thermo, EN0531), the DNA was purified using a

MinElute PCR purification kit (Qiagen, 28004). Approximately 10 ng DNA templates were mixed with 10 μ l of 2X SYBR Green PCR master mix (TaKaRa, RR420A) and 4 μ l specific primer sets of DNA replication origins (each primer is 1 μ M). The sample was run on the Roche LightCycler 96 Real-Time PCR System according to the manufacturer's instructions. Each sample from two independent experiments was quantified and averaged. The enrichment of immunoprecipitated DNA relative to the paired input DNA was determined by the comparative Ct (2^{-Ct}) method.

Micrococcal nuclease (**MNase**) **digestion of chromatin**. MNase digestion of chromatin was performed according to a previous method (6). Briefly, equal amounts of cells were digested with lyticase to nearly the same extent at 32°C for 30-60 min. The obtained spheroplasts were partially permeabilized with NP-40 buffer and digested with a series of increasing units of MNase (NEB, M0247) at 37°C for 10 min. After the reactions were stopped by adding 50 mM EDTA and 0.5% SDS, the DNA was purified by treating the samples with proteinase K and RNase A followed by phenol-chloroform extraction. The DNA concentration was measured using a NanoVue spectrophotometer (GE Healthcare), and equal amounts of total DNA were resolved on 1.5% agarose gels and visualized by ethidium bromide staining. The optical density of DNA was quantified with ImageJ software by calculating the integral area of density plot after background subtraction. The percentage of the indicated DNA amount of the lane from top to bottom of the gel was shown in figures.

Yeast two-hybrid (Y2H) assay. The Y2H experiment was based on Matchmaker Gal4 two-hybrid system 3 (Clontech). The indicated proteins were cloned in-frame into the pGADT7 vector with GAL4 activating domain (pAD) and the pGBKT7 vector with GAL4 DNA-binding domain (pBD). The pAD plasmid with leucine marker and pBD plasmid with tryptophan marker were co-transformed into *S. cerevisiae* strain AH109, and 8 independent transformants of each interacting pair with leucine and tryptophan markers were randomly selected and spotted onto the indicated test plates lacking leucine and tryptophan, and histidine or adenine. The experiments were independently replicated three times.

MNase digestion assay of local chromatin around replication forks. For each sample, 5L of cells at log phase with cdc25-22 and $pol\delta$ -cdc1-3Flag genetic background were first arrested at G2/M phase at a restrictive temperature of 36.5°C and then released into S phase in the absence or presence of HU at 26°C. After crosslinking with formaldehyde, the chromatin was then prepared, sonicated to an average size of ~2500 bp (a range of ~1000 to ~5000 bp), and subjected to immuneprecipitation with anti-Flag beads. The isolated chromatin, which was located around normal or stalling replication forks, was digested with MNase at 37°C for 10 min, in presence of RNase A and T1. The MNase digestion was then stopped with addition of 0.5% SDS and 50 mM of EDTA and kept at 65°C for 20 min, in presence of proteinase K. After de-crosslinking at 65°C for overnight and phenol-chloroform

extraction. The DNA in the water phase was lyophilized and subsequently dissolved in TE for gel electrophoresis.

Phos-tag gel analysis of Cds1 phosphorylation. Whole-cell extracts were prepared as previously described. The samples were run on a 8% SDS-polyacrylamide gel containing 10 μ M Phos-tag (NARD institute, AAL-107). After electrophoresis, the gel was washed with buffer containing 20 mM EDTA to remove Mn²⁺. Proteins were transferred to a 0.2- μ m PVDF membrane (Millipore, immobilon-P^{SQ}) for subsequent Western blotting assay with a monoclonal antibody against HA-Cds1 (Bioeasytech, BE2008).

Co-immunoprecipitation (co-IP) assay of Rad9 and Clr6 interaction. Chromatin was prepared from 1L of cell cultures with His-tagged Rad9 and HA-tagged or untagged Clr6. The chromatin-bound proteins were extracted with 600 mM NaCl and subjected to immunoprecipitation with antibody against HA-Cr6, after the chromatin extracts were diluted to a salt concentration of 150 mM NaCl and DNase I treatment. Western blotting assay was followed for examining Clr6 and Rad9 in the brought-down samples.

Strain	Genotype	Source
YGF0	h-, ura4-D18	Lilin Du (LD330)
YGF1	h-, ura4-D18, htb1::kan	This study (LD330
		background)
YGF13	h-, ura4-D18, htb1-K33R::kan	This study (LD330
		background)
YGF30	h-, ura4-D18, htb1-K33A::kan	This study (LD330
		background)
YGF24	h-, ura4-D18, htb1-K33Q::kan	This study (LD330
		background)
YGF6	h-, ura4-D18, htb1-K5R::kan	This study (LD330
		background)
YGF188	h-, ura4-D18, htb1-K5Q::kan	This study (LD330
		background)
YGF189	h-, ura4-D18, htb1-K10R::kan	This study (LD330
		background)
YGF190	h-, ura4-D18, htb1-K10Q::kan	This study (LD330
		background)
YGF191	h-, ura4-D18, htb1-K15R::kan	This study (LD330
		background)
YGF192	h-, ura4-D18, htb1-K15Q::kan	This study (LD330
		background)
YGF31	h-, ura4-D18, htb1-K5RK10RK15R::kan	This study (LD330
		background)
YGF34	h-, ura4-D18, htb1-K5QK10QK15Q::kan	This study (LD330
		background)
YGF193	h-, ura4-D18, htb1-K5RK10RK15RK33R::kan	This study (LD330
		background)
YGF194	h-, ura4-D18, htb1-K5QK10QK15QK33Q::kan	This study (LD330
		background)
YGF70	h-, ura4-D18, htb1-FLAG::kan	This study (LD330
		background)
YGF104	h-, ura4-D18, ade6-704, cdc10-M17,	Antony Carr (J2172)
	leu1-32::[leu1+adh1:hENT1],	
	his7-366::[his7+adh1:hsv-tk]	
YGF54	h-, ura4-D18, ade6-704, cdc10-M17,	This study (J2172
	leu1-32::[leu1+adh1:hENT1],	background)
	his7-366::[his7+adh1:hsv-tk], htb1::kan	
YGF55	h-, ura4-D18, ade6-704, cdc10-M17,	This study (J2172
	leu1-32::[leu1+adh1:hENT1],	background)
	his7-366::[his7+adh1:hsv-tk], htb1-K33R::kan	

Supplemental Table S1. Yeast strains

YGF56	h-, ura4-D18, ade6-704, cdc10-M17,	This study (J2172
	leu1-32::[leu1 ⁺ adh1:hENT1],	background)
	his7-366::[his7+adh1:hsv-tk], htb1-K33Q::kan	
YGF122	h-, ura4-D18, ade6-704, cdc10-M17,	This study (J2172
	leu1-32::[leu1+adh1:hENT1],	background)
	$his7-366::[his7^+adh1:hsv-tk], clr3\Delta::kan$	
YGF123	h?, ura4-D18, cdc10-M17,	This study (J2172
	leu1-32::[leu1+adh1:hENT1],	background)
	his7-366::[his7+adh1:hsv-tk], clr6-1	
YGF105	h-, leu1-32	NBRP (FY7950)
YGF106	h+, leu1-32, clr6-1	NBRP (FY11920)
YGF107	<i>h-, leu1-32, clr3∆∷kan</i>	NBRP (FY20012)
YGF108	h?, clr6-1, clr3 <i>A</i> ::kan	Genevieve Thon
YGF109	h-, leu1-32, hos2∆∷kan	NBRP (FY20013)
YGF110	h-, sir24::kan	NBRP (FY20704)
YGF111	h-, hst24::kan	NBRP (FY20703)
YGF112	<i>h-, leu1-32, hst4∆∷kan</i>	NBRP (FY20710)
YGF113	h+, cdc25-22	This study
YGF76	h+, cdc25-22, ssb1-3HA-kan	This study
YGF121	h+, cdc25-22, cdc18-3HA-kan	This study
YGF98	h?, cdc25-22, htb1-K33R::kan	This study
YGF99	h?, cdc25-22, htb1-K33Q::kan	This study
YGF109	h-, ade6-M210, ura4-D18, leu1-32, clr6-3HA-kan,	Karl Ekwall (Hu67)
	clr3-13myc-kan	
YGF145	h-, ade6-M210, ura4-D18, leu1-32, clr6-3HA-kan,	This study (Hu67
	clr3-13myc-kan, cdc25-22-nat	background)
YGF95	h-, ade6-M210, ura4-D18, leu1-32, clr6-3HA-kan,	This study (Hu67
	clr3-13myc-kan, rad3∆::hph	background)
YGF152	h-, ade6-M210, ura4-D18, leu1-32, clr6-3HA-kan,	This study (Hu67
	clr3-13myc-kan, cds1∆::hph	background)
YGF146	h-, ade6-M210, ura4-D18, leu1-32, clr6-3HA-kan,	This study (Hu67
	clr3-13myc-kan, rad9∆∷hph	background)
YGF227	h-, ade6-M210, ura4-D18, leu1-32, cdc25-22-nat,	This study (Hu67
	clr6-3HA-kan, clr3-13myc-kan, rad9∆::hph	background)
YGF148	h-, ade6-M210, ura4-D18, leu1-32, clr6-3HA-kan,	This study (Hu67
	clr3-13myc-kan, rad9-8his-hph	background)
YGF83	h+, leu1-32, clr6-1, htb1-K33R::kan	This study (FY11920
		background)
YGF84	h+, leu1-32, clr6-1, htb1-K33A::kan	This study (FY11920
		background)
YGF85	h+, leu1-32, clr6-1, htb1-K33Q::kan	This study (FY11920
		background)

YGF137	h?, clr6-1, cds1_1::hph	This study
YGF94	h-, cds1 <i>Δ</i> ::hph	This study
YGF138	h90, ura4-D18, cds1∆∷ura4	NBRP (FY7429)
YGF115	h-, leu1-32, ura4-D18, ade6-M210, his3-D1,	Lilin Du (LD297)
	rad3∆::LEU2	
YGF116	h+, ade6-704, leu1-32, ura4-D18, cds1∆∷kan	Antony Carr (Ets13)
YGF51	h+, ade6-704, leu1-32, ura4-D18, cds1∆∷kan,	This study (Ets13
	htb1-K33R::kan	background)
YGF52	h+, ade6-704, leu1-32, ura4-D18, cds1∆∷kan,	This study (Ets13
	htb1-K33A::kan	background)
YGF53	h+, ade6-704, leu1-32, ura4-D18, cds1∆∷kan,	This study (Ets13
	htb1-K33Q::kan	background)
YGF117	<i>h</i> +, <i>ade</i> 6- <i>M</i> 210, <i>leu</i> 1-32, <i>ura</i> 4- <i>D</i> 18, <i>tel</i> 1∆:: <i>LEU</i> 2	NBRP (FY14071)
YGF118	h-, ade6-704, leu1-32, ura4-D18, chk1∆∷kan	Antony Carr (Ets12)
YGF119	h90, ade6-216, leu1-32, lys1-131, ura4-D18,	NBRP (FY15195)
	clr6-GFP-3HA::kan	
YGF120	h90, ade6-216, leu1-32, lys1-131, ura4-D18,	NBRP (FY15180)
	clr3-GFP-3HA::kan	
YGF17	h-, leu1-, ura4-, cds1-2HA-6His::ura4	NBRP (FY11064)
YGF131	h-, leu1-, ura4-, cds1-2HA-6His::ura4,	This study (FY11064
	htb1-K33R::kan	background)
YGF132	h-, leu1-, ura4-, cds1-2HA-6His::ura4,	This study (FY11064
	htb1-K33Q::kan	background)
YGF140	h?, cds1-2HA-6His::ura4, clr6-1	This study (FY11064
		background)
YGF139	h+, ade6-216, ura4-DS/E, leu1-32, Ylp2.4pUCura4.7	Lilin Du (DY683)
YGF128	h+, ade6-216, ura4-DS/E, leu1-32, Ylp2.4pUCura4.7,	This study (DY683
	htb1-K33R::kan	background)
YGF129	h+, ade6-216, ura4-DS/E, leu1-32, Ylp2.4pUCura4.7,	This study (DY683
	htb1-K33Q::kan	background)
YGF199	h-, ura4-D18, leu1-32, his3-D1, cdc25-22	Lilin Du (DY769)
YGF173	<i>h</i> +, <i>ade-M216</i> , <i>leu1-32</i> , <i>ura4-D18</i> , <i>cdc25-22-nat</i> ,	This study
	cdc45-6his-3HA-6his-ura4, spb70-3Flag-hph	
YGF176	h+, ade-M216, leu1-32, ura4-D18, cdc25-22-nat,	This study (YGF173
	cdc45-6his-3HA-6his-ura4, spb/0-3Flag-hph,	background)
NOE177	htb1-K33R::kan	
YGF177	h+, ade-M216, leu1-32, ura4-D18, cdc25-22-nat,	This study (YGF173
	cac45-onis-3HA-onis-ura4, spb/0-3Flag-npn,	background)
VCE194	hu ada25 22 mat ada45 6hin 2014 6hin ana 4	This study (VCE172
101184	n:, cuc25-22-nul, cuc45-onis-5HA-onis-ura4,	hackground)
VCE175	sporto-sring-npn, ciro-1	This study
1011/5	n+, aae-M210, leu1-32, ura4-D18, cac23-22-nat,	This study
	cac45-onis-5nA-onis-ura4, cac1-5Flag-nph	

YGF180	h+, ade-M216, leu1-32, ura4-D18, cdc25-22-nat,	This study (YGF175
	cdc45-6his-3HA-6his-ura4, cdc1-3Flag-hph,	background)
	htb1-K33R::kan	
YGF181	h+, ade-M216, leu1-32, ura4-D18, cdc25-22-nat,	This study (YGF175
	cdc45-6his-3HA-6his-ura4, cdc1-3Flag-hph,	background)
	htb1-K33Q::kan	
YGF187	h?, cdc25-22-nat, cdc45-6his-3HA-6his-ura4,	This study (YGF175
	cdc1-3Flag-hph, clr6-1	background)
YGF198	MATa, trp1-901, leu2-3, ade2-112, ura3-52, his3-200,	AH109
	gal44, gal804, LYS2::GAL1 _{UAS} -GAL1 _{TATA} -HIS3,	
	GAL2 _{UAS} -GAL2 _{TATA} -ADE2, URA3::	
	MEL1 _{UAS} -MEL1 _{TATA} -lacZ	
YGF200	MATa, trp1-901, leu2-3, ade2-112, ura3-52, his3-200,	This study (AH109
	gal44, gal804, LYS2::GAL1 _{UAS} -GAL1 _{TATA} -HIS3,	background)
	GAL2 _{UAS} -GAL2 _{TATA} -ADE2, URA3::	
	MEL1 _{UAS} -MEL1 _{TATA} -lacZ, [pGBKT7, pGADT7]	
YGF201	MATa, trp1-901, leu2-3, ade2-112, ura3-52, his3-200,	This study (AH109
	gal44, gal804, LYS2::GAL1 _{UAS} -GAL1 _{TATA} -HIS3,	background)
	GAL2 _{UAS} -GAL2 _{TATA} -ADE2, URA3::	
	MEL1 _{UAS} -MEL1 _{TATA} -lacZ, [pGF58, pGF62]	
YGF202	MATa, trp1-901, leu2-3, ade2-112, ura3-52, his3-200,	This study (AH109
	gal44, gal804, LYS2::GAL1 _{UAS} -GAL1 _{TATA} -HIS3,	background)
	GAL2 _{UAS} -GAL2 _{TATA} -ADE2, URA3::	
	MEL1 _{UAS} -MEL1 _{TATA} -lacZ, [pGF55, pGF61]	
YGF203	MATa, trp1-901, leu2-3, ade2-112, ura3-52, his3-200,	This study (AH109
	gal4A, gal80A, LYS2::GAL1 _{UAS} -GAL1 _{TATA} -HIS3,	background)
	GAL2 _{UAS} -GAL2 _{TATA} -ADE2, URA3::	
	MEL1 _{UAS} -MEL1 _{TATA} -lacZ, [pGF55, pGBKT7]	
YGF204	MATa, trp1-901, leu2-3, ade2-112, ura3-52, his3-200,	This study (AH109
	gal4A, gal80A, LYS2::GAL1 _{UAS} -GAL1 _{TATA} -HIS3,	background)
	GAL2 _{UAS} -GAL2 _{TATA} -ADE2, URA3::	
	<i>MEL1_{UAS}-MEL1_{TATA}-lacZ</i> , [pGADT7, pGF61]	
YGF205	MATa, trp1-901, leu2-3, ade2-112, ura3-52, his3-200,	This study (AH109
	gal44, gal804, LYS2::GAL1 _{UAS} -GAL1 _{TATA} -HIS3,	background)
	GAL2 _{UAS} -GAL2 _{TATA} -ADE2, URA3::	
	<i>MEL1_{UAS}-MEL1_{TATA}-lacZ</i> , [pGF55, pGF62]	
YGF206	MATa, trp1-901, leu2-3, ade2-112, ura3-52, his3-200,	This study (AH109
	gal44, gal804, LYS2::GAL1 _{UAS} -GAL1 _{TATA} -HIS3,	background)
	GAL2 _{UAS} -GAL2 _{TATA} -ADE2, URA3::	
	<i>MEL1_{UAS}-MEL1_{TATA}-lacZ</i> , [pGADT7, pGF62]	
YGF207	MATa, trp1-901, leu2-3, ade2-112, ura3-52, his3-200,	This study (AH109
	gal44, gal804, LYS2::GAL1 _{UAS} -GAL1 _{TATA} -HIS3,	background)
	GAL2 _{UAS} -GAL2 _{TATA} -ADE2, URA3::	

	MEL1 _{UAS} -MEL1 _{TATA} -lacZ, [pGF55, pGF63]	
YGF208	MATa, trp1-901, leu2-3, ade2-112, ura3-52, his3-200,	This study (AH109
	gal44, gal804, LYS2::GAL1 _{UAS} -GAL1 _{TATA} -HIS3,	background)
	GAL2 _{UAS} -GAL2 _{TATA} -ADE2, URA3::	
	MEL1 _{UAS} -MEL1 _{TATA} -lacZ, [pGADT7, pGF63]	
YGF211	MATa, trp1-901, leu2-3, ade2-112, ura3-52, his3-200,	This study (AH109
	gal44, gal804, LYS2::GAL1 _{UAS} -GAL1 _{TATA} -HIS3,	background)
	GAL2 _{UAS} -GAL2 _{TATA} -ADE2, URA3::	
	MEL1 _{UAS} -MEL1 _{TATA} -lacZ, [pGF55, pGF65]	
YGF212	MATa, trp1-901, leu2-3, ade2-112, ura3-52, his3-200,	This study (AH109
	gal4A, gal80A, LYS2::GAL1 _{UAS} -GAL1 _{TATA} -HIS3,	background)
	GAL2 _{UAS} -GAL2 _{TATA} -ADE2, URA3::	
	MEL1 _{UAS} -MEL1 _{TATA} -lacZ, [pGADT7, pGF65]	
YGF213	MATa, trp1-901, leu2-3, ade2-112, ura3-52, his3-200,	This study (AH109
	gal4A, gal80A, LYS2::GAL1 _{UAS} -GAL1 _{TATA} -HIS3,	background)
	GAL2 _{UAS} -GAL2 _{TATA} -ADE2, URA3::	
	MEL1 _{UAS} -MEL1 _{TATA} -lacZ, [pGF54, pGF56]	
YGF214	MATa, trp1-901, leu2-3, ade2-112, ura3-52, his3-200,	This study (AH109
	gal44, gal804, LYS2::GAL1 _{UAS} -GAL1 _{TATA} -HIS3,	background)
	GAL2 _{UAS} -GAL2 _{TATA} -ADE2, URA3::	
	<i>MEL1_{UAS}-MEL1_{TATA}-lacZ</i> , [pGF54, pGADT7]	
YGF215	MATa, trp1-901, leu2-3, ade2-112, ura3-52, his3-200,	This study (AH109
	gal41, gal801, LYS2::GAL1 _{UAS} -GAL1 _{TATA} -HIS3,	background)
	GAL2 _{UAS} -GAL2 _{TATA} -ADE2, URA3::	
	<i>MEL1_{UAS}-MEL1_{TATA}-lacZ</i> , [pGBKT7, pGF56]	
YGF216	MATa, trp1-901, leu2-3, ade2-112, ura3-52, his3-200,	This study (AH109
	gal44, gal804, LYS2::GAL1 _{UAS} -GAL1 _{TATA} -HIS3,	background)
	GAL2 _{UAS} -GAL2 _{TATA} -ADE2, URA3::	
	<i>MEL1_{UAS}-MEL1_{TATA}-lacZ</i> , [pGF54, pGF57]	
YGF217	MATa, trp1-901, leu2-3, ade2-112, ura3-52, his3-200,	This study (AH109
	gal44, gal804, LYS2::GAL1 _{UAS} -GAL1 _{TATA} -HIS3,	background)
	GAL2 _{UAS} -GAL2 _{TATA} -ADE2, URA3::	
	<i>MEL1_{UAS}-MEL1_{TATA}-lacZ</i> , [pGBKT7, pGF57]	
YGF218	MATa, trp1-901, leu2-3, ade2-112, ura3-52, his3-200,	This study (AH109
	gal44, gal804, LYS2::GAL1 _{UAS} -GAL1 _{TATA} -HIS3,	background)
	$GAL2_{UAS}$ - $GAL2_{TATA}$ - $ADE2$, $URA3$::	
	MEL1 _{UAS} -MEL1 _{TATA} -lacZ, [pGF54, pGF58]	
YGF219	MATa, trp1-901, leu2-3, ade2-112, ura3-52, his3-200,	This study (AH109
	gal4A, gal80A, LYS2::GAL1 _{UAS} -GAL1 _{TATA} -HIS3,	background)
	GAL2 _{UAS} -GAL2 _{TATA} -ADE2, URA3::	
	<i>MEL1_{UAS}-MEL1_{TATA}-lacZ</i> , [pGBKT7, pGF58]	
YGF222	MATa, trp1-901, leu2-3, ade2-112, ura3-52, his3-200,	This study (AH109
	gal4A, gal80A, LYS2::GAL1 _{UAS} -GAL1 _{TATA} -HIS3,	background)

	GAL2 _{UAS} -GAL2 _{TATA} -ADE2, URA3::	
	MEL1 _{UAS} -MEL1 _{TATA} -lacZ, [pGF54, pGF60]	
YGF223	MATa, trp1-901, leu2-3, ade2-112, ura3-52, his3-200,	This study (AH109
	gal44, gal804, LYS2::GAL1 _{UAS} -GAL1 _{TATA} -HIS3,	background)
	GAL2 _{UAS} -GAL2 _{TATA} -ADE2, URA3::	
	MEL1 _{UAS} -MEL1 _{TATA} -lacZ, [pGBKT7, pGF60]	

Supplemental Table S2. Plasmids

Plasmid	Description	Source
pFA6a	containing kanMX6	Susan
		Forsburg
pBluescript	Phagemid vector for cloning	Stratagene
pET-28a	Expression vector in E. coli	Novagen
pGF0	pBluescript containing <i>ura4</i> at HindIII site	This study
pGF2	pFA6a containing htb1	This study
pGF6	pFA6a containing htb1-K33R	This study
pGF29	pFA6a containing htb1-K33A	This study
pGF11	pFA6a containing <i>htb1-K33Q</i>	This study
pGF17	pFA6a containing htb1-K5R	This study
pGF49	pFA6a containing <i>htb1-K5Q</i>	This study
pGF50	pFA6a containing htb1-K10R	This study
pGF51	pFA6a containing <i>htb1-K10Q</i>	This study
pGF52	pFA6a containing <i>htb1-K15R</i>	This study
pGF53	pFA6a containing <i>htb1-K15Q</i>	This study
pGF27	pFA6a containing htb1-K5RK10RK15R	This study
pGF33	pFA6a containing htb1-K5QK10QK15Q	This study
pGF45	pFA6a containing htb1-K5RK10RK15RK33R	This study
pGF46	pFA6a containing htb1-K5QK10QK15QK33Q	This study
pGF21	pET-28a containing <i>htb1</i>	This study
pGF36	pBluescript containing cdc25-22-hph	This study
pGF37	pBluescript containing cdc25-22-nat	This study
pGF40	pBluescript containing hph	This study
pGF41	pBluescript containing hph and $rad3\Delta$ homologue sequences	This study
pGF42	pBluescript containing hph and $cds1\Delta$ homologue sequences	This study
pGBKT7	containing GAL4 DNA binding domain for yeast two-hybrid analysis	Clontech
pGADT7	containing GAL4 activating domain for yeast two-hybrid analysis	Clontech
pGF54	pGBKT7 containing <i>clr6</i>	This study
pGF55	pGADT7 containing <i>clr6</i>	This study
pGF56	pGADT7 containing rad9	This study
pGF57	pGADT7 containing rad1	This study
pGF58	pGADT7 containing <i>hus1</i>	This study

pGF60	pGADT7 containing htb1	This study
pGF61	pGBKT7 containing rad9	This study
pGF62	pGBKT7 containing rad1	This study
pGF63	pGBKT7 containing hus1	This study
pGF65	pGBKT7 containing htb1	This study

Supplemental Table S3. Oligonucleotides

Oligonucleotide	Sequence (5' to 3')	Use
GF1	CGGCCCGGATCCCTCGCA	5' Primer for htb1 homologous seq. #1 into
	ATTTCAGCCTTTACGG	pFA6a-KanMX6
GF2	GCGGCGAGATCTTAATAT	3' Primer for htb1 homologous seq. #1 into
	TCCATTCACCATCAATCTA	pFA6a-KanMX6
	AATCACC	
GF3	CGGCCCGAGCTCTTATTCA	5' Primer for htb1 homologous seq. #2 into
	CATTCAAAATATCCCAAA	pFA6a-KanMX6
	GAATCC	
GF4	GGCGGCCCGCGGCTCGCT	3' Primer for htb1 homologous seq. #2 into
	CAGTTTGCTTTACAC	pFA6a-KanMX6
GF39	GTATATAACCATCGCGTC	5' Primer for PCR htb1 ORF for sequencing
	GCC	
GF40	GTCGAAATGGAAGGCTGT	3' Primer for PCR htb1 ORF for sequencing
	GG	
GF56	CACCTACCATACTCGACTT	5' Primer for confirming <i>htb1</i> genomic
	GCTAC	insertion
GF57	CCACTCCTGGGCATCTTGG	3' Primer for confirming <i>htb1</i> genomic
		insertion
GF14	GATAAGAAGCGTGGTAAA	5' Primer for mutagenesis of htb1-K33R
	AACAGAAGGGAAACTTAT	
	TCATCCTATAT	
GF15	ATATAGGATGAATAAGTT	3' Primer for mutagenesis of htb1-K33R
	TCCCTTCTGTTTTTACCAC	
	GCTTCTTATC	
GF75	CTGCTGATAAGAAGCGTG	5' Primer for mutagenesis of htb1-K33A
	GTAAAAACAGAGCGGAAA	
	CTTATTCATCCTA	
GF76	TAGGATGAATAAGTTTCC	3' Primer for mutagenesis of <i>htb1</i> -K33A
	GCTCTGTTTTTACCACGCT	
	TCTTATCAGCAG	
GF28	CTGCTGATAAGAAGCGTG	5' Primer for mutagenesis of htb1-K33Q
	GTAAAAACAGACAGGAAA	
	CTTATTCAT	

GF29	ATGAATAAGTTTCCTGTCT	3' Primer for mutagenesis of <i>htb1</i> -K33Q
	GTTTTTACCACGCTTCTTA	
	TCAGCAG	
GF41	AATGTCTGCTGCTGAAAG	5' Primer for mutagenesis of <i>htb1</i> -K5R
	GAAACCCGCTTCCAAGG	
GF42	CCTTGGAAGCGGGTTTCCT	3' Primer for mutagenesis of <i>htb1</i> -K5R
	TTCAGCAGCAGACATT	
GF201	TAAAAAATGTCTGCTGCT	5' Primer for mutagenesis of htb1-K5Q
	GAACAGAAACCCGCTTCC	
	AAG	
GF202	CTTGGAAGCGGGTTTCTGT	3' Primer for mutagenesis of htb1-K5Q
	TCAGCAGCAGACATTTTT	
	А	
GF203	GAAAAGAAACCCGCTTCC	5' Primer for mutagenesis of htb1-K10R
	AGGGCTCCCGCC	
GF204	GGCGGGAGCCCTGGAAGC	3' Primer for mutagenesis of <i>htb1</i> -K10R
	GGGTTTCTTTTC	
GF205	AAACCCGCTTCCCAGGCT	5' Primer for mutagenesis of htb1-K10Q
	CCCGCCG	
GF206	CGGCGGGAGCCTGGGAAG	3' Primer for mutagenesis of htb1-K10Q
	CGGGTTT	
GF47	GCTCCCGCCGGTAGGGCT	5' Primer for mutagenesis of htb1-K15R
	CCTAGG	
GF48	CCTAGGAGCCCTACCGGC	3' Primer for mutagenesis of htb1-K15R
	GGGAGC	
GF81	AGGCTCCCGCCGGTCAGG	5' Primer for mutagenesis of <i>htb1</i> -K15Q
	CTCCTAG	
GF82	CTAGGAGCCTGACCGGCG	3' Primer for mutagenesis of htb1-K15Q
	GGAGCCT	
GF69	AAGGAAACCCGCTTCCAG	5' Primer for mutagenesis of <i>htb1</i> -K5RK10R
	GGCTCCCGC	
GF70	GCGGGAGCCCTGGAAGCG	3' Primer for mutagenesis of <i>htb1</i> -K5RK10R
	GGTTTCCTT	
GF77	TAAAAAATGTCTGCTGCT	5' Primer for mutagenesis of <i>htb1</i> -K5QK10Q
	GAACAGAAACCCGCTTCC	
	CAGGCTCCCGCC	
GF78	GGCGGGAGCCTGGGAAGC	3' Primer for mutagenesis of <i>htb1</i> -K5QK10Q
	GGGTTTCTGTTCAGCAGCA	
	GACATTTTTTA	
GF53	CGGCCCGGATCCGCTGCT	5' Primer for expressing H2B protein in
	GAAAAGAAACCCGC	pET28a
GF54	GCGGCGCTCGAGCTGAGC	3' Primer for expressing H2B protein in
	AGAAGAAGAATACTTGG	pET28a

GF85	ATGGTAGATGGAGAAACG	5' Primer for ars2004 in ChIP-qPCR analysis
	GG	
GF86	CACGGCATCTTTCTTCACG	3' Primer for ars2004 in ChIP-oPCR analysis
0100	A	5 Trinke for als2004 in chill qi cix analysis
GF87	TTCCTCAAATCACCCCACG	5' Primer for ars2004-14kb in ChIP-qPCR
	Т	analysis
GF88	ATGTATAGCTGGAACGCC	3' Primer for ars2004-14kb in ChIP-gPCR
	TG	analysis
GF91	TTGGCGCTAAACAATCTCT	5' Primer for ars3002 in ChIP-oPCR analysis
	G	
GF92	TCCTTGTCGAACTCAATTG	3' Primer for ars3002 in ChIP-oPCR analysis
0172	C	s Timer for association of the circularysis
GF93	GAATCTTCAGACCTTGCA	5' Primer for ars3002-10kh in ChIP-aPCR
0175	GC	analysis
GE94		3' Primer for ars3002-10kh in ChIP-aPCR
0174	TTG	analysis
GE97		5' Primer for PCR rad3 deletion cassette
0177	GA	5 Timer for Tex ruls detenoir easette
CE08		3' Primer for PCP rad3 deletion cassette
0170	GC	5 Third for tex ruas deletion cassed
CE00		5' Primer for confirming radd delation
0199	GTAA	5 Finner for contribuing raas deletion
GE100	GAAGGAAAATTACAAGAA	3' Primer for confirming radd deletion
01100	ATTGA	5 Time for commining raas dection
CE101		5' Primer for PCP add delation assette
01/101	TG	5 Finner for FCK <i>cast</i> deletion cassette
CE102		2' Primer for PCP add delation apports
0F102	TT	5 Finner for FCR cast deletion cassette
CE102		5' Drimer for confirming add deletion
0F105		5 Finner for contribuing cast deletion
CE104		2' Drimor for confirming add delation
0F104		5 Finner for contribuing cash deletion
		5' Drimon for controlmore ediscent region in
centromere-up-r		ChIP DCP analysis
D		2 ² Deimon for contractor of incontraction in
centromere-up-R		S Primer for centromere adjacent region in
		CIIIP-PCR analysis
mat3M-down-2.4	GIIGIGIIACIGAAIIACC	5 Primer for mat3M adjacent region in
KD-F		
mat3M-down-2.4	AACGGIAATGGTGTATCTT	5 Primer for mat3M adjacent region in
KD-K		
subtel-F	AACAGCGTTGCTTATCGA	5' Primer for subtelomere adjacent region in
	A	ChIP-PCR analysis
subtel-R	CTGTTGATTGCATGTCATC	3' Primer for subtelomere adjacent region in

	TAG	ChIP-PCR analysis
heterochromatin	ATGGTTGAAAATCAAGGG	5' Primer for heterochromatin island9 region
island9-F	AATG	in ChIP-PCR analysis
heterochromatin	GTTGCGAATCCACGTATA	3' Primer for heterochromatin island9 region
island9-R	AATC	in ChIP-PCR analysis
heterochromatin	ATGAAGTCCTCATCCGTG	5' Primer for heterochromatin island6 region
island6-F		in ChIP-PCR analysis
heterochromatin	GCGTGCCAATGATCTTTC	3' Primer for heterochromatin island6 region
island6-R		in ChIP-PCR analysis
heterochromatin	CAAGATAACGAGGTGGAA	5' Primer for heterochromatin island8 region
island8-F	TTATATTC	in ChIP-PCR analysis
heterochromatin	GATCTACTTGAGAAGACT	3' Primer for heterochromatin island8 region
island8-R	CACTG	in ChIP-PCR analysis
heterochromatin	ACTATCGCTTGCAGAGAA	5' Primer for heterochromatin island1 region
island1-F	AAG	in ChIP-PCR analysis
heterochromatin	GAACGTTTAGCATCGGAG	3' Primer for heterochromatin island1 region
island1-R	G	in ChIP-PCR analysis
rad9-up-F	CAGCTAATGATACAAATA	5' Primer for <i>rad9</i> adjacent region in
	CTTCAAAC	ChIP-PCR analysis
rad9-up-R	TATTACTTGTAATTGCCCG	3' Primer for <i>rad9</i> adjacent region in
	AC	ChIP-PCR analysis
rad9-F	CACTGTTTCAAATGTTAAT	5' Primer for <i>rad9</i> region in ChIP-PCR
	CTTCG	analysis
rad9-R	TTCTTGCTATTGGTAGTGA	3' Primer for <i>rad9</i> region in ChIP-PCR
	CG	analysis
hus1-up-F	GCTATAACACTACTCCCTC	5' Primer for hus1 adjacent region in
	С	ChIP-PCR analysis
hus1-up-R	AAACTACGAACGCGTAAA	3' Primer for <i>hus1</i> adjacent region in
	AG	ChIP-PCR analysis
hus1-F	CAAGGATTAGCAACTTGT	5' Primer for <i>hus1</i> region in ChIP-PCR
	ACAC	analysis
hus1-R	CCGTTTACGTTAGTTAGGG	3' Primer for <i>hus1</i> region in ChIP-PCR
	С	analysis
gcn5-up-F	CGTTTTAGCAGAGTCACTC	5' Primer for gcn5 adjacent region in
	С	ChIP-PCR analysis
gcn5-up-R	ATTTGCGCTCCAAAATAC	3' Primer for gcn5 adjacent region in
	AATC	ChIP-PCR analysis
gcn5-F	CAAGTGTTGTAGACAGTA	5' Primer for <i>gcn5</i> region in ChIP-PCR
	CATC	analysis
gcn5-R	CGTTAGAAACAACACGAA	3' Primer for <i>gcn5</i> region in ChIP-PCR
	ATTG	analysis
clr6-up-F	GATGACCTTCCAAATTCTT	5' Primer for <i>clr6</i> adjacent region in
	TATG	ChIP-PCR analysis

clr6-up-R	GAATGTCTATTAAAATGT	3' Primer for <i>clr6</i> adjacent region in
	GCTGTATG	ChIP-PCR analysis
clr6-F	CTATGATGGTACGTGTAA	5' Primer for <i>clr6</i> region in ChIP-PCR
	ACTAG	analysis
clr6-R	CAATATACTCATCGGTATG	3' Primer for <i>clr6</i> region in ChIP-PCR
	ACAAC	analysis
clr3-up-F	GACAAAGGGTGAATGTTT	5' Primer for <i>clr3</i> adjacent region in
	CC	ChIP-PCR analysis
clr3-up-R	CGTTTAGTAAGGCTTTAAA	3' Primer for <i>clr3</i> adjacent region in
	TAGAAG	ChIP-PCR analysis
clr3-F	ATCCGATGATGCTGTAAA	5' Primer for <i>clr3</i> region in ChIP-PCR
	CAC	analysis
clr3-R	TAAAGTAGCTTCTCTAGCC	3' Primer for <i>clr3</i> region in ChIP-PCR
	GG	analysis
act1-up-F	TAATAAAATAGGGACACG	5' Primer for act1 adjacent region in
	CGAG	ChIP-PCR analysis
act1-up-R	GAAATTGCTATATTTGAGC	3' Primer for act1 adjacent region in
	CAC	ChIP-PCR analysis
act1-F	GCGTTGGTTATTGATAATG	5' Primer for act1 region in ChIP-PCR
	GC	analysis
act1-R	TTGGATTTGGGGTTCAAA	3' Primer for act1 region in ChIP-PCR
	GG	analysis
ura4-up-F	GTTCAGCATCTATCTTCTT	5' Primer for <i>ura4</i> adjacent region in
	AATCG	ChIP-PCR analysis
ura4-up-R	TGATTATCTTTTTCACCAT	3' Primer for <i>ura4</i> adjacent region in
	GCC	ChIP-PCR analysis
ura4-F	GATGAAAAATCCCATTGC	5' Primer for <i>ura4</i> region in ChIP-PCR
	CAAG	analysis
ura4-R	CACTGTATGGCAATTTGTG	3' Primer for <i>ura4</i> region in ChIP-PCR
	ATATG	analysis
cds1-up-F	GATAACTTACCCGTGGCA	5' Primer for cds1 adjacent region in
	ATT	ChIP-PCR analysis
cds1-up-R	GCGAAGCACGAGTAATAT	3' Primer for cds1 adjacent region in
	AAAC	ChIP-PCR analysis
cds1-F	GAGGCACCACTACATGTT	5' Primer for <i>cds1</i> region in ChIP-PCR
	AG	analysis
cds1-R	GACATTCTCAGATTCATCG	3' Primer for <i>cds1</i> region in ChIP-PCR
	G	analysis
htb1-up-F	CTTACCACCAGATTTACCT	5' Primer for <i>htb1</i> adjacent region in
	CC	ChIP-PCR analysis
htb1-up-R	GCTCCTATGTCTCCTTTTC	3' Primer for <i>htb1</i> adjacent region in
	C	ChIP-PCR analysis
htb1-F	ATGTCTGCTGCTGAAAAG	5' Primer for <i>htb1</i> region in ChIP-PCR

	AAAC	analysis
htb1-R	CTGAGCAGAAGAAGAATA	3' Primer for <i>htb1</i> region in ChIP-PCR
	CTTGG	analysis
GF187	AGCTACAAATCCCACTGG	5' Primer for PCR 1.8kb <i>ura4</i> gene
	CTATATG	
GF188	GTGATATTGACGAAACTTT	3' Primer for PCR 1.8kb <i>ura4</i> gene
	TTGACATC	

Supplemental Table S4. Peptides

Peptide	Sequence (N-terminus to C-terminus)	Description
GFP1	RGKNRK(ac)ETYSC	H2BK33 acetylation
GFP2	RGKNRKETYSC	Unmodified H2BK33
GFP3	KNRK(me2)ETYS	H2BK33 di-methylation
GFP4	AAEK(ac)KPAS	H2BK5 acetylation
GFP5	KKPASK(ac)AP	H2BK10 acetylation
GFP6	SKAPAGK(ac)A	H2BK15 acetylation
GFP7	AAEKKPASKAPAGKC	Unmodified H2BK5, K10, K15

Supplemental Table S5. Antibodies

Epitope	Source	Use	Note
spH2BK33ac	In-lab	IB: 1:500; ChIP: 1:100	Primary antibody;
			rabbit pAb
spH2B	In-lab	IB:1:5000; ChIP: 1:200	Primary antibody;
			rabbit pAb
spH3	Abcam (ab1791)	IB: 1:5000	Primary antibody;
			rabbit pAb
spH3	Bioeasytech	IB: 1:5000	Primary antibody;
	(BE3015)		mouse mAb
spH3K9me3	Abcam (ab8898)	IB: 1:500; ChIP: 1:200	Primary antibody;
			rabbit pAb
spAct1	ABclonal(AC026)	IB: 1:10000	Primary antibody;
			rabbit mAb
spMcm3	In-lab	IB: 1:1000	Primary antibody;
			rabbit pAb
spMcm7	In-lab	IB: 1:5000	Primary antibody;
			rabbit pAb
spRpa1	In-lab	IB: 1:1000	Primary antibody;
			rabbit pAb

spRpa2	In-lab	IB: 1:1000	Primary antibody;
			rabbit pAb
spCdc18	In-lab	IB: 1:1000	Primary antibody;
			rabbit pAb
spPCNA	In-lab	IB: 1:1000	Primary antibody;
			rabbit pAb
spCdc13	Novus Biologicals	IB: 1:500	Primary antibody;
	(NB200-576)		mouse mAb
HA (HA-7)	Sigma (H3663)	IB: 1:1000	Primary antibody;
			mouse mAb
НА	Bioeasytech	IB: 1:1000	Primary antibody;
	(BE2008)		rabbit pAb
FLAG (M2)	Sigma (F1804)	IB: 1:1000	Primary antibody;
			mouse mAb
Myc (9E10)	Abcam (ab32)	IB: 1:1000	Primary antibody;
			mouse mAb
His(6E8)	Bioeasytech	IB: 1:1000	Primary antibody;
	(BE2019)		mouse mAb
IdU	BD (347580)	IF: 1:200	Primary antibody;
			mouse mAb
CIdU	Lifespan Bioscience	IF: 1:50	Primary antibody;
	(C188215)		rat mAb
Alexa Fluor 546	Molecular probes	IF: 1:200	Secondary antibody;
	(A11030)		goat anti-mouse
Alexa Fluor 488	Molecular probes	IF: 1:200	Secondary antibody;
	(A11006)		goat anti-rat
Alexa Fluor 488	Molecular probes	IF: N/A	EdU conjugates
azide	(C10337)		
IgG	Bioeasytech	IB: 1:10000	Secondary antibody;
	(BE0101)		goat anti-rabbit
IgG	Bioeasytech	IB: 1:10000	Secondary antibody;
	(BE0102)		goat anti-mouse

Supplemental figure legends

Supplemental Figure S1. The validation of H2BK33ac and its antibody. (A, B) S. pombe H2BK33 is acetylated in vivo. Histone proteins were isolated and subjected to a mass spectrometry analysis (MS), which showed H2B acetylated at the K33 site. (C,G) Validation of antibodies recognizing S. pombe H2B or acetylated K33 of H2B. (C) Whole cell extracts from untagged and FLAG-tagged $htbl^+$ strains were immunoblotted using H2B or FLAG antibodies, respectively. (D) Dot blot of the H2BK33ac antibody against the indicated peptides in vitro. (E,F) Western blotting analysis of whole-cell extracts (WCE, E) or chromatin (F) from wild type (WT), H2BK33 mutants and recombinant S. pombe H2B (rH2B). (G) Western blotting analysis of WCE from the WT and H2BK33A cells using the indicated peptides as competitors. (H) Effect of the HDAC inhibitor sodium butyrate (NaB, 30mM) on H2BK33 acetylation. (1) The entire film of western blots in middle panel of Figure 1d were shown to support the use of highly specific H2BK33ac and H2B antibody applying to IP or ChIP experiments. (J) The validation of the H2BK33ac antibody for the ChIP assay and enrichment of ars2004 and ars3002 DNA in wt but not H2BK33R cells. The ChIP-enriched DNA was quantified by PCR reactions using primers to amplify the replication origins (ars2004 and ars3002). (K) Replication forks stalled randomly on chromatin in htb1-K33Q cells under HU.

Supplemental Figure S2. Phenotypes of H2BK33 mutants under normal and stress conditions. (A) Selective marker kan inserted downstream of the htb1 gene does not affect cell growth or cellular response to HU and the DNA damaging agents CPT and MMS. (B) H2BK33 mutants were not sensitive to IR, UV, MPA, and environmental stress including heat, H₂O₂, and high salt. (C) Single mutation of either H2BK5, K10, or K15 to R or Q was not sensitive to replication stress but combined H2BK5QK10QK15Q mutation was. (D) The sensitivity of H2BK33Q to replication stress was almost the same as the combined H2BK5QK10QK15Q mutation, and no synthetic phenotype was observed. (E) FACS analysis of DNA replication speed (EdU incorporation) in the wt and H2BK33R cells. (F) H2BK33Q mutation but not H2BK33R in the DNA combing strain J2172 was also sensitive to replication stress. (G) Percentage of only CIdU fibers (green) in the wt and H2BK33 mutants under HU block and release experiments, which indicates the extent of late origin firing after release from HU treatment. The difference in CIdU fiber proportion was calculated between WT and H2BK33 mutants by Student's two-tailed *t*-test.

Supplemental Figure S3. (*A*) DNA combing strain J2172 harboring the *clr6-1* but not the *clr3* Δ mutation was also sensitive to HU. (*B*) ChIP analysis of Clr3-myc after HU treatment in S phase. (*C*) Clr6 is enriched at stalling replication forks. Stalling replication forks induced via HU presence was isolated by ChIP with antibody against RPA1. The levels of Clr6 and PCNA were measured by Western blotting. (*D*) An immunoprecipitation assay of the interaction between Clr6 and Rad9. A chromatin

fraction was prepared from the cells treated with 12.5 mM HU for 3hrs and subjected to immunoprecipitation assay in the presence or absence of DNase I. (E) Clr6 association with Rad9-Hus1-Rad1 complex and also with H2B revealed by Y2H analysis. DO indicates dropout. T1-8 is 8 independent transformants.

Supplemental Figure S4. (A) Chromatin becomes more compacted in the HU-treated cells. MNase digestion of chromatin in cdc25-22 cells that were synchronized at G2/M and then released into the S phase with or without the presence of 12.5 mM HU. WT: 90 min after releasing without HU or WT+HU2h; or 3.5h. HU was added to cultures immediately after G2/M releasing and the time counted. N1-4 denote mono, di, tri, tetra-nucleosome. The right panel is the quantification of the DNA amount percentage in the indicated lanes. (B) The growth assay of the ura4 inserted rDNA, ura4 deletion and ura4 wt strains on URA- and FOA plates. (C) The loss of ura4 gene was confirmed by PCR of independent colonies that did not grow even after 7 days of incubation on selective plates without uracil. The 1.8kb band was absent in ura4 gene loss colonies (-) but present in silenced colonies (\pm , the full ura4 gene is at rDNA genes region) and normally grown WT colonies (+) that have a copy of full-length ura4 gene at its native genomic locus. ura4-dS/E 1.4kb (a truncated ura4 gene at its native genomic locus) is not present in the WT strain (+). (D) cdc45-HA, spb70-Flag and cdc1-Flag do not alter the sensitivity of wt, htb1-K33R, htb1-K33Q, and clr6-1 cells to HU.

- 1. Irmisch A, Ampatzidou E, Mizuno K, O'Connell MJ, & Murray JM (2009) Smc5/6 maintains stalled replication forks in a recombination-competent conformation. *The EMBO journal* 28(2):144-155.
- 2. Hall BM, Ma CX, Liang P, & Singh KK (2009) Fluctuation analysis CalculatOR: a web tool for the determination of mutation rate using Luria-Delbruck fluctuation analysis. *Bioinformatics* 25(12):1564-1565.
- 3. Sabatinos SA, Green MD, & Forsburg SL (2012) Continued DNA synthesis in replication checkpoint mutants leads to fork collapse. *Molecular and cellular biology* 32(24):4986-4997.
- 4. Bianco JN, *et al.* (2012) Analysis of DNA replication profiles in budding yeast and mammalian cells using DNA combing. *Methods* 57(2):149-157.
- 5. Hu J, *et al.* (2012) The intra-S phase checkpoint targets Dna2 to prevent stalled replication forks from reversing. *Cell* 149(6):1221-1232.
- 6. Pidoux A, Mellone B, & Allshire R (2004) Analysis of chromatin in fission yeast. *Methods* 33(3):252-259.

Α

Figure S1

В

H2BK5ac H2BK10ac H2BK15ac H2BK5K10K15 (unmodified)

Κ

Α

G

Vector

Vector

Vector

Vector Vector

Rad1

H2B

Hus1

T1 T2 Т3 Τ7 Τ8 T1

T2 T3

T4 T5 T6

T7 T8

0

T4 T5 T6

