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1 Main Mathematical Ideas

In the main text of this supplementary information, we describe some of the key mathematical ideas in the
arguments, relying as much as possible on published results from [33]. Our detailed proofs are relatively long
and we defer them to Appendix H.

1.1 The bulk distribution of the MLE
To analyze the MLE, we introduce an approximate message passing (AMP) algorithm that tracks the MLE
in the limit of large n and p. Our purpose is a little different from the work in [28] which, in the context of
generalized linear models, proposed AMP algorithms for Bayesian posterior inference, and whose properties
have later been studied in [25] and [3]. To the best of our knowledge, an AMP algorithm for tracking the
MLE from a logistic model has not yet been proposed in the literature. Our starting point is to write down
a sequence of AMP iterates {St, β̂t}t≥0, with St ∈ Rn, β̂t ∈ Rp, using the following scheme: starting with
an initial guess β0, set S0 = Xβ0 and for t = 1, 2, . . ., inductively define

β̂t = β̂t−1 + κ−1X ′Ψt−1(y,St−1)

St = Xβ̂t −Ψt−1(y,St−1)
(1)

where the function Ψt is applied element-wise and is equal to

Ψt(y, s) = λtrt, rt = y − ρ′(proxλtρ(λty + s)). (2)

Observe that the evolution (49) depends on a sequence of parameters {λt} whose dynamics we describe next.
This description requires introducing an augmented sequence {αt,σt,λt}t≥0. With these two extra pa-

rameters (αt,σt), we let (Qt1,Qt2) be a bivariate normal variable with mean 0 and covariance matrix Σ(αt,σt)
defined exactly as in Equation M-6.1 Then starting from an initial pair α0,σ0, for t = 0, 1, . . ., we inductively
define λt as the solution to

E
[

2ρ′(Qt1)

1 + λρ′′(proxλρ(Q
t
2))

]
= 1− κ (3)
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and the extra parameters αt+1,σt+1 as

αt+1 = αt +
1

κγ2
E
[
2ρ′(Qt1)Qt1λtρ

′(proxλtρ(Q
t
2))
]

σ2
t+1 =

1

κ2
E
[
2ρ′(Qt1)

(
λtρ
′(proxλtρ(Q

t
2))
)2]

.

(4)

To repeat, we run the AMP iterations (49) using the scalar variables {λt} calculated via the variance map
updates (19)–(20).

In the regime where the MLE exists (see Figure M-6), the variance map updates (19)–(20) converge (as
t→∞) to a unique fixed point (α?,σ?,λ?). Note that by definition, (α?,σ?,λ?) is the solution to our system
Equation M-5 in three unknowns. From now on, we use α0 = α?, σ0 = σ? so that the sequence {αt,σt,λt}
is stationary; i. e. for all t ≥ 0,

αt = α?, σt = σ?, λt = λ?.

With this stationary sequence of parameters, imagine now initializing the AMP iterations with a vector β̂0

obeying

lim
n,p→∞

1

p
‖β̂0 − α?β‖2 = σ2

?.

It is not hard to see that if the proposed AMP algorithm converges to a fixed point {S?, β̂?}, then it is such
that ∇`(β̂?) = 0 (see Appendix B); that is, β̂? obeys the MLE optimality conditions. This provides some
intuition as to why the above algorithm would turn out to be useful in this context.

The crucial point is that we can study the properties of the MLE by studying the properties of the
AMP iterates with the proviso that they converge. It turns out that the study of the sequence {St, β̂t} is
amenable to a rigorous analysis because several transformations reduce the above algorithm to a generalized
AMP algorithm [25], which in turn yields a characterization of the limiting variance of the AMP iterates:
for any function ψ as in Theorem M-2, we have as n→∞,

1

p

p∑
j=1

ψ(β̂tj − α?βj ,βj)
a.s.−→ E [ψ(σ?Z,β)] , (5)

where β is drawn from the distribution Π (see Theorem M-2) independently of Z ∼ N (0, 1), and σ? is
as above. To summarize, the asymptotic behavior of the AMP iterates β̂t can be characterized through
a standard Gaussian variable, the distribution Π and the scalar quantity σ? determined by the iteration
(19)–(20). The description of our AMP algorithm and large sample properties of the iterates are understood
only when we understand the behavior of the scalar sequences {αt,σt,λt}t≥0, which are known as the state
evolution sequence in the literature; this formalism was introduced in [5, 16–18]. From here on, an analysis
similar to that in [33] establishes that in the limit of large iteration counts, the AMP iterates converge to
the MLE, that is,

lim
t→∞

lim
n→∞

1

p

p∑
j=1

ψ(β̂tj − α?βj ,βj) = lim
n→∞

1

p

p∑
j=1

ψ(β̂j − α?βj ,βj),

which is the content of Theorem M-2.

1.2 The distribution of a null coordinate
We sketch the proof of Theorem M-3 in the case where the empirical limiting distribution Π has a point
mass at zero. The analysis in the general case, where the number of vanishing coefficients is arbitrary, and
in particular, o(n), is very different and may be found in Appendix C.

Now consider Theorem M-2 with ψ(t,u) = t21(u = 0). Strictly speaking, this is a discontinuous function
which is not pseudo-Lipschitz. However, we can work with a smooth approximation ψa, instead, obtained
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using standard techniques for smoothing an indicator function, such that the error ‖ψ − ψa‖2 is arbitrar-
ily small. For simplicity, we skip the technical details underlying this approximation, and motivate the
subsequent arguments using ψ directly. Theorem M-2 then yields

1

p

∑
j∈[p]:βj=0

β̂2
j

a.s.−→ σ2
?PΠ [β = 0] =⇒ 1

|j ∈ [p] : βj = 0|
∑

j∈[p]:βj=0

β̂2
j

a.s.−→ σ2
?. (6)

Without loss of generality, assume that the first k coordinates of β vanish, and that β is partitioned as
β =

(
0[k],β−[k]

)
and similarly for β̂. From the rotational distributional invariance of the Xi’s, it can be

shown that for any fixed orthogonal matrix U ∈ Rk×k, β̂ d
=
(
Uβ̂[k], β̂−[k]

)
. Consequently, β̂[k]/‖β̂[k]‖ is

uniformly distributed on the unit sphere Sk−1 and is independent of ‖β̂[k]‖. Thus, any null coordinate β̂j
has the same distribution as ‖β̂[k]‖Zj/‖Z‖, where Z ∼ N (0, Ik), independent of β̂[k]. From (6) and the

weak law of large numbers, we have ‖β̂[k]‖/‖Z‖
P→ σ?, leading to β̂j

d→ N (0,σ2
?).

1.3 The distribution of the LRT

Once the distribution of β̂j for a null j is known, the distribution of the LRT is a stone throw away, at least
conceptually; that is to say, if we are willing to ignore some technical difficulties and leverage existing work.
Indeed, following a reduction similar to that in [33], one can establish that

2Λj =
κ

λ[−j]
β̂2
j + oP (1), (7)

where λ[−j] := Tr
[
∇2(`[−j](β̂[−j]))

−1
]
/n in which `[−j] is the negative log-likelihood with the j-th variable

removed and β̂[−j] the corresponding MLE. Put λ = Tr[∇2(`(β̂))−1]/n. Then following an approach similar

to that in [33, Appendix I], it can be established that λ[−j] = λ + oP (1)
P→ λ?. This gives that 2Λj is a

multiple of a χ2
1 variable with multiplicative factor given by κσ2

?/λ?.
This rough analysis shows that the distribution of the LLR in high dimensions deviates from a χ2

1 due
to the coupled effects of two high-dimensional phenomena. The first is the inflated variance of the MLE,
which is larger than classically predicted. The second comes from the term λ?, which is approximately equal
to Tr

(
H−1(β̂)

)
/n, where H(β̂) = ∇2`(β̂) is the Hessian of the negative log-likelihood function. In the

classical setting, this Hessian converges to a population limit. This is not the case in higher dimensions and
the greater spread in the eigenvalues also contributes to the magnitude of the LRT.
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A Fisher information

We work with the model from Section M-4 and introduce the Fisher information matrix defined as

I(β) = E

[∑
i

ρ′′(X ′iβ)XiX
′
i

]
= nE [ρ′′(X ′iβ)XiX

′
i] .

With Xi ∼ N (0,n−1I), it is not hard to see that the (k, j)th entry of the matrix nρ′′(X ′iβ)XiX
′
i is

distributed as
ρ′′(γX1)XkXj , X1, . . . ,Xp

i.i.d.∼ N (0, 1).

From here on, a reasonably straightforward calculation gives

I(β) = ν(I + δuu′), u = β/‖β‖,

where

ν = E[ρ′′(γX1)], δ =
E[ρ′′(γX1)X2

1 ]− E[ρ′′(γX1)]

E[ρ′′(γX1)]
.

This implies that

I−1(β) = ν−1

(
I − δ

1 + δ
uu′

)
,

which means that the classically predicted variance of β̂j is equal to

ν−1

(
1− δ

1 + δ

β2
j

‖β‖2

)
.

When βj = 0, the predicted standard deviation is ν−1/2 = 2.66 for γ2 = 5.
Statistical software packages base their inferences on the approximate Fisher information defined as∑
i ρ
′′(X ′iβ̂)XiX

′
i (or small corrections thereof). This treats the covariates as fixed and substitutes the

value of the unknown regression coefficient sequence β with that of the MLE β̂ (plugin estimate).

B Properties of fixed points of the AMP algorithm

In this section, we elaborate on the connection between the fixed points of (49) and the MLE β̂. From (49),
we immediately see that if (β̂?,S?) is a fixed point, the pair satisfies

X ′{y − ρ′(proxλ?ρ(λ?y + S?))} = 0

(λ?y + S?)− λ?ρ′(proxλ?ρ(λ?y + S?)) = Xβ̂?.

Since by definition of the proximal mapping operator, z − λρ′(proxλρ(z)) = proxλρ(z), we have that Xβ̂? =
proxλ?ρ(λ?y + S?) which implies

X ′{y − ρ′(Xβ̂?)} = 0.

Hence, the fixed point β̂? obeys ∇`(β̂?) = 0, the optimality condition for the MLE.
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C Refined analysis of the distribution of a null coordinate

The AMP analysis is useful to analyze the bulk behavior of the MLE; i.e. the expected behavior when
averaging over all coordinates. It also helps in characterizing the distribution of a null coordinate when the
limiting empirical cdf does not have a point mass at zero, as we have seen in Section 1.2. However, the study
of the behavior of a single coordinate when there is an arbitrary number of nulls requires a more refined
analysis. To this end, the proof uses a leave-one-out approach, as in [20, 21, 33]. The complete rigorous
technical details are very involved and this is a reason why we only present approximate or non-rigorous
heuristic calculations.

Fix j such that βj = 0. Since the corresponding predictor plays no role in the distribution of the response,
we expect that including this predictor or not in the regression will not make much difference in the fitted
values, that is,

X ′iβ̂ ≈X ′i,−jβ̂[−j]; (8)

here, Xi,−j is i-th row of the reduced matrix of predictors with the j-th column removed and β̂[−j] is the
MLE for the reduced model. On the one hand, the approximation (8) suggests Taylor expanding ρ′(X ′iβ̂)

around the point X ′i,−jβ̂[−j]:

ρ′(X ′iβ̂) ≈ ρ′(X ′i,−jβ̂[−j]) + ρ′′(X ′i,−jβ̂[−j])
[
Xij β̂j +X ′i,−j

(
β̂−j − β̂[−j]

)]
,

where β̂−j is the full-model MLE vector, however, without the j-th coordinate. On the other hand, we can
subtract the two score equations ∇`(β̂) = 0 and ∇`[−j](β̂[−j]) = 0 (`[−j] is the negative log-likelihood for
the reduced model), which upon separating the components corresponding to the j-th coordinate from the
others, yields

n∑
i=1

Xij

(
yi − ρ′(X ′iβ̂)

)
= 0

n∑
i=1

Xi,−j{ρ′(X ′iβ̂)− ρ′(X ′i,−jβ̂[−j])} = 0.

Plugging in the approximation for ρ′(X ′iβ̂) yields two equations in the two unknowns β̂j and (β̂−j − β̂[−j]).
After some algebra, solving for β̂j yields

β̂j =

∑n
i=1Xij

(
yi − ρ′(X ′i,−jβ̂[−j])

)
X ′•jD

1/2(β̂[−j])HD1/2(β̂[−j])X•j
+ oP (1),

whereH = I−D1/2(β̂[−j])X•−j(∇2`−j(β̂[−j]))
−1X ′•−jD

1/2(β̂[−j]) andD(β̂[−j]) is an n×n diagonal matrix
with i−th entry given by ρ′′(X ′i,−jβ̂[−j]). Above X•j is the j-th column of X and X•−j all the others. It
was established in [33] that the denominator above is equal to κ/λ[−j] +oP (1), where, we have see in Section
1.3 that

λ[−j] :=
1

n
Tr[∇2(`[−j](β̂[−j]))

−1].

Note that since βj = 0, y and X•−j , β̂[−j] are independent of X•j . This gives the approximation

β̂j =
λ[−j]sj

κ
Z + oP (1), s2

j =
1

n

n∑
i=1

(
yi − ρ′(X ′i,−jβ̂[−j])

)2

, (9)

where Z is an independent standard normal. In Section 1.3, we saw that λ[−j]
P→ λ?. It remains to understand

the behavior of sj . Looking at sj , the complicated dependence structure between β̂ and (y,X) makes this a
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potentially hard task. This is why we shall use a leave-one-out argument and seek to express the fitted values
X ′i,−jβ̂[−j] in terms of X ′i,−jβ̂[−i],[−j], where β̂[−i],[−j] is the MLE when both the j-th predictor and the i-th
observation are dropped. The independence between Xi,−j and β̂[−i],[−j] will simplify matters. Denote by
∇`[−i],[−j](β̃[−i],[−j]) = 0 the reduced score equation and subtract it from the score equation for β̂ to obtain

Xi,−j

(
yi − ρ′(X ′i,−jβ̂[−j])

)
+
∑
k 6=i

Xk,−j

(
ρ′(X ′k,−jβ̂[−i],[−j])− ρ′(X ′k,−jβ̂[−j])

)
= 0.

We argue that since the number of observations is large and the observations are i.i.d., dropping one obser-
vation is not expected to create much of a difference in the fitted values, hence X ′k,−jβ̂[−i],[−j] ≈X ′k,−jβ̂[−j].
A Taylor expansion of ρ′(X ′k,−jβ̂[−j]) around the point X ′k,−jβ̂[−i],[−j] yields

X ′i,−j

(
β̂[−j] − β̂[−i],[−j]

)
≈X ′i,−j

[
∇2`[−i],[−j](β̂[−i],[−j])

]−1

Xi,−j

(
yi − ρ′(X ′i,−jβ̂[−j])

)
.

Since Xi,−j and β̂[−i],[−j] are independent, by Hanson-Wright inequality [29, Theorem 1.1], the quadratic

form above is approximately equal to Tr
[
∇2`[−i],[−j](β̂[−i],[−j])

−1
]
. Recall that λ[−j] = Tr[∇2`[−j](β̂[−j])

−1]

and again, for a large number of i.i.d. observations, we expect these two quantities to be close. Hence, the
fitted values can be approximated as

X ′i,−jβ̂[−j] ≈X ′i,−jβ̂[−i],[−j] + λ[−j]

(
yi − ρ′(X ′i,−jβ̂[−j])

)
.

Recalling the definition of the proximal mapping operator, proxλρ(z) + λρ′(proxλρ(z)) = z, note that the
above relation gives a useful approximation for the fitted values,

X ′i,−jβ̂[−j] ≈ proxλ[−j]ρ

(
λ[−j]yi +X ′i,−jβ̂[−i],[−j]

)
.

Further, by the triangle inequality we can show that

proxλ[−j]ρ

(
λ[−j]yi +X ′i,−jβ̂[−i],[−j]

)
≈ proxλ?ρ

(
λ?yi +X ′i,−jβ̂[−i],[−j]

)
.

It can be shown that the residuals {yi − ρ′(proxλ?ρ(λ?yi + X ′i,−jβ̂[−i],[−j]))}i=1,...,n are asymptotically in-
dependent among themselves, which implies that averaging over the squared residuals as in (93) should
converge in probability to the corresponding expectation, leading to

β̂j
d→ N (0,σ2), σ2 :=

λ2
?

κ2
lim
n→∞

E
[
yi − ρ′

(
proxλ?ρ

(
λ?yi +X ′i,−jβ̂[−i],[−j]

))]2
.

To complete the analysis, it remains to characterize the asymptotic joint distribution of X ′i,−jβ̂[−i],[−j]
and X ′iβ or, equivalently, X ′i,−jβ−j (β−j is the true signal with the j-th coordinate removed) since βj = 0.
Instead, we find the joint distribution of (X ′i,−jβ−j ,X

′
i,−j(β̂[−i],[−j] − α?β−j)) and denote this pair as

(Q?1,Q?2). The asymptotic variance of Q?1 is given by γ2, that of Q?2 by κσ2
?, while the asymptotic covariance

is equal to

lim
n→∞

〈β̂[−i],[−j] − α?β−j ,β−j〉
n

= κ lim
t→∞

lim
n→∞

〈β̂t − α?β,β〉
p

= 0, (10)

by an application of (5). Hence, writing yi = 1(Ui ≤ ρ′(X ′i,−jβ−j)), where the Ui’s are i.i.d. U(0, 1)
independent from anything else, we have

lim
n→∞

Var(β̂j) =
1

κ2
λ2
? E
[
1(Ui ≤ ρ′(Q?1))− ρ′(proxλ?ρ(α?Q

?
1 +Q?2 + λ?1(Ui ≤ ρ′(Q?1)))

]2
.
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Using this later fact, the above expression can be simplified to

1

κ2
E
[
2ρ′(−Q?1)

(
λ?ρ
′(proxλ?ρ(α?Q

?
1 +Q?2)

)2]
.

Note that the joint distribution of (−Q?1,α?Q
?
1 + Q?2) is precisely the same as Σ(α?,σ?) as specified by

Equation M-6. Hence, recalling Equation M-5, we obtain the asymptotic variance of β̂j to be σ2
?.

D Comparison with existing finite sample approaches

As mentioned in Section M-3, an extensive body of work has been developed to improve the accuracy
of maximum-likelihood theory in finite samples. In this section, we will compare the performance of our
inference procedure with two of the popular finite sample methods—the Bartlett correction method [4] for
the LRT, and Firth’s bias reduction method [22] for the MLE.

It has been observed in the literature that the chi-square approximation to the LRT does not yield accurate
results in a finite sample setting. One correction to the LRT that is frequently used in finite samples is the
Bartlett correction, which dates back to Bartlett [4] and has been extensively studied in several subsequent
works (e.g. [7, 8, 12, 13, 26]). In the classical regime where p is fixed and n diverges, this correction can be
described as follows [27]: compute the expectation of the LRT up to terms of order 1/n; that is, obtain a
parameter α such that

E[2Λj ] = 1 +
α

n
+O

(
1

n2

)
.

If αn is an accurate estimator of α, the aforementioned approximation suggests that the corrected LRT
statistic

2Λj
1 + αn

n

(11)

is closer in expectation to a χ2
1 distribution than the original LRT statistic for finite samples. For GLMs,

Cordeiro [12] derived an explicit formula for the Bartlett correction factor α. Using this formula, we obtained
p-values based on the χ2

1 approximation to the Bartlett corrected LRT statistic in a setting where n = 2000
and p = 400. Here, half of the regression coefficients vanish while the remaining half have constant magnitude
chosen such that γ2 = Var(X ′iβ) = 5. The distribution of the covariates remains the same as in Section M-4.
Figure 1(b) shows the Bartlett corrected p-values for a null variable whereas Figures 1(a) and (c) show the
corresponding classical p-values and the p-values obtained on using our rescaled χ2

1 approximation. Clearly,
there is less of a spike near zero and, therefore, the Bartlett correction is indeed effective in reducing the
non-uniformity. However, the Bartlett corrected p-values are still far from uniform whereas the p-values
based on our theory are in perfect agreement with a uniform distribution. Based on these findings, we
conclude that such first-order finite sample methods for the LRT (developed under the classical assumption
that p is small and n is large) have some use. However, the corrections provided by these methods are not
entirely adequate in a high-dimensional setting.

In several practical applications, the MLE has been observed to be biased in finite samples and, histor-
ically, this bias has been attributed to a small sample effect. To address this issue, Firth [22] proposed a
general approach for reducing the finite sample bias of the MLE. This approach is also a first-order method
in the following sense: in the classical setting where p is fixed and n diverges, the asymptotic bias of the
MLE may be expressed as

E[β̂ − β] =: b(β) =
b1(β)

n
+
b2(β)

n2
+ . . . .

The work [22] proposed a general approach for bias reduction with the aim of removing the O(1/n) term
above. Figure 2 compares Firth’s bias reduction procedure with the bias corrected MLE proposed in [32]—
that is, β̂/α?—in the setting of Figure M-2 for two different dimensions. Observe that for many of the points,
the blue circles (bias corrected MLE) are almost masked by the red circles (Firth coefficient estimates).
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Figure 1: Histograms of p-values for logistic regression under i.i.d. Gaussian design, when n = 2000, p = 400
and κ = 0.2. (a) classically computed p-values; (b) Bartlett-corrected p-values; (c) adjusted p-values by
comparing the LRT statistic to the rescaled chi square distribution from Theorem M-4.

Thus, Firth’s correction works well in this setup, with only some of the blue circles being closer to the
true regression coefficients than the corresponding Firth corrected estimates. However, Firth’s approach is
computationally infeasible for higher dimensions. For instance, the runtime for Firth’s approach for Figure
2(b) was approximately 10 minutes and a similar implementation of the method for n = 2000 and p = 400
required over 2.5 hours. Thus, although Firth’s approach has performance comparable to our proposed bias
correction method, it appears not scalable to high-dimensional datasets.

In conclusion, the finite sample correction methods are certainly useful for bias correction and improve the
validity of p-values. However, either these methods are not scalable to higher dimensions or the improvement
they provide over classical theory is not sufficiently adequate in a high-dimensional setting.
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Figure 2: True signal values βj (black lines), scaled ML estimates β̂j/α? (blue circles) and Firth corrected
ML coordinates (red circles). (a) Dimensions: n = 500, p = 100,κ = 0.2. (b) Dimensions: n = 1000, p =
200,κ = 0.2.
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E Misspecified models

The theory ensuring the validity of our proposed p-values relies on a logistic model for the response given the
covariates, which may fail to hold in practice. Hence, it is important to study the robustness of our procedure
to model misspecification. We first consider a setting where the response is drawn from a logistic model, but
we do not observe all of the relevant predictors. To this end, consider n = 2000 i.i.d. draws {(yi,Xi)}1≤i≤n
such that yi ∼ Bernoulli(σ(X>i β)), where σ(·) is the usual sigmoid function,Xi ∼ N (0, Ip×p/n) and p = 300;
the first 100 entries of β are i.i.d. draws from N (6, 8) while the remaining are zero, and hence the signal
strength γ2 := Var(X>i β) = 5. Suppose we fail to observe one-fourth of the relevant predictors, so that the
sample we obtain is of the form (yi, X̃i)1≤i≤n, where X̃i ∈ Rp−20 and contains all but the first 20 coordinates
of Xi. We then fit a logistic regression to this reduced sample and compute the log-likelihood ratio (LLR)
statistic corresponding to a specified null coordinate. Using the observed LLR, we calculate p-values based
on both the classical Wilks’ theorem and the rescaled χ2 distribution proposed in Theorem M-4, which we
refer to as adjusted p-values. This experiment is repeated 5× 105 times. Note that calculating the rescaling
constant requires solving the system of equations in Eq. M-5, which takes as input two parameters—the
aspect ratio κ and the signal strength γ. To determine the latter, we apply the ProbeFrontier (Section M-5)
method on two independent samples generated from the aforementioned model, and obtain an estimate of
the signal strength in each case. We solve the system of equations where γ is set to be the average of these
two estimates and κ = (p − 20)/n. The resulting rescaling constant is then used to correct the p-values in
all the 5× 105 replicates. The results are displayed in Figure 3(a). Notice that the classical p-values visibly
deviate from uniformity, whereas the adjusted p-values remain approximately valid.

Next, we investigate the empirical performance of the adjusted p-values in a setting where the link
function is misspecified. Consider the scenario yi ∼ Bernoulli(ρ(X>i β)), where ρ(x) = 1 − exp(− exp(x)),
the complementary log-log link. We draw n = 2000 i.i.d. observations {(yi,Xi)}1≤i≤n from this model,
with Xi ∼ N (0, Ip×p/n) and p = 300, using the same regression coefficients as above. As before, we then
fit a logistic model to the observed sample and calculate the classical and adjusted p-values for a given
null coefficient, based on the LLR. This experiment is repeated 5 × 105 times. To calculate the rescaling
constant required for the adjusted p-values, we solve the system of equations Eq. M-5 with κ = 0.15 and γ
estimated using the ProbeFrontier approach, as described in the preceding experiment. Figure 3(b) depicts
the empirical CDFs of the p-values. The classical p-values deviate from a uniform distribution whereas the
adjusted p-values remain in close agreement, despite the fact that the truth differs from a logistic model.
Here, our theory clearly provides a better approximation to the true distribution of null p-values than the
standard approximation.

F Real data inspired designs

Our theoretical results assume i.i.d. Gaussian entries for the covariate matrix. However, these may apply to
a broader class of covariate distributions, as demonstrated in Section M-4.g. In this section, we investigate
the performance of our method for non-Gaussian designs generated from real data. Our experiments are
based on three datasets:

• A genome-wide association study (GWAS) on Crohn’s disease (Source: Wellcome Trust Case Control
Consortium, WTCCC, [11])

• A subset of the million song dataset [6], called the YearPredictionMSD data (Source: UCI machine
learning repository [19])

• The Physical Unclonable Functions (PUFs) dataset (Source: UCI machine learning repository [19])

The first dataset comprises genetic information on cases and controls for Crohn’s disease (CD), with
n = 4913, p = 377, 749, and has been used previously to benchmark variable selection methods (see for
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Figure 3: Empirical CDFs of classical p-values (green) and adjusted p-values (blue), based on the LLR
statistic from a logistic regression fitted to the sampled data in two settings. (a) The true model is a logistic,
but we fail to observe one-fourth of the non-null variables. (b) The true model has a complementary log-log
link. The red line represents the diagonal.

instance, [9, 30]). In this case, the design matrix contains information on single nucleotide polymorphisms
(SNPs) and all entries lie in {0, 1, 2}. Further, neighboring sites are highly correlated. We will now generate
data sets that mimic this CD data in order to study the performance of our proposed p-values. To this end, we
first obtain a subsample from the CD data with dimensions n = 3930, p = 514, adopting the same processing
step as in [30, Section 7.1]. The processing step allows us to pre-specify a threshold c such that the correlations
among the features in the created subsample will lie below c; we chose c = 0.1. The resulting subsample
contains two parts: a 3930 × 1 response vector that we will call ỹ and a 3930 × 514 design matrix that we
will call X̃. Next, we approximate the distribution of X̃ using a Hidden Markov Model (HMM), as has been
widely done in GWAS (see [30] and the references cited therein). In particular, we use the HMM implemented
in the fastPHASE [31] fitting algorithm, which is parametrized by three vectors (r,α,θ), and we denote the
corresponding distribution by HMM(r,α,θ). Applying fastPHASE to X̃ provides estimates (r̂, α̂, θ̂) of the
parameters, so that HMM(r̂, α̂, θ̂) approximates the distribution of X̃. Turning to the response, it is harder
to mimic the generation of ỹ, since the underlying relation between ỹ and X̃ is unknown. For the purpose
of this simulation, we fit a logistic regression of ỹ onto X̃ to obtain the MLE β̂. We then set one-fourth
of the coordinates of β̂ to be zero and keep the remaining coefficients intact; denote the resulting vector
by β0. Putting these two parts together, we generate n = 2500 independent observations (yi,Xi)1≤i≤n by
first taking Xi ∼ HMM(r̂, α̂, θ̂), with Xi ∈ R514, and then sampling yi ∼ Bernoulli(σ(X>i β0)). Finally, we
center and scale the design matrix so that each column has zero mean and unit norm. With this synthetic
sample, we fit a logistic regression model to obtain classical and adjusted p-values based on the LLR for a
given null variable, and then we repeat this procedure for a total of 1000 replicates. Note that calculating
the adjusted p-values requires an estimate of the signal strength γ2 = Var(X>i β0), which we obtain via the
ProbeFrontier method, applied in the same manner as in Section E. The empirical CDFs of the p-values
are shown in Figure 4(a). Observe that the classical p-values are far from uniformly distributed, but the
adjusted p-values remain reasonably close to uniform.

The YearPredictionMSD data contains measurements on the timbre of n = 515, 345 audio files with
p = 90 features. The features are continuous, and the empirical average absolute correlation between the
features is 0.1093. To study the performance of our procedure, we split the rows of X and obtain 858
subsamples {X̃1, . . . , X̃858}, each containing n = 600 rows. We center and scale each subsample so that
the columns have zero mean and unit norm. Next, we generate regression coefficients β ∈ R90 such that
one-third of the coordinates are i.i.d. draws from N (6, 8) and the remaining are zero. For each subsample X̃j ,
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we then generate a synthetic response vector ỹj from a logistic model with design matrix X̃j and regression
vector β. Lastly, we fit a logistic regression to each (ỹj , X̃j), and compute the classical and adjusted LLR-
based p-values for a specified null coordinate. As with the previous data set, we use the ProbeFrontier
method to estimate the signal strength needed to compute the adjusted p-values. The results are displayed
in Figure 4(b); again, the classical p-values deviate from uniformity whereas the adjusted p-values show
closer agreement.

Lastly, we consider the PUFs data, which is generated from ‘XOR Arbiter PUFs’ simulations (see [2]
for details). The design matrix is tall and skinny with n ≈ 2.4 million, p = 64, and entries taking values
±1. The average absolute correlation between the features in this case is 0.0005. We split the rows of the
design matrix to obtain 1000 subsamples, each containing n = 427 rows. For each subsample we conduct
experiments in the same fashion as in the preceding example, and the results are presented in Figure 4(c).
The classical p-values again deviate from the uniform distribution. For the adjusted p-values, the empirical
CDF fluctuates mildly around the diagonal, but remains reasonably close throughout.
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Figure 4: Empirical CDFs of classical p-values (green) and adjusted p-values (blue) for the (a) CD-data-
based experiment (b) YearPredictionMSD-data-based experiment (c)PUFs-data-based experiment. The red
line is the diagonal.

To conclude, we emphasize that the covariates considered in the aforementioned numerical experiments
arise from widely different applications; in particular, they do not fall within the framework covered by our
theory. Nonetheless, the p-values based on the calculations we presented exhibit a close agreement with
the uniform distribution, and better approximate the true distribution of null p-values than their classical
counterparts, across all three settings.

G Small aspect ratio and moderate sample size

We have observed that for large n and p, classical null p-values depart from uniformity in a predictable
way. However, Figure M-7 suggests that, when the number of features is very small compared to the sample
size, the classical and adjusted p-values should be approximately equal. Here, we demonstrate this with a
traditional data set. We consider the low birthweight data from [23] with n = 189, p = 9, and we center
and scale each feature to have zero mean and unit norm. We then calcuate the classical and adjusted p-
values for each variable; the adjusted p-values are calculated using the ProbeFrontier method. The results
are displayed in Figure 5(a), and as suggested in Figure M-7, the adjusted p-values are very similar to the
classical p-values in this setting.

Next, we compare the classical and adjusted p-values in a simulated setting with moderate n and p.
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We choose n = 200 and p = 20 and then generate samples from a logistic model with the same covariate
distribution as in Figure 3: half of the regression coefficients are i.i.d. draws from N (6, 8) and the remaining
half are equal to zero, so that the signal strength is γ2 = 5. Figure 5(b) displays the empirical CDFs of the
classical and adjusted p-values for a null variable across 1000 replicates. Unlike the settings with larger n and
p (Section M-1, Appendix E), here the classical p-values are close to a uniform, albeit with minor deviations.
The adjusted p-values are in close agreement with a uniform distribution. Thus, although our theory provides
asymptotic guarantees only, the corresponding p-values may serve as a rather good approximation to null
p-values under moderate sample size and feature dimension.
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Figure 5: (a) Scatterplot of adjusted p-values versus classical p-values, computed based on the LLR statistics
for the nine variables in the low birthweight data [23]. (b) Empirical CDFs of classical p-values (green) and
adjusted p-values (blue) in a setting with n = 200, p = 20. The red line is the diagonal.

H Detailed Proofs

For the convenience of the reader, the subsequent sections are intended to be as self-contained as possible.
We first recall our main results, that is, Theorems M-2, M-3, M-4, and subsequently provide detailed proofs.
Along the way, we delineate all the mathematical ingredients we build our results upon.

H.1 The results

We recall Theorems M-2, M-3 and M-4 below.2

Theorem 1. Assume the dimensionality and signal strength parameters κ and γ are such that γ < gMLE(κ)
(the region where the MLE exists asymptotically as characterized in [10]).3 For any pseudo-Lipschitz function
ψ of order 2, the marginal distributions of the MLE coordinates obey

1

p

p∑
j=1

ψ
(
β̂j − α?βj ,βj

)
a.s.−→ E [ψ (σ?Z,β)] , Z ∼ N (0, 1) , (12)

where β ∼ Π, independent of Z.
2Notations are the same as in [32].
3See [10] for a definition of gMLE(γ).
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Theorem 2. Let j be any variable such that βj = 0. Then in the setting of Theorem 1, the MLE obeys

β̂j
d−→ N

(
0,σ2

?

)
. (13)

For any finite subset of null variables {i1, . . . , ik}, the components of (β̂i1 , . . . , β̂ik) are asymptotically inde-
pendent.

Theorem 3. Consider the LLR Λj = minb : bj=0 `(b)−minb `(b) for testing βj = 0, where `(b) is the negative
log-likelihood function. In the setting of Theorem 1, twice the LLR is asymptotically distributed as a multiple
of a chi-square under the null,

2Λj
d−→ κσ2

?

λ?
χ2

1. (14)

Also, the LLR for testing βi1 = βi2 = . . . = βik = 0 for any finite k converges to the rescaled chi-square(
κσ2

?/λ?
)
χ2
k under the null.

In the aforementioned results, (α?,σ?,λ?) is a solution to the system of equations:
σ2 =

1

κ2
E
[
2ρ′ (Q1)

(
λρ′
(
proxλρ (Q2)

))2]
0 = E

[
ρ′(Q1)Q1λρ

′ (proxλρ (Q2)
)]

1− κ = E

[
2ρ′ (Q1)

1 + λρ′′
(
proxλρ (Q2)

)]
(15)

where (Q1,Q2) is a bivariate normal variable with mean 0 and covariance

Σ (α,σ) =

[
γ2 −αγ2

−αγ2 α2γ2 + κσ2

]
. (16)

It can be easily checked numerically that in the regime γ < gMLE(κ) the system (15) admits a solution.
Hence, we omit proving this fact. However, we establish that in the aforementioned regime, if (15) admits a
solution then the solution must be unique.4 Thus, the parameters (α?,σ?,λ?) are well-defined in our setup.

The proximal mapping operator for any λ > 0 and convex function ρ is defined via

proxλρ (z) = arg min
t∈R

{
λρ (t) +

1

2
(t− z)2

}
. (17)

In the subsequent text, it will be useful to note that the proximal mapping operator satisfies the relation:

λρ′
(
proxλρ (z)

)
+ proxλρ (z) = z. (18)

H.2 Road map to the proofs
This section presents the key steps in the proofs of each theorem. Detailed proofs are provided in Appendices
H.4–H.6. At a high level, the proof of Theorem 1 has the following ingredients:

1. Introduce an iterative algorithm that has iterates {β̂t}t≥0, with the aim of tracking the large sample
behavior of the MLE. This was already done in Section M-4.1.

2. Characterize the asymptotic distribution of {β̂t}t≥0 for each fixed t, in the large sample limit. (See
Theorem 6). Here, we resort to existing results in the generalized approximate message passing (G-
AMP) literature [25]. However, to apply these results, one needs to establish that the algorithm
introduced in the first step can be cast in the framework of a G-AMP algorithm. This is a highly
non-trivial step and forms the core of the proof of Theorem 6.

4See Remark 2 for a detailed explanation of this fact.
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3. Establish that in the large sample and large iteration limit, β̂t converges to the MLE β̂ in an appropriate
sense (see Theorem 7). In conjunction with the previous step, this provides the desired result.

In the logistic model, the MLE is far from exhibiting any closed form expression. In fact, all information
about it is contained in the optimality condition ∇`(β̂) = 0. Thus, the analysis of a single null coordinate
is hard. To circumvent this difficulty, we resort to the following two stage-approach:

1. Replace the MLE by a surrogate which is amenable to explicit mathematical analysis (Theorem 8). In
turn, this approximation yields a convenient representation of a null coordinate. This step is based on
the leave-one-out techniques introduced in [20,21] for studying such high-dimensional estimators.

2. Characterize the asymptotic distribution of the aforementioned representation. This is the content of
the rest of the arguments in Appendix H.5.

Finally, we arrive at Theorem 3, the proof of which can be summarized in the following two steps:

1. In Theorem 9, we establish that if βj = 0, the quantity of interest 2Λj can be approximated as follows:

2Λj =
κβ̂2

j

λ[−j]
+ oP (1),

where β̂j denotes the j-th coordinate of the MLE, and λ[−j] defined later in (95) is a function of the
Hessian of the negative log-likelihood.

2. Theorem 2 already established that β̂j
d→ N (0,σ2

?). Thus, it suffices to show that λ[−j]
P→ λ?. This is

achieved in Theorem 10, deploying techniques similar to that in [33, Appendix I] and [20].

H.3 Crucial building blocks
This section gathers a few important results that will be useful throughout the manuscript. Let C0,C1, . . .,
c0, c1, . . . denote positive universal constants, independent of n and p, whose value can change from line to
line. We start by recalling a recursion from [32], and expressing it in an equivalent form.

H.3.1 A Useful Recursion

In [32], the authors introduced a sequence of scalar parameters: {αt,σt,λt}t≥0, defined recursively as follows.
Let (Qt1,Qt2) be a bivariate normal variable with mean 0 and covariance matrix Σ(αt,σt) specified by (16).
Starting from an initial pair α0,σ0, for t = 0, 1, . . ., inductively define λt as the solution to

E

[
2ρ′ (Qt1)

1 + λρ′′
(
proxλρ (Qt2)

)] = 1− κ, (19)

and define αt+1,σt+1 as

αt+1 = αt +
1

κγ2
E
[
2ρ′
(
Qt1
)
Qt1λtρ

′ (proxλtρ (Qt2))] ,

σ2
t+1 =

1

κ2
E
[
2ρ′
(
Qt1
) (
λtρ
′ (proxλtρ (Qt2)))2] .

(20)

Our goal is to express the aforementioned recursive system in an equivalent form. To this end, we introduce
a new sequence of scalar parameters {α̃t, σ̃t, λ̃t}t≥0 defined as follows. Let (Q̃t1, Q̃t2) be a bivariate normal
variable with mean 0 and covariance matrix Σ(−α̃t, σ̃t). Further, letW ∼ Unif(0, 1), independent of (Q̃t, Q̃t2)
for all t ≥ 0. Define the function

h(x, y) = 1y≤ρ′(x), where ρ′(x) =
ex

1 + ex
. (21)
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Starting with initial conditions α̃0, σ̃0, for each t ≥ 0, obtain λ̃t by solving

EW ,Q̃t1,Q̃t2

 1

1 + λρ′′
(
proxλρ

(
λh
(
Q̃t1,W

)
+ Q̃t2

))
 = 1− κ. (22)

Subsequently, α̃t+1, σ̃t+1 are updated via

α̃t+1 = α̃t +
1

κγ2
E
[
Q̃t1Ψ̃t

(
Q̃t1,W , Q̃t2

)]
, (23)

σ̃2
t+1 =

1

κ2
E
[
Ψ̃2
t

(
Q̃1,W , Q̃t2

)]
,

where
Ψ̃t (q1,w, q2) = λ̃t

[
h (q1,w)− ρ′

(
proxλ̃tρ

(
λ̃th (q1,w) + q2

))]
. (24)

We propose simplifying the right-hand side (RHS) of the first equation in (23) by first conditioning on
(Q̃t1, Q̃t2). This gives

EW ,Q̃t1,Q̃t2

[
Q̃t1Ψ̃t(Q̃

t
1,W , Q̃t2)

]
= E

[
ρ′(Q̃t1)Q̃t1(λ̃t − λ̃tρ′(proxλ̃tρ(λ̃tQ̃2)))

]
− E

[
(1− ρ′(Q̃1))Q̃1λ̃tρ

′(proxλ̃tρ(Q̃2))
]

.

One can easily verify the following identity

proxλρ (λ+ u) = −proxλρ (−u) .

This yields

λ̃t − λ̃tρ′(proxλ̃tρ(λ̃t + Q̃t2)) = λ̃t − λ̃tρ′(−proxλ̃tρ(−Q̃
t
2)) = λ̃tρ

′(proxλ̃tρ(−Q̃
t
2)).

Combining the above relations, we have

EW ,Q̃t1,Q̃t2

[
Q̃t1Ψ̃t(Q̃

t
1,W , Q̃t2)

]
(25)

= E
[
ρ′(Q̃t1)Q̃t1λ̃tρ

′(proxλ̃tρ(−Q̃
t
2))
]
− E

[
(1− ρ′(Q̃t1))Q̃t1λ̃tρ

′(proxλ̃tρ(Q̃
t
2))
]

= −E
[
ρ′(−Q̃t1)Q̃t1λ̃tρ

′(proxλ̃tρ(Q̃
t
2))
]
− E

[
(1− ρ′(Q̃t1))Q̃t1λ̃tρ

′(proxλ̃tρ(Q̃
t
2))
]

= −2E
[
ρ′(−Q̃t1)Q̃t1λ̃tρ

′(proxλ̃tρ(Q̃
t
2))
]

.

Performing similar calculations it can be shown that

E
[
Ψ̃2
λ̃t

(Q̃t1,W , Q̃t2)
]

= E
[
ρ′(Q̃t1)

{
λ̃tρ
′(proxλ̃tρ(−Q̃

t
2))
}2
]

+ E
[
(1− ρ′

(
Q̃t1)

){
λ̃tρ
′(proxλ̃tρ(Q̃

t
2))
}2
]

= E
[
2ρ′(−Q̃t1)

{
λ̃tρ
′(proxλ̃tρ(Q̃

t
2))
}2
]

. (26)

Similarly,

E

[
1

1 + λ̃tρ′′(proxλ̃tρ(λ̃th(Q̃t1,W ) + Q̃t2))

]
(27)

= E

[
ρ′(Q̃t1)

1 + λ̃tρ′′(−proxλ̃tρ(−Q̃
t
2))

]
+ E

[
1− ρ′(Q̃t1)

1 + λ̃tρ′′(proxλ̃tρ(Q̃
t
2))

]

= E

[
2ρ′(−Q̃t1)

1 + λ̃tρ′′(proxλ̃tρ(Q̃
t
2))

]
. (28)
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Placing together (25), (26) and (27), we have effectively established that, if α0 = α̃0,σ0 = σ̃0, then for
all t ≥ 0,

αt ≡ α̃t, σt ≡ σ̃t, λt ≡ λ̃t. (29)

Remark 1. We remark that (22) and the second equation in (23) can be related to the equation system
derived in [21, Equations S1,S2] in the context of M-estimation for linear models.

H.3.2 When is the MLE bounded?

It was established in [10] that if γ < gMLE(κ) (resp. γ > gMLE(κ)), the MLE exists asymptotically with
probability 1 (resp. 0). [10] further characterized the width of the window in which the phase transition
occurs, in terms of the sample size. However, for establishing our main results Theorems 1–3, a stronger
version of the phase transition phenomenon is necessary. We require that with exponentially high probability,

‖β̂‖√
n

= O(1)

in the regime γ < gMLE(κ). This is the content of the theorem below.

Theorem 4. If γ < gMLE(κ), there exists N0 ≡ N0(γ,κ) such that, for all n ≥ N0, the norm of the MLE β̂
obeys

P

(
‖β̂‖√
n
≤ C1

)
≥ 1− C2n

−δ, (30)

where δ > 1.

Proof: By arguments similar to that in Section 5.2.2 from [32], it can be deduced that, for any ε > 0,

P

(
‖β̂‖√
n
≤ 4 log 2

ε2

)
≥ P ({y ◦ (Xb) |b ∈ Rp} ∩ A = {0}) , (31)

where ◦ denotes the usual Hadamard product and A is a cone specified by

A :=

u ∈ Rn|
n∑
j=1

max{−uj , 0} ≤ ε2
√
n‖u‖

 . (32)

Thus, it suffices to establish that the complement of the RHS of (31) has exponentially decaying proba-
bility. This is established in the remaining proof.

By rotational invariance, we can assume that all the signal lies in the first coordinate, that is,
β =

√
n(γn, 0, 0, . . . , 0), where γn = ‖β‖2/n. Letting Xi• denote the i-th row of X, we have,

yiXi•
d
= (V ,X2, . . . Xp) ,

where V d
= yiXi1, with density given by 2ρ′(γnt)φ(t) (φ(·) denotes the standard normal density), and

V |= (X2, . . . ,Xp). Denote T = [V ,X•2, . . . ,X•p], that is, it is the matrix with the 2 through p-th columns
same as that in X, and the first column given by (V1, . . . ,Vn) where Vi’s are i.i.d. copies of V . Then,

P ({y ◦ (Xb) |b ∈ Rp} ∩ A 6= {0}) = P ({Tb|b ∈ Rp} ∩ A 6= {0}) . (33)

With G defined to be the event
G := [span(V ) ∩ A 6= {0}] ,

we can decompose the required probability as

P ({Tb|b ∈ Rp} ∩ A 6= {0}) = P (G) + P (Gc ∩ [{Tb|b ∈ Rp} ∩ A 6= {0}]) .

The following lemma ensures that P (G) decays to zero exponentially fast in n.
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Lemma 1. Let V be a continuous random variable with density 2ρ′(γnt)φ(t), where γn = ‖β‖/
√
n. Suppose

V1, . . . ,Vn are i.i.d. copies of V and V = (V1, . . . ,Vn). There exists a fixed positive constant ε1 such that,5
for all ε ≤ ε1,

P (span(V ) ∩ A 6= {0}) ≤ C0 exp(−c0n).

Henceforth, let ε < ε1. Thus,

P ({Tb|b ∈ Rp} ∩ A 6= {0}) ≤ P (Gc ∩ [{Tb|b ∈ Rp} ∩ A 6= {0}]) + C0 exp(−c0n). (34)

Further, we restrict ourselves to a high probability event on which there is entry-wise control over the random
vector V in a sense specified below. The reasons for this restriction would become evident in later parts of
the analysis. To this end, note that since V has sub-Gaussian tails, for any ζ > 0,

P
[
max
i
V 2
i ≥ ζ log n

]
≤ nP

[
|V1| ≥

√
ζ log n

]
≤ C1 exp

(
log n− c1

ζ log n

K2

)
,

where K is the sub-Gaussian norm of the random variable V and c > 0 is a universal constant. We choose
ζ > 2K2/c and define the event

FV :=
{

max
i
V 2
i ≤ ζ log n

}
, (35)

that satisfies

P [FV ] ≥ 1− C1n
−δ, (36)

where δ > 1. Thus,

P (Gc ∩ [{Tb|b ∈ Rp} ∩ A 6= {0}]) ≤ P (Gc ∩ FV ∩ [{Tb|b ∈ Rp} ∩ A 6= {0}]) + C1n
−δ. (37)

Regarding the cone A, [33] established that, there exists a collection of N = exp(2ε2p) closed convex cones
{Bi|1 ≤ i ≤ n} that form a cover of A with probability exceeding 1 − exp(−C1ε

2p), for some universal
positive constant C. Thus, by the union bound,

P (Gc ∩ FV ∩ [{Tb|b ∈ Rp} ∩ A 6= {0}]) ≤ P (Gc ∩ FV ∩ {Bi|1 ≤ i ≤ N} does not form a cover of A)

+

N∑
i=1

P (Gc ∩ FV ∩ [{Tb|b ∈ Rp} ∩ Bi 6= {0}]) . (38)

For any fixed subspace W ∈ Rn, introduce the convex cones

Ci (W) := {w + d|w ∈ W,d ∈ Bi} .

Denoting L = span(X•2, . . . ,X•p), observe that the following events are equivalent,

[Gc ∩ {{Tb|b ∈ Rp} ∩ Bi 6= {0}}] ⇐⇒ [Gc ∩ {L ∩ Ci(span(V )) 6= {0}}] .

Hence, (38) reduces to

P (Gc ∩ FV ∩ [{Tb|b ∈ Rp} ∩ A 6= {0}]) ≤ P ({Bi|1 ≤ i ≤ N} does not form a cover of A)

+

N∑
i=1

P (FV ∩ [L ∩ Ci(span(V )) 6= {0}])

≤
N∑
i=1

P (FV ∩ [L ∩ Ci(span(V )) 6= {0}]) + exp
(
−C1ε

2p
)

. (39)

5Recall that the definition of A in (32) involved a choice of ε.
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To analyze the above, we will resort to ingredients from the literature on convex geometry. Using the
approximate kinematic formula [1, Theorem I], [33] argued that, for any closed convex cone C for which the
statistical dimension6 obeys δ(C) < n− δ(L) = n− p+ 1,

P (L ∩ C 6= {0}) ≤ 4 exp

{
− (n− p− δ(C))2

8n

}
. (40)

For any event GV measurable with respect to the sigma-algebra generated by V ,

P (FV ∩ L ∩ Ci(span(V )) 6= {0}) ≤ EV [1GV ∩FV P (L ∩ Ci(span(V )) 6= {0}|V )] + P (GcV ) . (41)

Here, the following lemma will be crucial.

Lemma 2. There exists an event GV in the σ-algebra generated by V and there exists a fixed constant ν0 > 0
such that for all 0 < ν < ν0, the following two properties hold:

1. GV has exponentially high probability, that is,

P (GV ) ≥ 1− C1 exp (−c1n) , (42)

for positive universal constants C1, c1.

2. For all v ∈ GV ∩ FV ,
δ (Ci (span(v))) ≤ n

(
1− g−1

MLE(γ) + ν + o(1)
)

. (43)

Choose ν < min{ν0, g−1
MLE(γ)−κ} in Lemma 2. Since, we are in the regime γ < gMLE(κ), for v ∈ GV ∩FV ,

we then have
δ (Ci (span(v)) < n− p+ 1.

Applying (40) and Lemma 2 leads to

1GV ∩FV P (L ∩ Ci (span(V )) 6= {0}|V ) ≤ 41v∈GV ∩FV exp

[
−{n− p− δ(Ci(span(v)))}2

8n

]
≤ 4 exp

[
−n

8

(
g−1
MLE(γ)− κ− ν + o(1)

)2]
.

Thus, from (41), we have

P (FV ∩ [L ∩ Ci(span(V )) 6= {0}]) ≤ 4 exp
[
−n

8

(
g−1
MLE(γ)− κ− ν + o(1)

)2]
+ C1 exp (−c1n) .

Consider n > 8 log 4/
(
g−1
MLE(γ)− κ− ν + o(1)

)2
and choose ε such that,

2ε2κ < min

{
c,

1

8

(
g−1
MLE(γ)− κ− ν + o(1)

)2 − log 4

n

}
.

Then
∑N
i=1 P (L ∩ Ci(span(V )) 6= {0}) decays exponentially fast in n. Thereby, recalling (33), (34),(37) and

(39) completes the proof. �

We defer the proofs of Lemmas 1–2 until Appendix H.7.

H.3.3 Ingredients from G-AMP

As discussed in Appendix H.2, the proof of Theorem 1 will require elements from the G-AMP literature.
In this section, we provide a brief exposition of a key result established in [25] that will be central to our
analysis in Appendix H.4. For convenience, we adhere to the same notations as in [25].

A G-AMP algorithm comprises iterates {xt}t≥0, where xt ∈ Vq×N ≡ (Rq)N , for some fixed q ∈ N, and N
is a function of the sample size n.7 Define A = G+G′, where G ∈ RN×N has i.i.d. entries from N (0, 1/2N).

6The statistical dimension of a convex cone is defined to be δ(C) = E ‖ΠC(Z)‖2, where Z ∼ N (0, In), and ΠC is the
projection onto C.

7One can think of an element x ∈ Vq,N as an N−vector (x•1, . . .x•N ) with entries in Rq .

21



Consider a collection of mappings F = {fk : k ∈ [N ]}, such that fk : Rq ×N → Rq, is locally Lipschitz in
the first argument for all k ∈ [N ]. Then, starting from some initial condition x0 ∈ Vq,N , a G-AMP algorithm
updates each element of xt as follows:

xt+1
•i =

N∑
j=1

Aijf
j
(
xt•j ; t

)
− 1

N

 N∑
j=1

∂f j

∂x

(
xt•j ; t

) f i
(
xt−1
•i ; t− 1

)
, (44)

where any term with negative t-index is considered 0. Here, ∂f
j

∂x denotes the Jacobian of f j(·; t) : Rq → Rq.
The authors in [25] characterize the asymptotic variance of the iterates xt, for each t, as n → ∞. To

describe the characterization, we require a few additional notations which we introduce next:

1. Consider an integer q′ such that for each N , a finite partition CN1 ∪ . . .∪CNq′ = [N ] exists and for each
a ∈ [q′],

lim
N→∞

CNa
N

= ca ∈ (0, 1).

2. There exists Y := (y•1, . . . ,y•N ) ∈ Vq,N such that for each a ∈ [q′], the empirical distribution of
{y•i}i∈CNa , denoted by P̂a converges weakly to Pa; that is,

1

|CNa |
∑
i∈CNa

δy•i
d→ Pa.

Further, suppose EPa ‖Ya‖2k−2 is bounded for some k ≥ 2, and

EP̂a
(
‖Ya‖2k−2

)
→ EPa

(
‖Ya‖2k−2

)
.

3. There exists a function g : Rq′ × Rq′ × [q′] × N ∪ {0}, such that, for each r ∈ [q′], a ∈ [q′], t ∈
N ∪ {0}, gr(..., a, t) is Lipschitz continuous. Further, for each N ≥ 0, each a ∈ [q′] and each i ∈ CNa ,
x ∈ Rq,

f i (x; t) = g (x,y•i, a, t) . (45)

This requirement basically states that the functions f j(·; t) in (44) can only be of the aforementioned
form.

4. For each a ∈ [q′], define Σ̂ to be the limit (in probability),

lim
N→∞

1

|CNa |
∑
i∈CNa

g
(
x0
•i,y•i, a, 0

)
g
(
x0
•i,y•i, a, 0

)>
=: Σ̂(0)

a . (46)

For each t ≥ 1, define a positive semi-definite matrix Σ(t) ∈ Rq×q, obtained, by letting,

Σ(t) =

q′∑
b=1

cbΣ̂
(t−1)
b , Σ̂(t)

a = E
[
g(Zta,Ya, a, t)g(Zta,Ya, a, t)>

]
, (47)

where Ya ∼ Pa,Zta ∼ N
(
0, Σ(t)

)
and Ya |= Zta.

Under the above assumptions, asymptotic distribution of marginals of xt can be characterized as follows:

Theorem 5 ( [25] Theorem 1). For all t ≥ 1, each a ∈ [q′], and any pseudo-Lipschitz function ψ : Rq×Rq →
R of order k, almost surely,

lim
N→∞

1

|CNa |
∑
j∈CNa

ψ
(
xt•j ,y•j

)
= E

{
ψ
(
Zta,Ya

)}
, (48)

where Zta ∼ N
(
0, Σ(t)

)
is independent of Ya ∼ Pa.
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H.4 Asymptotic average behavior of MLE
To begin with, we recall the iterative algorithm that [32] introduced for tracking the MLE. Starting with an
initial guess β̂0, set S0 = Xβ̂0 and for t = 1, 2, . . ., update {St, β̂t}t≥1, with St ∈ Rn, β̂t ∈ Rp, using the
following scheme:

β̂t = β̂t−1 + κ−1X ′Ψt−1

(
y,St−1

)
St = Xβ̂t −Ψt−1

(
y,St−1

) (49)

where the function Ψt is applied element-wise and is equal to

Ψt (y, s) = λtrt, rt = y − ρ′
(
proxλtρ (λty + s)

)
, (50)

and λt is described via the recursions (19)–(20). However, from (29), we know λt ≡ λ̃t, where λ̃t is described
via the update equations (22)–(23), when

α0 = α̃0, σ0 = σ̃0. (51)

Suppose we initialize the scalar sequence (λ̃0, σ̃0) in the aforementioned way. This leads to an alternate
characterization of the function Ψt, which will be useful in Appendix H.4.1. Note that the response variables
can be expressed as

yi = h (X ′iβ,wi) , (52)

where h(x, y) is specified via (21) and w1, . . . ,wn
i.i.d.∼ U(0, 1), independent of all other random variables.

Rewriting Ψt in terms of these quantities and recalling definition (24), we observe that

Ψt

(
yi,S

t
i

)
≡ Ψ̃t

(
X ′iβ,wi,S

t
i

)
. (53)

H.4.1 State Evolution Analysis

In this section, we characterize the asymptotic average behavior of the AMP iterates (β̂t,St), for each fixed
t, in the large sample limit. In this regard, the scalar sequence (αt,σt,λt) introduced in (19)–(20) proves to
be useful, as is formalized in the theorem below.

Theorem 6. Suppose the initial conditions for the AMP iterative scheme (49), and the variance map updates
(19)–(20) satisfy

α0 =
1

γ2
lim
n→∞

〈β̂0,β〉
n

, σ2
0 = lim

n,p→∞

1

p
‖β̂0 − α0β‖2. (54)

For any pseudo-Lipshcitz function ψ of order 2,

lim
n→∞

1

p

p∑
j=1

ψ
(
β̂tj − αtβj ,βj

)
a.s.
= E [ψ (σtZ,β)]

lim
n→∞

1

n

n∑
i=1

ψ

([
X ′iβ
Sti

]
,

[
wi
0

])
a.s.
= E

[
ψ

([
Qt1
Qt2

]
,

[
W
0

])]
, (55)

where β ∼ Π,W ∼ U(0, 1) independent of each other8and independent of

(
Qt1,Qt2

)
∼ N

(
0,

[
γ2 αtγ

2

αtγ
2 κσ2

t + α2
tγ

2

])
. (56)

8Recall Π is the weak limit of the empirical distribution of {βi}1≤i≤p.
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Proof: Introduce a new sequence of iterates {νt,Rt} defined as follows: starting with initial conditions
ν0 = β̂0 − α0β,R0 = S0, set:

νt = qt−1

(
νt−1 + αt−1β

)
− atβ + κ−1X ′Ψt−1

(
y,Rt−1

)
Rt = X

(
νt + αtβ

)
−Ψt−1

(
y,Rt−1

)
,

(57)

where

qt = − 1

κn

n∑
i=1

Ψ′t
(
yi,R

t
i

)
a0 = α0, at =

1

κn

n∑
i=1

∂

∂a
Ψt−1

(
h(a,Wi),R

t−1
i

)∣∣∣∣
a=X′iβ

for t ≥ 1; (58)

Ψ′t is the derivative w.r.t the second coordinate of Ψt. The difference between this recursion and that in
(49) is the introduction of the new variables {qt, at}, and the regression coefficients β. It turns out that
the recursive equations for {νt,Rt}, introduced in (57), fall under the class of G-AMP algorithms. Hence,
asymptotic average behavior of {νt,Rt} can be established by appropriately using Theorem 5. This leads
to the following lemma.

Lemma 3. For any t ≥ 1, under the assumptions of Theorem 6, the recursions {νt,Rt} introduced in (57)
satisfy

lim
n→∞

1

p

p∑
j=1

ψ
(
νtj ,βj

) a.s.
= E [ψ (σtZ,β)]

lim
n→∞

1

n

n∑
i=1

ψ

([
X ′iβ
Rti

]
,

[
wi
0

])
a.s.
= E

[
ψ

([
Qt1
Qt2

]
,

[
W
0

])]
.

Finally, Theorem 6 is established by noting the equivalence of the recursions {νt,Rt}, and the appropri-
ately centered versions of the original recursions, that is, {β̂t − αtβ,St}, which is formalized next.

Lemma 4. Under the assumptions of Theorem 6, and the assumptions on the initial conditions ν0 =
β̂0 − α0β,R0 = S0, for any fixed t ≥ 1,

lim
n→∞

1

p
‖β̂t − αtβ − νt‖2 =a.s. 0, lim

n→∞

1

n
‖St −Rt‖2 =a.s. 0.

Since ψ is a pseudo-Lipschitz function of order 2, we have∣∣∣∣∣∣1p
p∑
j=1

ψ
(
β̂tj − αtβj ,βj

)
− 1

p

p∑
j=1

ψ
(
νtj ,βj

)∣∣∣∣∣∣ ≤ 1

p

p∑
j=1

∣∣∣ψ (β̂tj − αtβj ,βj)− ψ (νtj ,βj)∣∣∣
≤ C 1

p

p∑
j=1

(
1 + ‖(β̂tj − αtβj ,βj)‖+ ‖(νtj ,βj)‖

) ∣∣∣β̂tj − αtβj − νtj∣∣∣
≤ C 1

p

√√√√ p∑
j=1

(
1 + ‖(β̂tj − αtβj ,βj)‖+ ‖(νtj ,βj)‖

)2

‖β̂t − αtβ − νt‖.
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By definition, ‖β‖/√p is bounded. Putting together Lemma 3 and 4, we obtain ‖β̂t‖/√p is bounded for all
t. Hence, from Lemma 4 and the above inequality, we have

lim
n→∞

1

p

p∑
j=1

ψ
(
β̂tj − αtβj ,βj

)
= lim
n→∞

1

p

p∑
j=1

ψ
(
νtj ,βj

)
.

This establishes the first relation in (55). A similar argument holds for the other relation. �

It remains to prove Lemmas 3–4, which we focus on next.

H.4.2 Proof of Lemma 3

Our first goal is to reduce the recursion (57) to the G-AMP form (44). Thereafter, computing the covariances
Σt from (47) and an application of Theorem 5 will complete the proof.

To this end, fix q = 2k0 + 1 for some large arbitrary integer k0, and let N = n + p. In the subsequent
analysis, restrict t ∈ {0, . . . , q}. Define xt ∈ Vq,N such that x0 = 0 and the values for other choices of t are
defined as follows: for the odd iterates t = 2k + 1 (k ≥ 0), for each i = 1, . . . n, define

xt•i :=
[
Zi, 0,R0

i , 0,R1
i , . . . ,R

t−1
2

i , 0, 0, . . .
]′

. (59)

For even iterates t = 2k (k ≥ 1), for each i = n+ 1, . . . ,n+ p, define

xt•i =
[
0, ν1

i−n, 0, ν2
i−n, 0, ν2

i , . . . , ν
t
2
i−n, 0, 0, . . .

]′
. (60)

Let all other entries of xt be 0. Let Y ∈ Vq,N have the first two rows defined via[
Y1•
Y2•

]
=

[
W1, W2, . . . , Wn, β1, β2, . . . , βp

0 . . . 0 ν0
1 , ν0

2 , . . . , ν0
p

]
(61)

and the rest of the entries are all 0. Note that, the functions f in (45) are allowed to be functions of the
elements of Y . For the odd iterates t = 2k + 1 (k ≥ 0), let f i(x; 2k + 1) = 0 for i = n + 1, . . . n + p. Let
h =

√
N/n. For i = 1, . . . ,n, define

f i(x; 2k + 1) =

[
0,
h

κ
Ψ0(h(x1,Y1i),x3), 0,

h

κ
Ψ1(h(x1,Y1i),x5), . . . ,

h

κ
Ψ t−1

2
(h(x1,Y1i),xt+2), 0, 0, . . .

]′
. (62)

For the even iterates t = 2k (k ≥ 0), let f i(x; 2k) = 0 for i = 1, . . . ,n and for i = n+ 1, . . . ,n+ p, define

f i(x; 2k) =
[
hY1i, 0,h(Y2i + α0Y1i), 0,h(x2 + α1Y1i), 0,h(x4 + α2Y1i), 0, . . . ,h(xt + αt/2Y1i), 0, 0, . . .

]′
.
(63)

Let A ∈ RN×N be a symmetric matrix with Aii = 0,Aij = 1
hXi,j−n for 1 ≤ i ≤ n and n + 1 ≤ j ≤ n + p,

and all other entries Aij with i < j are i.i.d. N (0, 1/N). With these definitions in place, the following result
can be established.

Lemma 5. For even iterates with column indices i = n + 1, . . . ,n + p, and for odd iterates with column
indices i = 1, . . . n, xt•i defined via (59)–(60) satisfies the recursion (44), with the collection of functions
f i(, ; t) given by (62)–(63) and A as described above.

Proof: The proof follows directly from matrix multiplications and is, therefore, omitted.
�
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Let x̃t be a new sequence of iterates in Vq,N such that x̃0 = 0. For all 1 ≤ t ≤ q, if a column i of xt is
non-zero, set the corresponding column of x̃t as x̃t•i = xt•i. If a column of xt is zero, set the corresponding
column of x̃t as follows: x̃1

•i =
∑N
j=1Aijf

j(x̃0
•j ; t) and for t ≥ 1,

x̃t+1
•i :=

N∑
j=1

Aijf
j
(
x̃t•j ; t

)
− 1

N

 N∑
j=1

∂f j

∂x

(
x̃t•j ; t

) f i
(
x̃t−1
•i ; t− 1

)
,

where any term with negative t-index is zero. Then, from Lemma 5 we trivially arrive at the following
conclusion.

Lemma 6. The sequence of iterates {x̃t}1≤t≤q satisfies the recursion (44) with the choice of functions f i
specified in (62) and (63).

Thus, we have reduced the recursion in (57) to the G-AMP form (44). Theorem 5 then tells us that the
asymptotic covariance structure of x̃t can be obtained by carrying out the iterative scheme in (47), with
g defined via (62) and (63). We systematically list properties of Σ(t) that will be crucial for establishing
the proof. For t = 1, i = 1, . . . n, x̃1

•i has first and third entries Zi,R0
i , with all other entries 0. From the

definitions (46) and (47), it is easy to check that[
Σ

(1)
(1,1) Σ

(1)
(1,3)

Σ
(1)
(3,1) Σ

(1)
(3,3)

]
=

[
limn→∞

‖β‖2
n limn→∞

〈β,β̂0〉
n

limn→∞
〈β,β̂0〉
n limn→∞

‖β̂0‖2
n

]
, (64)

which is consistent with the asymptotic covariance structure we expect to see in this case, since Zi =
X ′iβ,R0

i = S0
i = X ′iβ̂

0. Computing Σ(2), using the formula (47) and applying Theorem 5 yields,

1

p

p∑
j=1

ψ
(
ν1
j ,βj

)
→ E [ψ (τ1Z,β)] , where τ2

1 =
1

κ2
E
[
Ψ2

0

(
h
(
Q0

1,U
)

,Q0
2

)]
, (65)

and (Q0
1,Q0

2) is multivariate normal with mean 0 and covariance matrix specified in (64).
Note that, for Σ(3), the first 3× 3 sub-block would be the same as in (64). Among the rest, the distinct

non-trivial entries are Σ
(3)
(1,5), Σ

(3)
(3,5), Σ

(3)
(5,5), given by

Σ
(3)
(1,5) = α1γ

2, Σ
(3)
(3,5) = α1 lim

n→∞

〈β, β̂0〉
n

, Σ
(3)
(5,5) = κτ2

1 + α2
1γ

2.

From Theorem 5, this immediately yields,

lim
n→∞

1

n

n∑
i=1

ψ

X ′iβR0
i

R1
i

 ,

wi0
0

 a.s.
= E

ψ
Z(3),

W0
0

 , (66)

where

Z(3) ∼ N

0,

 γ2 limn→∞
〈β,β̂0〉
n α1γ

2

limn→∞
〈β,β̂0〉
n limn→∞

‖β̂0‖2
n α1 limn→∞

〈β,β̂0〉
n

α1γ
2 α1 limn→∞

〈β,β̂0〉
n κτ2

1 + α2
1γ

2


 ,

W ∼ U(0, 1) |= Z(3).
Computing Σ(4), we obtain

1

p

p∑
j=1

ψ

([
ν1
j

ν2
j

]
,

[
βj
0

])
→ E

[
ψ

(
Z(4),

[
β
0

])]
, (67)
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where Z(4) ∼ N
(

0,

[
τ2
1 ρ12

ρ12 τ2
2

])
, with

τ2
2 =

1

κ2
E
[
Ψ2

1

(
h
(
Z

(3)
1 ,U

)
,Z

(3)
3

)]
, ρ12 =

1

κ2
E
[
Ψ0

(
h
(
Z

(3)
1 ,U

)
,Z

(3)
2

)
Ψ1

(
h
(
Z

(3)
1 ,U

)
,Z

(3)
3

)]
.

(68)
We continue similar calculations to obtain Σ(5) and Σ(6). The 5×5 principal sub-matrix of Σ(5), is identical
to Σ(3). Other distinct non-zero entries are listed below:

Σ
(5)
(1,7) = α2γ

2,

Σ
(5)
(3,7) = α2 lim

n→∞

〈β, β̂0〉
n

,

Σ
(5)
(5,7) = κρ12 + α1α2γ

2,

Σ
(5)
(7,7) = κτ2

2 + α2
2γ

2.

Hence, we have

lim
n→∞

1

n

n∑
i=1

ψ



X ′iβ
R0
i

R1
i

R2
i

 ,


wi
0
0
0


 a.s.

= E

ψ
Z(5),


W
0
0
0



 , (69)

where W ∼ U(0, 1) |= Z(5) and

Z(5) ∼ N

0,


γ2 limn→∞

〈β,β̂0〉
n α1γ

2 α2γ
2

limn→∞
〈β,β̂0〉
n limn→∞

‖β̂0‖2
n α1 limn→∞

〈β,β̂0〉
n α2 limn→∞

〈β,β̂0〉
n

α1γ
2 α1 limn→∞

〈β,β̂0〉
n κτ2

1 + α2
1γ

2 κρ12 + α1α2γ
2

α2γ
2 α2 limn→∞

〈β,β̂0〉
n κρ12 + α1α2γ

2 κτ2
2 + α2

2γ
2


 .

Computing Σ(6), we obtain

1

p

p∑
j=1

ψ

ν1
j

ν2
j

ν3
j

 ,

βj0
0

→ E
[
ψ

(
Z(6),

[
β
0

])]
, (70)

where Z(6) ∼ N

0,

 τ2
1 ρ12 ρ13

ρ12 τ2
2 ρ23

ρ13 ρ23 τ2
3

, with

τ2
3 =

1

κ2
E
[
Ψ2

2

(
h
(
Z

(5)
1 ,U

)
,Z

(5)
4

)]
, ρlm =

1

κ2
E
[
Ψl−1

(
h
(
Z

(5)
1 ,U

)
,Z

(5)
l+1

)
Ψm−1

(
h
(
Z

(5)
1 ,U

)
,Z

(5)
m+1

)]
.

(71)
Repeating the above procedure and reading off the relevant entries in the covariance matrices, we arrive at
the following results: for all t ≤ q,

lim
n→∞

1

p

p∑
j=1

ψ
(
νtj ,βj

) a.s.
= E [ψ (τtZ,β)]

lim
n→∞

1

n

n∑
i=1

ψ

([
X ′iβ
Rti

]
,

[
wi
0

])
a.s.
= E

[
ψ

([
Z

(2t+1)
1

Z
(2t+1)
t+2

]
,

[
W
0

])]
,

where
(
Z

(2t+1)
1 ,Z

(2t+1)
t+2

)
∼ N (0, Σ (−αt, τt)) and τ2

t is defined by the relation

τ2
t =

1

κ2
E
[
Ψ2
t−1

(
h
(
Z

(2t−1)
1 ,U

)
,Z

(2t−1)
t+1

)]
,
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with
(
Z

(2t−1)
1 ,Z

(2t−1)
t+1

)
∼ N (0, Σ (−αt−1, τt−1)) and Σ(α,σ) as in (16). The final step is to relate the scalar

sequence {τt}, first to the sequence {σ̃t} defined in (23), and thereafter to the sequence {σt} in the statement
of Theorem 6. To this end, recall the initial conditions on {αt,σt} imposed via the relations

α0 =
1

γ2
lim
n→∞

〈β̂0,β〉
n

, σ2
0 = lim

n→∞

‖β̂0 − α0β‖2

p
. (72)

It is easy to check that, with this choice, the covariance in (64) is precisely Σ(−α0,σ0) = Σ (−α̃0, σ̃0), since
(α̃0, σ̃0) was initialized to (α0,σ0) (recall (51)).

The equivalence between the functions Ψt and Ψ̃t from (53), and the definition of σ̃t from (23) then leads
to τ2

1 = σ̃2
1 , which subsequently yields τ2

t ≡ σ̃t2. The equivalence between {σ̃t} and {σt} established in (29),
then completes the proof.

H.4.3 Proof of Lemma 4

The proof partly follows along lines similar to [14, Lemma 6.7], but has some additional ingredients which
we detail here. Denote θt = β̂t − αtβ. Comparing the recursive equations in (57) and (49), and using the
triangle inequality we obtain,∥∥Rt − St

∥∥ ≤ ‖X‖ ∥∥νt − θt∥∥+
∥∥Ψt−1

(
y,Rt−1

)
−Ψt−1

(
y,St−1

)∥∥ .

Applying [14, Proposition 6.3], we obtain

∂Ψt(y, s)

∂s
=
−λt ρ′′(x)|x=prox(λty+s)

1 + λt ρ′′(x)|prox(λty+s)

. (73)

Hence, Ψ(y, ·) is Lipschitz continuous with Lipschitz constant at most 1, which yields∥∥Rt − St
∥∥ ≤ ‖X‖ ∥∥νt − θt∥∥+

∥∥Rt−1 − St−1
∥∥ . (74)

Similarly, comparing (57) and (49) again, we obtain

νt − θt = qt−1

(
νt−1 + αt−1β

)
− atβ − β̂t−1 + αtβ + κ−1

(
X ′Ψt−1(y,Rt−1)−X ′Ψt−1

(
y,St−1

))
=
(
νt−1 − θt−1

)
+(qt−1 − 1)

(
νt−1 + αt−1β

)
+(αt − at)β+κ−1

(
X ′Ψt−1

(
y,Rt−1

)
−X ′Ψt−1

(
y,St−1

))
,

where the second equality is obtained after appropriate rearranging. Using the triangle inequality,∥∥νt − θt∥∥ ≤ ∥∥νt−1 − θt−1
∥∥+ |qt−1 − 1|

∥∥νt−1 + αt−1β
∥∥+ |αt − at| ‖β‖+

1

κ
‖X‖

∥∥Rt−1 − St−1
∥∥ . (75)

Since ν0 = θ0, iterating (74) and (75), it can be established that there exists a constant C, depending on κ,
such that ∥∥νt − θt∥∥ ≤ (C ‖X‖)2t

(
t−1∑
l=0

|ql − 1|
∥∥νl + αlβ

∥∥+

t−1∑
l=0

|αl − al| ‖β‖

)
. (76)

Using Lemma 3, the definition of qt and (73), we have,

lim
n→∞

qt = lim
n→∞

− 1

κn

n∑
i=1

{
−λtρ′′ (prox (λth (X ′iβ,wi) +Rti))

1 + λtρ′′ (prox (λth (X ′iβ,wi) +Rti))

}
= E

[
1

κ

{
1− 1

1 + λtρ′′ (prox (λth (Qt1,U) +Qt2))

}]
, (77)
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where (Qt1,Qt2) ∼ N (0, Σ(−αt,σt)). The equivalence (29) yields

lim
n→∞

qt = E

 1

κ

1− 1

1 + λ̃tρ′′
(
prox

(
λ̃th

(
Q̃t1,U

)
+ Q̃t2

))

 = 1,

where
(
Q̃t1, Q̃t2

)
∼ N (0, Σ (−α̃t, σ̃t)), and the last equality follows from the definition of λ̃t in (22). Note

that to obtain (77), we applied Lemma 3 to the function ∂Ψ(y, s)/∂s which is not necessarily continuous,
but a smoothing argument similar to that in the proof of [14, Lemma 6.7] helps circumvent this technicality.
Now, recall that for each n, we have a matrix of covariates X ≡ X(n) that has dimension n × p and
i.i.d. N (0, 1/n) entries. Since, limn→∞ ‖X‖ <∞ and ‖νt‖/√p is bounded for all t, we arrive at

lim
n→∞

1
√
p

(C ‖X‖)2t
t−1∑
l=0

|ql − 1|
∥∥νl + αlβ

∥∥ = 0. (78)

It remains to analyze the second term in the RHS of (76). To analyze the large sample limit of at defined in
(58), we invoke Lemma 3 once again, in conjunction with the smoothing techniques from [14, Lemma 6.7],
which yields

lim
n→∞

at =
1

κ
E

[
∂

∂a
Ψt−1 (h(a,W ), s)

∣∣∣∣
a=Qt−1

1 ,s=Qt−1
2

]
. (79)

In order to analyze (79), we will invoke Stein’s lemma, which states that if X ∼ N (µ,σ2) and h is a function
for which Eh(X)(X − µ) and σ2 Eh′(X) both exist,

Eh(X)(X − µ) = σ2 Eh′(X). (80)

To this end, it will be useful to express Qt−1
2 in terms of Qt−1

1 and an independent standard Gaussian Z, as
shown below

Qt−1
2 = αt−1Q

t−1
1 +

√
κσ2

t−1Z =: f
(
Qt−1

1 ,Z
)

,

since
(
Qt−1

1 ,Qt−1
2

)
∼ N (0, Σ (−αt−1,σt−1)). Thus, one can represent Ψt−1 as

Ψt−1

(
h
(
Qt−1

1 ,W
)

,Qt−1
2

)
= Ψt−1

(
h
(
Qt−1

1 ,W
)

, f
(
Qt−1

1 ,Z
))

.

Obviously,

E

[
∂

∂a
Ψt−1 (h(a,W ), s)

∣∣∣∣
a=Qt−1

1 ,s=Qt−1
2

]
= EW ,Z

[
EQt−1

1

[
∂

∂a
Ψt−1 (h(a,W ), s)

∣∣∣∣
a=Qt−1

1 ,s=f(Qt−1
1 ,Z)

∣∣∣∣∣W ,Z

]]
.

Since Qt−1
1 is independent of (W ,Z), (80) immediately gives

γ2 EQt−1
1

[
∂

∂Qt−1
1

Ψt−1

(
h
(
Qt−1

1 ,W
)

, f
(
Qt−1

1 ,Z
))∣∣∣∣W ,Z

]
= E

[
Qt−1

1 Ψt−1

(
h
(
Qt−1

1 ,W
)

, f
(
Qt−1

1 ,Z
))∣∣W ,Z

]
.

The LHS can be decomposed using the chain rule as follows

EQt−1
1

[
∂

∂Qt−1
1

Ψt−1

(
h
(
Qt−1

1 ,W
)

, f
(
Qt−1

1 ,Z
))∣∣∣∣W ,Z

]
= EQt−1

1

[
∂

∂a
Ψt−1 (h(a,W ), s)

∣∣∣∣
a=Qt−1

1 ,s=f(Qt−1
1 ,Z)

∣∣∣∣∣W ,Z

]

+ αt−1 EQt−1
1

[
∂

∂s
Ψt−1 (h(a,W ), s)

∣∣∣∣
a=Qt−1

1 ,s=f(Qt−1
1 ,Z)

∣∣∣∣∣W ,Z

]
.

29



Putting these together,

EQt−1
1

[
∂

∂a
Ψt−1 (h(a,W ), s)

∣∣∣∣
a=Qt−1

1 ,s=f(Qt−1
1 ,Z)

∣∣∣∣∣W ,Z

]

=
1

γ2
EQt−1

1

[
Qt−1

1 Ψt−1

(
h
(
Qt−1

1 ,W
)

, f
(
Qt−1

1 ,Z
))∣∣W ,Z

]
− αt−1 EQt−1

1

[
∂

∂s
Ψt−1 (h(a,W ), s)

∣∣∣∣
a=Qt−1

1 ,s=f(Qt−1
1 ,Z)

∣∣∣∣∣W ,Z

]
.

Marginalizing over W ,Z and recalling (79), we have

lim
n→∞

at =
1

κγ2
E
[
Qt−1

1 Ψt−1

(
h
(
Qt−1

1 ,W
)

,Qt−1
2

)]
− αt−1

κ
E

[
∂

∂s
Ψt−1 (h(a,W ), s)

∣∣∣∣
a=Qt−1

1 ,s=Qt−1
2

]
.

Combining (27) and (73), we obtain

1

κ

[
1− E

[
2ρ′
(
−Qt−1

1

)
1 + λρ′′

(
proxλρ

(
Qt−1

2

))]] = − 1

κ
E

[
∂

∂a
Ψt−1 (h(a,W ), s)

∣∣∣∣
a=Qt−1

1 ,s=Qt−1
2

]
.

Since
(
−Qt−1

1 ,Qt−1
2

)
∼ N (0, Σ (αt−1,σt−1)), comparing with (19), we obtain that the LHS equals 1. Fur-

ther, from (25), we have

E
[
2ρ′
(
−Qt−1

1

) (
−Qt−1

1

)
λtρ
′ (proxλtρ (Qt−1

2

))]
= E

[
Qt−1

1 Ψt−1

(
h
(
Qt−1

1 ,W ),Qt−1
2

))]
.

Thus,

lim
n→∞

at = αt−1 +
1

κγ2
E
[
2ρ′
(
−Qt−1

1

) (
−Qt−1

1

)
λtρ
′ (proxλtρ (Qt−1

2

))]
= αt,

where the last equality follows directly from the definition of αt in (20). Hence, for any finite t,

lim
n→∞

|αt − at| = 0,

which leads to

lim
n→∞

1
√
p

(C ‖X‖)2t
t−1∑
l=0

|αl − al| ‖β‖ = 0.

Combining this with (76) and (78), we obtain

lim
n→∞

1
√
p

∥∥νt − θt∥∥ = 0.

The scaled norm of Rt − St is then controlled using (74) and the fact that limn→∞ ‖X‖ is finite almost
surely. This completes the proof.

H.4.4 Convergence to the MLE

In this subsection, we establish that the AMP iterates {β̂t} converge to the MLE β̂, in the large n and
t limit. As mentioned earlier, it can be checked numerically that the system of equations (15) admits a
solution in the regime γ < gMLE(κ). In addition, we can establish the following result.
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Lemma 7. Given a pair (α,σ), the equation

1− κ = E

[
2ρ′ (Q1)

1 + λρ′′
(
proxλρ (Q2)

)]

has a unique solution in λ, where (Q1,Q2) ∼ N (0, Σ(α,σ)), with the covariance function specified in (16).

We defer the proof of Lemma 7 to Appendix H.7, and proceed with the rest of the proof here. The
aforementioned results together establish that if the variance map updates (19)–(20) are initialized using
α0 = α?,σ0 = σ?, the iterates (αt,σt,λt) remain stationary, that is, for all t,

αt = α?, σt = σ?, λt = λ?,

where, recall from Appendix H.1 that (α?,σ?,λ?) refers to a solution of (15). In the subsequent theorem,
we adhere to this particular initialization.

Theorem 7. Suppose γ < gMLE(κ) and assume that the AMP iterates are initialized using

α0 =
1

γ2
, lim
n→∞

〈β̂0,β〉
n

, lim
n,p→∞

1

p
‖β̂0 − α?β‖2 = σ2

?,

where (α?,σ?,λ?) is a solution to (15). Then the AMP trajectory and the MLE can be related as

lim
t→∞

lim
n→∞

1
√
p
‖β̂t − β̂‖ =a.s. 0. (81)

Proof: The proof can be established using techniques similar to that in [33, Theorem 6]. The details are
therefore omitted. The crucial point is that, invoking these techniques requires that the following three
properties are satisfied:

• Almost surely, the MLE obeys

lim
n→∞

‖β̂‖√
n
<∞. (82)

This follows from Theorem 4, and an application of Borel-Cantelli.

• There exists some non-increasing continuous function 0 < ω(.) < 1 independent of n such that

P
[
∇2`(β) � ω

(
‖β‖√
n

)
· I for all β

]
= 1− c1e−c2n,

where c1, c2 are positive universal constants. This was established in [33, Lemma 4].

• The AMP iterates satisfy a form of Cauchy property:

lim
t→∞

lim
n→∞

1
√
p

∥∥∥β̂t+1 − β̂t
∥∥∥ =a.s. 0,

lim
t→∞

lim
n→∞

1
√
p

∥∥St+1 − St
∥∥ =a.s. 0.

This can be established by straightforward modifications of [14, Lemma 6.8, Lemma 6.9], using the
covariances for Zt derived in the proof of Lemma 3.

�

Finally, we are in a position to complete the proof of Theorem 1.
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Proof of Theorem 1: Start the variance map updates at α0 = α?,σ0 = σ?, so that αt ≡ α0,σt ≡ σ0.
Choosing ψ(x, y) = x2 in Theorem 6, it directly follows that for every t ≥ 0,

lim
n→∞

‖β̂t‖
√
p
≤ lim
n→∞

‖β̂t − α?β‖√
p

+ lim
n→∞

‖α?β‖√
p

= σ? +
γα?√
κ

=⇒ lim
t→∞

lim
n→∞

‖β̂t‖
√
p
<∞. (83)

Since ψ is a pseudo-Lipschitz function of order 2, by the triangle inequality and Cauchy-Schwartz,∣∣∣∣∣∣1p
p∑
j=1

ψ
(
β̂j − αtβj ,βj

)
− 1

p

p∑
j=1

ψ
(
β̂tj − αtβj ,βj

)∣∣∣∣∣∣
≤ C 1

p

√√√√ p∑
j=1

(
1 +

∥∥∥(β̂j − αtβj ,βj)
∥∥∥+

∥∥∥(β̂tj − αtβj ,βj)
∥∥∥)2 ∥∥∥β̂t − β̂∥∥∥ .

(84)

Using (83), (82) and invoking Theorem 7, we arrive at

lim
n→∞

1

p

p∑
i=1

ψ
(
β̂j − α?βj ,βj

)
= lim
t→∞

lim
n→∞

1

p

p∑
i=1

ψ
(
β̂tj − α?βj ,βj

)
= E [ψ (σ?Z,β)] .

This completes the proof. �

Remark 2. Theorem 1 in conjunction with Lemma 7 leads to the following crucial result: in the regime
γ < gMLE(κ), the system of equations (15) admits a unique solution. To see this, note that Theorem 1 tells
us that for any solution (α?,σ?,λ?),

α? =
limp→∞

1
p

∑p
i=1 β̂i

limp→∞
1
p

∑p
i=1 βi

.

Since for each n, p the MLE β̂ ∈ Rp is unique, the RHS above must be unique. Hence, α? has to be unique.
Similarly, since

σ2
? = lim

n→∞

1

p

∥∥∥β̂ − α?β∥∥∥2

,

and the RHS above must be unique, we obtain that σ? is unique. Then, Lemma 7 establishes that λ? must
also be unique.

H.5 Asymptotic behavior of the null MLE coordinates
This section presents the proof of Theorem 2. To begin with, we introduce a few notations that will be
useful throughout.The reduced MLE, obtained on dropping the j-th predictor is denoted by β̂[−j]. Define
X•j ,X•−j to be the j-th column and all the other columns of X respectively. Set D(β̂[−j]), D(β) to be
the n × n diagonal matrices with the i-th entry given by ρ′′(X ′i,−jβ̂[−j]) and ρ′′(X ′iβ) respectively, where
Xi,−j ,Xi denote the i-th row of X•−j and X respectively. Suppose the negative log-likelihood obtained on
removing the j-th predictor be represented by `−j . Introduce the Gram matrices

G = ∇2`(β̂), G[−j] = ∇2`−j

(
β̂[−j]

)
. (85)
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Further, let β̂[−i][−j] be the MLE obtained on dropping the i-th observation and the j-th predictor and
`−i,−j denote the corresponding negative log-likelihood function. Analogously, denote β̂[−ik][−j] to be the
MLE obtained when both the i-th and the k-th (i 6= k) observations are dropped, and in addition, the
j-th predictor is removed. Suppose `−ik,−j is the corresponding negative log-likelihood function. Define the
respective versions of the Gram matrices

G[−i],[−j] = ∇2`[−i],[−j]

(
β̂[−i][−j]

)
, G[−ik],[−j] = ∇2`[−ik],[−j]

(
β̂[−ik][−j]

)
. (86)

Before proceeding, it is useful to record a few observations regarding the differences and similarities
between our setup here and that in [33]. Analogues of Theorems 2 and 3 were proved in [33] under the
global null, that is, β = 0 and under the assumption that the matrix of covariates X has i.i.d. N (0, 1)
entries. Along the way, [33] established some important generic properties of the logistic link function ρ(x)
and the Hessian of the negative log-likelihood function. The logistic link is naturally the same in both the
cases, while the Hessian of the negative log-likelihood here has the same distribution as the scaled Hessian
∇2`(β)/n from [33].9 Thus, the properties of these objects established there will be extremely useful in the
subsequent discussion. Moreover, as we go along the proofs here, we will see that sometimes it is necessary
to generalize certain results in [33] to the β 6= 0 setup. In such scenarios, often the proof techniques from [33]
will go through verbatim when particular terms defined therein are replaced by more complicated terms that
we will define here. In these cases, we explain the appropriate mapping between the quantities in [33] and
those defined here. We leave it to the meticulous reader to check that after such a mapping, the proofs of
the corresponding results here indeed go through similarly.

In addition, note that Appendix C described the skeleton of the proofs for Theorems 2 and 3. In the
aforementioned outline, the authors provide a brief sketch of some of the intermediate steps and prove some
others rigorously. In Appendices H.5–H.7 of this manuscript, we will only provide rigorous proofs of the
steps for which the details were left out from Appendix C. Thus, it may be convenient for the reader to
proceed with the rest of this manuscript with [32] and [33] by her side.

The mathematical analyses in this and the subsequent section crucially hinge on the following fact: the
minimum eigenvalues of these different versions of G are bounded away from 0 with very high probability.
This is established in the following lemma.

Lemma 8. There exist positive universal constants λlb,C such that

P [λmin (G) ≥ λlb] ≥ 1− Cn−δ,

where δ > 1. The same result holds for G[−j],G[−i],[−j],G[−ik],[−j] for any j ∈ [p] and for all i, k ∈ [n], i 6= k.

Proof: In [33, Lemma 4], it was established that with exponentially high probability, for all sufficiently
small ε > 0, the Hessian of the negative log-likelihood satisfies

λmin
(
∇2` (β)

)
≥

(
inf

z:|z|≤ 3‖β‖√
nε

ρ′′(z)

)
C(ε),

where C(ε) is a positive constant depending on ε and independent of n. This, in conjunction with Theorem
4 completes the proof. �

Through the rest of this manuscript, for any given n, we restrict ourselves to the event:

Dn :=
{
λmin(G) > λlb} ∩ {λmin(G[−j]) > λlb} ∩ {∩ni=1λmin(G[−i],[−j]) > λlb} ∩ {λmin(G[−12],[−j]) > λlb

}
.

(87)
By Lemma 8, Dn occurs with high probability; to be precise,

P [Dn] ≥ 1− Cn−(δ−1).

9This is simply due to the difference in the variance of the entries of X in the two setups.
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Later, in Lemma 13 we will use the fact that for any given pair k, l ∈ [n] with k 6= l, P
[
λmin(G[−kl],[−j]) > λlb

]
≥

1−Cn−δ. In this context, without loss of generality, one can choose k = 1, l = 2 and this explains the choice
of the last event in (87).

We are now in a position to begin the proof of Theorem 2. To this end, note that the MLE has an implicit
description via the KKT conditions and is, therefore, potentially intractable mathematically. To circumvent
this barrier, we introduce a surrogate b[−j] for β̂ that would be more amenable to mathematical analysis.
Define

b[−j] =

[
0

β̂[−j]

]
+ b[−j],1

[
1

−G−1
[−j]w

]
, (88)

where

w = X ′•−jD(β̂[−j])X•j ,

b[−j],1 =
X ′•j(y − ρ′(X•−jβ̂[−j]))

X ′•jD(β̂[−j])1/2HD(β̂[−j])1/2X•j
, (89)

with the convention that ρ′ is applied element-wise and H := I −D(β̂[−j])
1/2X•−jG

−1
[−j]X

′
•−jD(β̂[−j])

1/2.
Inspired by [20], an analogous surrogate was introduced in [33] for studying the MLE when β = 0, and the
choice was motivated in detail. Although the surrogate has a different definition here, the same insight is
applicable. Thus, we refer the readers to [33] for the reasoning behind this particular choice. As mentioned
earlier, the surrogate is constructed with the hope that β̂ ≈ b[−j]. This is formalized in the subsequent
theorem.

Theorem 8. The MLE β̂ and the surrogate b[−j] defined in (88) satisfy

P
[
‖β̂ − b[−j]‖ . n−1/2+o(1)

]
= 1− o(1),

P
[

sup
1≤i≤n

∣∣∣X ′ib[−j] −X ′i,−jβ̂[−j]

∣∣∣ . n−1/2+o(1)

]
= 1− o(1). (90)

The fitted values satisfy

P
[

sup
1≤i≤n

|X ′i,−jβ̂[−j] −X ′iβ̂| . n−1/2+o(1)

]
= 1− o(1). (91)

Further, we have
P
[
|β̂j − b[−j],1| . n−1/2+o(1)

]
= 1− o(1). (92)

Proof: The proof of (90) follows upon tracing out the steps in [33, Theorem 8] verbatim using b[−j], b[−j],1
and β̂[−j] defined in (88) instead of b̃, b̃1 and β̃ respectively. In [33], b̃ is the surrogate for the MLE and b̃1 is
the first coordinate of the surrogate, whereas β̃ refers to the MLE obtained on dropping the first predictor.
Now, note that the terms G[−j],w and b[−j],1 involve D(β̂[−j]) and ρ′(X•−jβ̂[−j]). They differ from their
corresponding counterparts since β̂[−j] and β̃ have different distributions. However, the only properties
pertaining to these objects that are used in the proof of [33, Theorem 8] are the following:

1. ρ′(x), ρ′′(x) are bounded, a property we have by virtue of the logistic link,

2. the minimum eigenvalue of G[−j] is strictly positive with very high probability, a fact we have estab-
lished in our setup in Lemma 8.

Thus, the techniques from [33, Theorem 8] are applicable here for establishing (90). Next, note that by the
triangle inequality,

sup
1≤i≤n

|X ′i,−jβ̂[−j] −X ′iβ̂| ≤ sup
1≤i≤n

∣∣∣X ′ib[−j] −X ′iβ̂
∣∣∣+ sup

1≤i≤n

∣∣∣X ′i,−jβ̂[−j] −X ′ib[−j]

∣∣∣ .
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Combining this inequality with (90) and the fact that supi ‖Xi‖ = O(1) with high probability, we have the
required result (91). Finally, (92) follows trivially from (90). �

Henceforth, whenever necessary, we describe suitable correspondences between the terms here and their
appropriate analogues in [33], for the convenience of the reader. To keep the subsequent discussion concise,
we will no longer recall the definitions of the relevant terms in the context of [33].

Applying Theorem 8 we have the approximation

β̂j =
X ′•j(y − ρ′(X•−jβ̂[−j]))

X ′•jD(β̂[−j])1/2HD(β̂[−j])1/2X•j
+ oP (1). (93)

At this point, recall from (93) that the above expression can be simplified to the following form:

X ′•j(y − ρ′(X•−jβ̂[−j]))

X ′•jD(β̂[−j])1/2HD(β̂[−j])1/2X•j
=
λ[−j]sj

κ
Z + oP (1), (94)

where

s2
j =
‖y − ρ′(X•−jβ̂[−j])‖2

n
and λ[−j] =

1

n
Tr
(
G−1

[−j]

)
. (95)

Later, in Theorem 10, we will establish that λ[−j]
P→ λ?, where λ? is part of the solution to the system of

equations (15). Hence, it remains to analyze the terms sj . For convenience of notation, denote the residuals
as

ri := yi − ρ′(X ′i,−jβ̂[−j]), (96)

which implies

s2
j =

1

n

n∑
i=1

r2
i . (97)

Since Xi,−j and β̂[−j] are dependent, the analysis of sj hard. To circumvent this issue, we express the fitted
values X ′i,−jβ̂[−j] as a function of yi,Xi,−j and β̂[−i],[−j], where recall that β̂[−i],[−j] is the MLE obtained
on removing the i-th observation and the j-th predictor. Such a representation of the fitted values makes
things more tractable since Xi,−j and β̂[−i],[−j] are independent. This reduction relies heavily on a leave-
one-observation out approach [20,33], in which one constructs a surrogate for β̂[−j], starting from β̂[−i],[−j],
as is done below.

Lemma 9. Suppose β̂[−j] is the MLE obtained on dropping the j-th predictor, and β̂[−i],[−j]] is the MLE
obtained on further removing the i-th observation. Define qi, b̂[−j] as follows:

qi := X ′i,−jG
−1
[−i],[−j]Xi,−j ,

b̂[−j] := β̂[−i],[−j] +G−1
[−i],[−j]Xi,−j

(
yi − ρ′

(
proxqiρ(X

′
i,−jβ̂[−i],[−j] + qiyi)

))
, (98)

where G[−i],[−j] is specified by (86). Then β̂[−j], b̂[−j] satisfy

P
[
‖β̂[−j] − b̂[−j]‖ . n−1/2+o(1)

]
= 1− o(1).

Proof: The proof follows using techniques from [33, Lemma 18], with the choice of qi specified in (98) and
b̂[−j] in place of b̂ in [33]. Note that, G[−i],[−j] and ρ′

(
proxqiρ

(
X ′i,−jβ̂[−i],[−j] + qiyi

))
differ in distribution

from the corresponding quantities there, but once again, the properties required in the proof are simply
boundedness of ρ′ and the eigenvalue bound for G[−i],[−j] established in Lemma 8. �
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We are now in a position to express the fitted values X ′i,−jβ̂[−j] in a more convenient form.

Lemma 10. The fitted values X ′i,−jβ̂[−j] are uniformly close to a function of
{yi,X ′i,−jβ̂[−i][−j]}i=1,...n, in the following sense:

sup
i=1,...,n

∣∣∣X ′i,−jβ̂[−j] − proxλ?ρ

(
X ′i,−jβ̂[−i][−j] + λ?yi

)∣∣∣ P→ 0. (99)

Further, the residuals can be simultaneously approximated using

sup
i=1,...,n

∣∣∣ri − {yi − ρ′ (proxλ?ρ (X ′i,−jβ̂[−i][−j] + λ?yi

))}∣∣∣ P→ 0. (100)

Proof: Since ρ′′ is bounded, (100) follows from (99) trivially. Thus, it suffices to show (99). From the
definition of b̂[−j] in (98), it directly follows that

X ′i,−j b̂[−j] = X ′i,−jβ̂[−i],[−j] + qiyi − qiρ′
(
proxqiρ(X

′
i,−jβ̂[−i],[−j] + qiyi)

)
.

Comparing the above with relation (18) that involves the proximal mapping operator, we obtain

X ′i,−j b̂[−j] = proxqiρ

(
X ′i,−jβ̂[−i],[−j] + qiyi

)
.

Applying Lemma 9, since supi ‖Xi,−j‖ = O(1) with high probability (see [33, Lemma 2] for a formal
statement), we have

sup
i

∣∣∣X ′i,−jβ̂[−j] − proxqiρ

(
X ′i,−jβ̂[−i],[−j] + qiyi

)∣∣∣ . n−1/2+o(1), (101)

with high probability. For (99), it then suffices to establish that

sup
i

∣∣∣proxqiρ (X ′i,−jβ̂[−i],[−j] + qiyi

)
− proxλ?ρ

(
X ′i,−jβ̂[−i][−j] + λ?yi

)∣∣∣ P→ 0. (102)

To this end, we first examine the differences |qi − λ?|. By the triangle inequality,

sup
i
|qi − λ?| ≤ sup

i
|qi − λ[−j]|+ |λ[−j] − λ?|. (103)

Using qi,λ[−j] instead of q̃i, α̃ in [33, Lemma 19] and following the proof line by line in conjunction with
Lemma 8, we have

sup
i
|qi − λ[−j]| . n−1/2+o(1) (104)

with high probability. Further, it can be shown that λ[−j] = λ?+oP (1). This is established later in Theorem
10. For now, we assume this result and proceed with the rest of the arguments. Thus, we have

sup
i
|qi − λ?|

P→ 0.

The partial derivatives of the proximal mapping operator are given by [15, Proposition 6.3]

∂

∂z
proxbρ(z) =

1

1 + bρ′′(x)

∣∣∣∣
x=proxbρ(z)

,
∂

∂b
proxbρ(z) = − ρ′(x)

1 + bρ′′(x)

∣∣∣∣
x=proxbρ(z)

, (105)
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for b > 0. By repeated application of the triangle inequality,

sup
i

∣∣∣proxqiρ (X ′i,−jβ̂[−i],[−j] + qiyi

)
− proxλ?ρ

(
X ′i,−jβ̂[−i][−j] + λ?yi

)∣∣∣
≤ sup

i

∣∣∣proxqiρ (X ′i,−jβ̂[−i],[−j] + qiyi

)
− proxqiρ

(
X ′i,−jβ̂[−i][−j] + λ?yi

)∣∣∣
+ sup

i

∣∣∣proxqiρ (X ′i,−jβ̂[−i],[−j] + λ?yi

)
− proxλ?ρ

(
X ′i,−jβ̂[−i][−j] + λ?yi

)∣∣∣
≤ sup

i
|qi − λ?|

{∣∣∣∣∣ ∂∂z proxqiρ(z)
∣∣∣∣
z=q̃iyi

∣∣∣∣∣+

∣∣∣∣∣ ∂∂bproxbρ(X ′i,−jβ̂[−i][−j] + λ?yi)

∣∣∣∣
b=λ̃i

∣∣∣∣∣
}

, (106)

where q̃i lies between qiyi,λ?yi and λ̃i lies between qi and λ?. From (105), note that the partial derivatives
are both bounded by 1 since qi, λ̃i > 0. This establishes (102). Combining with (101), we have the required
result (99).

�

Recall from (94) and (97) that in order to analyze β̂j , we require to study the average of the squared
residuals, that is,

∑n
i=1 r

2
i /n. Note that the residuals are identically distributed. Hence, we have

Var

(
1

n

n∑
i=1

r2
i

)
=

1

n2

n∑
i=1

Var(r2
i ) +

1

n2

∑
i6=j

Cov (r2
i , r

2
j )

=
1

n
Var(r2

1) +
(n− 1)

n
Cov (r2

1, r2
2).

The first term above is o(1). From (96), observe that each residual ri implicitly depends on n. We argue
in the subsequent text that

lim
n→∞

Cov (r2
1, r2

2) = 0. (107)

From (100), we know that r1, r2 are close in probability to functions of {y1,X ′1,−jβ̂[−1],[−j]} and
{y2,X ′2,−jβ̂[−2],[−j]} respectively. Thus, the entire dependence between r1 and r2 seeps in through the
dependence between β̂[−1],[−j] and β̂[−2],[−j]. To tackle this dependence structure, we will use a leave-two-
observation out approach, that is inspired by [20,33]. To this end, we establish a crucial result below.

Lemma 11. For any pair (i, k) ∈ [n], let β̂[−i],[−j], β̂[−k],[−j] denote the MLEs obtained on dropping the i-th
and k-th observations respectively, and, in addition, removing the j-th predictor. Further, denote β̂[−ik],[−j]
to be the MLE obtained on dropping both the i-th, k-th observations and the j-th predictor. Then the following
relation holds

P
[
max

{∣∣∣X ′i,−j (β̂[−i],[−j] − β̂[−ik],[−j]

)∣∣∣ , ∣∣∣X ′k,−j

(
β̂[−k],[−j] − β̂[−ik],[−j]

)∣∣∣} . n−1/2+o(1)
]

= 1− o(1).

(108)

Proof: We focus on one of the indices, say i. To this end, we will rely heavily on Lemma 9. Define b̂[−ik],[−j]
analogously to (98) as follows:

b̂[−i],[−j] := β̂[−ik],[−j] +G−1
[−ik],[−j]Xk,−j

(
yk − ρ′

(
proxq̃kρ(X

′
k,−jβ̂[−ik],[−j] + q̃kyk)

))
,

where q̃k = X ′k,−jG
−1
[−ik],[−j]Xk,−j . An application of Lemma 9 establishes that with high probability

‖β̂[−i],[−j] − b̂[−i],[−j]‖ . n−1/2+o(1). (109)
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Hence, ∣∣∣X ′i,−j (β̂[−i],[−j] − β̂[−ik],[−j]

)∣∣∣ ≤ ‖Xi,−j‖‖β̂[−i],[−j] − b̂[−i],[−j]‖+
∣∣∣X ′i,−jG−1

[−ik],[−j]Xk,−j

∣∣∣ .
The first term is controlled using (109) and the fact that ‖Xi,−j‖ = O(1) with high probability. For the
second term note that, conditional on Xi,−j ,G

−1
[−ik],[−j], it is a Gaussian random variable with mean zero

and varianceX ′i,−jG
−2
[−ik],[−j]Xi,−j/n . 1/n. Hence, the second term is O(n−1/2+o(1)) with high probability.

This completes the proof for index i. A similar argument works for index k, hence the result. �

We are now in a position to establish (107). From (100), we have that for each ϑ, δ > 0, there exists N
such that for all n ≥ N ,

P
[

sup
i=1,...,n

∣∣∣ri − {yi − ρ′ (proxλ?ρ (X ′i,−jβ̂[−i][−j] + λ?yi

))}∣∣∣ ≤ ϑ] ≥ 1− δ. (110)

Let E1, E2 denote the high probability event in (108) and the event in (110) respectively. Denote H =
Dn ∩ E1 ∩ E2, where Dn is defined via (87). Then,

|Cov(r2
1, r2

2)| ≤
∣∣E (r2

1 − E r2
1

) (
r2
2 − E r2

2

)
1H
∣∣+ P(Hc),

since |r2
i − E r2

i | is at most 1. Define for l = 1, 2,

f(Ml, yl) :=
(
yl − ρ′

(
proxλ?ρ (Ml + λ?yl)

))2 − E
(
yl − ρ′

(
proxλ?ρ (Ml + λ?yl)

))2
,

where Ml := X ′l,−jβ̂[−12],[−j]. Combining (108) and (110) we obtain that for any ϑ, δ > 0, for every n ≥ N ,

|Cov(r2
1, r2

2)| ≤ E f(M1, y1)f(M2, y2) + Cϑ2 + δ, (111)

where C > 0 is an absolute constant. By arguments similar to that in [20, Lemma 3.23], one can show that

E eit
′(M1,y1)+iw′(M2,y2) − E eit

′(M1,y1) E eiw
′(M2,y2) → 0.

Thereafter, repeated applications of the multivariate inversion theorem to obtain densities from characteristic
functions yields

E f(M1, y1)f(M2, y2)− E f(M1, y1)E f(M2, y2)→ 0.

From (111), we have E f(Ml, yl) = 0, by definition. Then (111) leads to the required result (107). By
Chebyshev’s inequality, we have effectively established that

1

n

n∑
i=1

r2
i −

1

n

n∑
i=1

E r2
i

P→ 0. (112)

Since, the residuals are identically distributed, the approximation to β̂j derived in (93) and (94) yields that
for a null j and any m ∈ [n],

β̂j =
λ?
√
E r2

mZ

κ
+ oP (1).

Appealing to (110) and using arguments similar to that for establishing (107), we have

lim
n→∞

E r2
m = lim

n→∞
E
{
ym − ρ′

(
proxλ?ρ

(
X ′m,−jβ̂[−m][−j] + λ?ym

))}2

.

Now, the discussion at the end of Appendix C rigorously established that

λ2
? limn→∞ E

{
ym − ρ′

(
proxλ?ρ

(
X ′m,−jβ̂[−m][−j] + λ?ym

))}2

κ2
= σ2

?,
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which leads to β̂j
d→ N (0,σ2

?) by Slutsky’s theorem. This completes the first part of the proof of Theorem 2.
Next, we investigate the joint distribution of multiple null MLE coordinates. Without loss of generality

assume βj = βl = 0 for some j, l ∈ [p]. From the relations in (93) and (94) in conjunction with Theorem 10,
it follows that [

β̂j
β̂l

]
=

λ?κ ∑iXij

(
yi − ρ′

(
X ′i,−jβ̂[−j]

))
λ?
κ

∑
iXil

(
yi − ρ′

(
X ′i,−lβ̂[−l]

))+ oP (1). (113)

Let Xi,[−jl] be the i-th row ofX without the j and l-th entries. Further define β̂[−jl] to be the MLE obtained
on dropping the j-th and l-th predictors. In (91) we established that if any one of p predictors is dropped,
the fitted values before and after are close with high probability. Applying this result to the p− 1 predictors
in [p]\{j} we obtain that on further dropping the l-th predictor, the fitted values satisfy

P
[
sup
i

∣∣∣X ′i,−jβ̂[−j] −X ′i,−[jl]β̂[−jl]

∣∣∣ . n−1/2+o(1)

]
= 1− o(1).

Similarly, we have

P
[
sup
i

∣∣∣X ′i,−lβ̂[−l] −X ′i,−[jl]β̂[−jl]

∣∣∣ . n−1/2+o(1)

]
= 1− o(1).

Combining with (113), this implies that

[
β̂j
β̂l

]
=

λ?κ ∑iXij

(
yi − ρ′

(
X ′i,−[jl]β̂[−jl]

))
λ?
κ

∑
iXil

(
yi − ρ′

(
X ′i,−[jl]β̂[−jl]

))+ oP (1)

=
λ?s[jl]

κ

[
Zj
Zl

]
+ oP (1),

where Zj ,Zl are independent standard normals and

s2
[jl] =

1

n

n∑
i=1

(
yi − ρ′

(
X ′i,−[jl]β̂[−jl]

))2

.

By arguments similar to that for establishing (112), one can establish that s2
[jl]

P→ E s2
[jl] =: s?. Then we

have [
β̂j
β̂l

]
=
λ?s?
κ

[
Zj
Zl

]
+ oP (1),

which in turn implies that [
β̂j
β̂l

]
d→ N

(
0,σ2

?I
)

.

For any finite subset of null coordinates, say i1, . . . , ik, similar calculations can be carried out as above to
obtain that (β̂i1 , . . . , β̂ik)

d→ N (0,σ2
?I).

H.6 Asymptotic distribution of the LRT
Finally we turn to the proof of Theorem 3. To this end, the following approximation to the LLR is extremely
useful.

39



Theorem 9. Suppose j is null, that is, βj = 0. If γ < gMLE(κ), the log-likelihood ratio statistic Λj =

`(β̂[−j])− `(β̂) can be approximated as follows:

2Λj =
κβ̂2

j

λ[−j]
+ oP (1), (114)

where λ[−j] is defined in (95).

Proof: Using the KKT condition ∇`(β̂) = 0 and Taylor expansion, we arrive at

2Λj =
(
X•−jβ̂[−j] −Xβ̂

)T
D(β̂)

(
X•−jβ̂[−j] −Xβ̂

)
+

1

3

n∑
i=1

ρ′′′(γi)
(
X ′i,−jβ̂[−j] −X ′iβ̂

)3

, (115)

where γi lies between X ′i,−jβ̂[−j] and X ′i,−jβ̂[−j]. Invoking Theorem 8 and the fact that |ρ′′′|∞ is bounded,
we obtain that the cubic term in (115) is oP (1). Subsequently, it can be checked that calculations similar to
those in [33, Section 7.3] go through in this setup on using Theorem 8. This completes the proof. �

To establish Theorem 3, it remains to analyze λ[−j]. To this end, the following lemma and an application
of Slutsky’s theorem completes the proof.

Theorem 10. If γ < gMLE(κ), the random variable λ[−j] defined in (95) converges in probability to a
constant. In fact,

λ[−j]
P→ λ?,

where λ? is part of the solution to the system (15).

Proof: The proof follows by arguments similar to that in [33, Appendix I] with some modifications. First,
we establish that λ[−j] is an approximate zero of a random function δn(x), in a sense that is formalized
below.

Lemma 12. Define β̂[−i],[−j] to be the MLE obtained when the i-th observation and the j-th predictors are
removed and X ′i,−j to be the i-th row of the matrix X, with the j-th column removed. Let δn(x) be the
random function

δn(x) :=
p

n
− 1 +

1

n

n∑
i=1

1

1 + xρ′′
(
proxxρ

(
X ′i,−jβ̂[−i][−j] + xyi

)) . (116)

Then, λ[−j] obeys

δn
(
λ[−j]

) P→ 0.

Proof of Lemma 12: Upon replacing α̃ by λ[−j] in the proof of [33, Proposition 2], we obtain

p

n
− 1 +

1

n

n∑
i=1

 1

1 + ρ′′
(
X ′i,−jβ̂[−j]

)
λ[−j]

 P→ 0. (117)

We claim that the fitted values X ′i,−jβ̂[−j] can be approximated as follows:

sup
i

∣∣∣X ′i,−jβ̂[−j] − proxλ[−j]ρ

(
X ′i,−jβ̂[−i],[−j] + λ[−j]yi

)∣∣∣ . n−1/2+o(1), (118)

with high probability. The claim is established by comparing (101), (104), and by arguments similar to that
in (106), with λ? replaced by λ[−j].
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Using the fact that
∣∣∣ 1

1+x −
1

1+y

∣∣∣ ≤ |x− y| for x, y ≥ 0, we obtain∣∣∣∣∣∣ 1n
n∑
i=1

 1

1 + ρ′′
(
X ′i,−jβ̂[−j]

)
λ[−j]

− 1

n

n∑
i=1

 1

1 + ρ′′
(
proxλ[−j]ρ

(
X ′i,−jβ̂[−i],[−j] + λ[−j]yi

))
λ[−j]


∣∣∣∣∣∣

≤ |λ[−j]| |ρ′′′|∞ sup
i

∣∣∣X ′i,−jβ̂[−j] − proxλ[−j]ρ

(
X ′i,−jβ̂[−i],[−j] + λ[−j]yi

)∣∣∣ .
On the event Dn defined in (87), |λ[−j]| ≤ p/(nλlb). Further, ρ′′′ is bounded. Hence, from (118) we have the
desired result.

�

The next stage is to show that the random function δn(x) converges in a uniform sense to a deterministic
function ∆(x).

Lemma 13. Define ∆(x) to be the deterministic function

∆(x) = κ− 1 + E

 1

1 + xρ′′
(
proxxρ

(
xh(Q̃1,W ) + Q̃2

))
 , (119)

where (Q̃1, Q̃2) ∼ N (0, Σ(−α?,σ?)), W ∼ U(0, 1) |= (Q̃1, Q̃2), Σ is specified via (16) and (α?,σ?) form part
of the solution to the system (15). Then, for any B > 0,

sup
x∈[0,B]

|δn(x)−∆(x)| P→ 0. (120)

Proof of Lemma 13: As a first step, using compactness of the interval [0,B] and the definitions of δn(x)
and ∆(x) in (116) and (119) respectively, it can be established that for (120), it suffices to show the following:
for any given x ∈ [0,B]

|δn(x)−Gn(x)| P→ 0, (121)
|Gn(x)−∆(x)| → 0, (122)

where Gn(x) = E (δn(x)) . (We refer the interested reader to the proof of [33, Proposition 3] for a detailed
analogous computation in the simpler setup β = 0).

We first establish (122). To this end, we seek to express Gn(x) in an alternative, more convenient form.
Denote by β−j the vector of regression coefficients without the j-th coordinate. Recall that the discussion
at the end of Appendix C rigorously established the following fact:[

Q?1
Q?2

]
d→ N

(
0,

[
γ2 0
0 κσ2

?

])
, where Q?1 := X ′i,−jβ−j , Q?2 = X ′i,−j

(
β̂[−i][−j] − α?β−j

)
. (123)

As mentioned in (52), the responses can be expressed as yi = h(Q?1,wi), since we operate under the null
βj = 0, where wi ∼ U(0, 1) is independent of both Q?1 and Q?2. In terms of these random variables, Gn(x)
can be expressed as

Gn(x) =
p

n
− 1 + E

[
1

1 + xρ′′
(
proxxρ (Q?2 + α?Q?1 + xh (Q?1,wi))

)] .

Now, the function

(t, l,w) 7→ 1

1 + xρ′′
(
proxxρ (l + α?t+ xh (t,w))

)
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is bounded with the discontinuity points having Lebesgue measure zero. Note that (Q?1,Q?2,wi) arise from a
continuous joint distribution. Hence, from (123) we can conclude that

E

[
1

1 + xρ′′
(
proxxρ (Q?2 + α?Q?1 + xh (Q?1,wi))

)]→ E

 1

1 + xρ′′
(
proxxρ

(
Q̃2 + xh

(
Q̃1,W

)))
 ,

where Q̃1, Q̃2,W are as in the statement of the lemma. This completes the proof of (122).
To analyze (121), note that

δn(x)−Gn(x) =
1

n

n∑
i=1

f(Mi, yi), where Mi = X ′i,−jβ̂[−i][−j],

f(Mi, yi) =
1

1 + xρ′′
(
proxxρ (Mi + xyi)

) − E

[
1

1 + xρ′′
(
proxxρ (Mi + xyi)

)] .

Since {f(Mi, yi)}i=1...n are identically distributed this immediately gives,

Var(δn(x)) =
1

n2

n∑
i=1

E
[
f2 (Mi, yi)

]
+

1

n2

∑
i 6=j

E [f(Mi, yi)f(Mj , yj)]

=
E
[
f2(M1, y1)

]
n

+
n(n− 1)

n2
E [f(M1, y1)f(M2, y2)] .

It suffices to establish that E [f(M1, y1)f(M2, y2)] → 0, since it ensures δn(x)
L2→ Gn(x). To this end, we

resort to the leave-two-observation-out approach discussed in Appendix H.5. By routine arguments using
the triangle inequality, properties of the partial derivatives of the proximal mapping operator (105), the fact
that ‖f‖∞ ≤ 1, and invoking the approximations in Lemma 11, we arrive at

f(M1, y1)f(M2, y2)− f(X ′1,−jβ̂[−12],[−j], y1)f(X ′2,−jβ̂[−12],[−j], y2)
L1→ 0.

From arguments similar to [20, Lemma 3.23] and the multivariate inversion theorem, we obtain

E
[
f(X ′1,−jβ̂[−12],[−j], y1)f(X ′2,−jβ̂[−12],[−j], y2)

]
−E

[
f(X ′1,−jβ̂[−12],[−j], y1)

]
E
[
f(X ′2,−jβ̂[−12],[−j], y2)

]
→ 0,

which yields the desired result, since f is centered. �

Putting together Lemmas 12 and 13, since λ[−j] ≤ p/nλlb on the high probability event Dn defined in
(87), we obtain that

∆(λ[−j])
P→ 0.

To complete the proof, recall from (27) that ∆(x) can be alternatively expressed as

∆(x) = κ− 1 + E

 2ρ′(−Q̃1)

1 + xρ′′
(
proxxρ

(
Q̃2

))
 .

From Lemma 7, we know that ∆(x) = 0 has a unique solution. Comparing with the system of equations in
(15) and noting that (−Q̃1, Q̃2) ∼ N (0, Σ(α?,σ?)), we obtain that λ? is the unique solution to ∆(x) = 0.
Hence, λ[−j]

P→ λ?.
�
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H.7 Proof of Supporting Lemmas
In this section, we provide proofs of Lemmas 7, 2 and 1.

H.7.1 Proof of Lemma 7

Let a = −α, b =
√
κσ and denote the function

G(λ) = E
[

2ρ′(Q1)

1 + λρ′′(proxλρ(aQ1 + bZ))

]
,

where Z ∼ N (0, 1) |= Q1 and λ > 0. It is required to show that

1−G(λ) = κ (124)

has a unique solution. Note that λ 7→ G(λ) is continuous. To prove the lemma, it suffices to show that G is
strictly increasing and that

lim
λ→0

(1−G(λ)) = 0 (125)

lim
λ→∞

(1−G(λ)) = 1. (126)

To this end, define the function
Kλ(p, s) := λρ′

(
proxλρ (p+ s)

)
.

The partial derivative of the above with respect to the second argument is given by [14, Proposition 6.4]

K ′λ(p, s) :=
∂Kλ(p, s)

∂s
=

λρ′′(proxλρ(p+ s))

1 + λρ′′(proxλρ(p+ s))
. (127)

Hence, G(λ) can be expressed as

G(λ) = E [2ρ′(Q1) (1−K ′λ(aQ1, bZ))] . (128)

Applying Stein’s formula (80), one can check that

E [K ′λ(aQ1, bZ)|Q1] = −1

b

∫ ∞
−∞

Kλ(aQ1, bz)φ′(z)dz,

where φ(·) is the standard normal density. Plugging this back in (128) and differentiating with respect to λ,
we obtain

G′(λ) =
1

b
EQ1

[
2ρ′(Q1)

∫ ∞
−∞

∂Kλ(aQ1, bz)

∂λ
φ′(z)dz

]
.

Define f(·) to be the function

f(q) =
1

b

∫ ∞
−∞

∂Kλ(aq, bz)

∂λ
φ′(z)dz.

A result analogous to Lemma 7 was proved in [33, Lemma 5] for a different choice of the function G. In the
proof, it was established that f(0) < 0. One can check that, in order to study f(q) for any fixed q ∈ R, the
same arguments go through and we have f(q) < 0 for all q ∈ R. Since ρ′(·) > 0, this implies G′(λ) < 0.
Hence, the function 1−G(λ) is strictly increasing.

To show (125), note that for λ > 0, x 7→ λx/(1 + λx) is strictly increasing in x. Hence, for any (q1, z),

0 ≤ K ′λ (aq1, bz) ≤ λ‖ρ′′‖∞
1 + λ‖ρ′′‖∞

≤ 1.
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This implies that for any (q1, z), when λ → 0, K ′λ(aq1, bz) → 0. Further, since ρ′ is bounded, by the
dominated convergence theorem, we have

lim
λ→0

(1−G(λ)) = 1− E [2ρ′ (Q1)] ,

recalling the expression for G(λ) provided in (128). Now, we know that ρ′(x) = 1− ρ′(−x) and Q1
d
= −Q1,

which yields

2E ρ′(Q1) = E ρ′(Q1) + 1− E ρ′(−Q1)

= E ρ′(Q1) + 1− E ρ′(Q1)

=⇒ 1− 2E ρ′(Q1) = 0,

thus establishing (125).
Finally, we turn to the proof of (126). To this end, note that [33, Remark 3] established the following

crucial property regarding the logistic link function ρ: for any (q1, z) ∈ R2,

λρ′′
(
proxλρ (aq1 + bz)

)
→∞ when λ→∞.

Hence, for any (q1, z) recalling (127), we obtain that K ′λ(aq1, bz)→ 1 when λ→∞. Again, by the dominated
convergence theorem, we have

E [2ρ′(Q1) (1−K ′λ(aQ1, bZ))]→ 0 when λ→∞,

proving (126).

H.7.2 Proof of Lemma 2

Proof: For any v ∈ Rn, denote Ci(span(v)) = Cvi . From the definition of the statistical dimension,

δ(Cvi ) = E
[
‖ΠCvi ‖

2
]

= E
[
‖g‖2 −min

t∈R
min
u∈Cvi

‖g − tv − u‖2
]

, (129)

where g ∼ N (0, I). It can be checked that an approach similar to that in [33, Appendix D.2] leads to the
lower bound

min
t∈R

min
u∈Cvi

‖g − tv − u‖2

≥ min
t

 ∑
i:(gi−tvi)<0

(gi − tvi)2 − max
S⊂[n]:|S|=2

√
εn

∑
i∈S

(gi − tvi)2 − 2
√

2ε3/4‖g − tv‖2
 , (130)

where ε > 0 is a small constant. In the remaining proof, we carefully analyze the RHS of (130). To this end,
define Gv(t) = F v(t)− εv(t), where

F v(t) =
∑

i:(gi−tvi)<0

(gi − tvi)2

εv(t) = max
S⊂[n]:|S|=2

√
εn

∑
i∈S

(gi − tvi)2 + 2
√

2ε3/4‖g − tv‖2. (131)

Further, define fv(t) = E[F v(t)] and let t0 and t? be the minimizers of fv(t) and F v(t) respectively. At this
point, it is useful to record a crucial observation that follows from [10, Section 3.3]:

1

n
F v(t?)

P→ g−1
MLE(γ). (132)

We require the following lemma to complete the proof.
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Lemma 14. There exists a fixed positive constant ε0 such that for all ε ≤ ε0, there exists an event GV in
the σ-algebra generated by V satisfying condition (42) and the following property: for all v ∈ GV ∩FV , with
high probability,10

sup
t∈[t0−M ,t0+M ]

|εv(t)| ≤ nf(ε), (133)

∀ t /∈ [t0 −M , t0 +M ] Gv(t) > ng−1
MLE(γ), (134)

where εv(t),Gv(t) are defined via (131). Above, M ≡ M(ε) is a positive constant independent of n, FV is
the event defined in (35), f(x) is a smooth function such that limx→0 f(x) = 0 and f(x) is increasing on
[0, ε0].

Let ν0 = f(ε0). Then for all 0 < ν < ν0, applying Lemma 14 it can be established that, with high probability
for all v ∈ GV ∩ FV ,

min
t∈[t0−M ,t0+M ]

Gv(t) ≥ min
t∈[t0−M ,t0+M ]

F v(t)− sup
t∈[t0−M ,t0+M ]

εv(t)

≥ F v(t?)− nν + oP (1) ≥ n(g−1
MLE(γ)− ν + oP (1)),

where the last inequality follows from (132). Here, oP (1) denotes a random variable that converges to zero in
probability as n→∞, under the law of g. Combining this with the high probability lower bound for Gv(t)
on the complement of [t0 −M , t0 +M ] obtained from Lemma 14 yields that, for all t and for all 0 < ν < ν0,

Gv(t) ≥ n(g−1
MLE(γ)− ν + oP (1)).

In conjunction with (130), this yields that with high probability,

min
t∈R

min
u∈Cvi

‖g − tv − u‖2 ≥ n(g−1
MLE(γ)− ν + o(1)).

Denote this high probability event byM. Since

E
[
min
t∈R

min
u∈Cvi

‖g − tv − u‖2
]
≥ E

[
min
t∈R

min
u∈Cvi

‖g − tv − u‖21M
]

,

recalling (129), we have
δ(Cvi ) ≤ n− n(g−1

MLE(γ)− ν + o(1)),

thus completing the proof. �

It remains to prove Lemma 14, which is the focus of the rest of this subsection.

Proof of Lemma 14: To begin with, we will specify the event GV . Since V has sub-Gaussian tails, by an
application of [24] and the union bound, for a(ε) = 2 max{2

√
εH(2

√
ε)},

PV

[
max

S:|S|=2
√
εn

∑
i∈S

V 2
i ≤ C1na(ε)

]
≥ 1− e−H(2

√
ε)n, (135)

where H(x) = −x log x− (1−x) log(1−x) and PV denotes the probability under the law of V . From results
on the norm of a random vector with independent sub-Gaussian entries, [?, Sec 3.1], it can be established
that

PV
[
‖V ‖2 ≤ C1

√
n
]
≥ 1− 2 exp (−c1n) , (136)

10Here, the probability is over the law of g.
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where V denotes the random vector V = (V1, . . . ,Vn). Since, |V | − E |V | is sub-Gaussian, applying the
Hoeffding-type inequality [34, Proposition 5.10], we have

PV

[
n∑
i=1

|Vi| ≤ C1n

]
≥ 1− C1 exp (−c1n) . (137)

Next, note that V 21V >0 − EV 21V >0 is sub-exponential and from the Bernstein-type inequality [34, Propo-
sition 5.16], it can be shown that

PV

[
n∑
i=1

V 2
i 1Vi>0 ≥ C1n

]
≥ 1− 2 exp (−c1n) . (138)

Let GV denote the high probability event formed by the intersection of the events in (135),(136),(137)
and (138). Thus, any v ∈ GV ∩ FV satisfies the following properties:

max
S⊂[n]:|S|=2

√
εn

∑
i∈S

v2
i ≤ C1na(ε), ‖v‖2 ≤ C2n,

n∑
i=1

|vi| ≤ C3n,
∑
i:vi>0

v2
i ≥ C4n, max

i
v2
i ≤ ζ log n.

(139)

We are now in a position to establish (133) and (134). To this end, recall that,

εv(t) = max
S⊂[n]:|S|=2

√
εn

∑
i∈S

(gi − tvi)2 + 2
√

2ε3/4‖g − tv‖2

≤ max
S⊂[n]:|S|=2

√
εn

2
∑
i∈S

g2
i + max

S⊂[n]:|S|=2
√
εn

2t2
∑
i∈S

v2
i + 2

√
2ε3/4{‖g‖2 + t2‖v‖2}.

To control the above, note that similar to (135) and (136), we have

max
S⊂[n]:|S|=2

√
εn

∑
i∈S

g2
i ≤ C1na(ε), ‖g‖2 ≤ C2n,

with high probability. Putting these together, for all t,

εv(t) ≤ n
(
1 + t2

)
(C1a(ε) + C2ε

3/4), (140)

with high probability. Hence, for any positive universal constant M , for all v ∈ GV ∩ FV , with high
probability,

sup
t∈[t0−M ,t0+M ]

εv(t) ≤ nf(ε),

where f(x) is specified in the statement of the lemma.
It remains to lower bound Gv(t) outside the finite interval [t0 −M , t0 + M ] where M is any positive

constant independent of n. Consider t > 1. In this case, invoking (140) we have for all v ∈ GV ∩ FV ,

Gv(t) ≥
∑

i:gi<tvi

(gi − tvi)2 − nt2(C1a(ε) + C2ε
3/4) (141)

with high probability. Observe that {i : vi > 0, gi ≤ 0} ⊂ {i : gi − tvi < 0}. Thus,

∑
i:gi<tvi

(gi − tvi)2 ≥ t2
∑

i:vi>0,gi≤0

v2
i − 2t

∑
i:vi>0,gi<0

|vigi| ≥ t2
∑

i:vi>0,gi≤0

v2
i − 2t

n∑
i=1

|vigi|. (142)
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Since g →
∑n
i=1 |givi| is Lipschitz with Lipschitz constant at most ‖v‖, by Gaussian concentration of

Lipschitz functions and from the properties of v ∈ GV ∩ FV described in (139), we have
n∑
i=1

|givi| ≤ C2n (143)

with high probability.
Thus, it only remains to analyze the first term in the RHS of (142). Note that the vi’s are deterministic

in this term and g is the random variable. So, v2
i 1vi>0,gi≤0− v2

i 1vi>0/2 is a centered multiple of a Bernoulli
random variable and from [34, Proposition 5.10] we have,

Pg

[∣∣∣∣∣ ∑
i:vi>0

v2
i 1gi≤0 −

1

2

∑
i:vi>0

v2
i

∣∣∣∣∣ ≥ t
]
≤ C1 exp

(
− c1t

2

n (maxi v2
i )

2

)
,

where Pg denotes the probability under the law of g. This is where the control over maxi v
2
i , that is ensured

by restricting v to FV defined via (35), is crucial. Recalling the properties of v from (139), we can choose
t = C1n such that ∑

i:vi>0

v2
i 1gi≤0 ≥ C2n (144)

with high probability. Combining (143), (144) and recalling (142), we finally arrive at

Gv(t) ≥ C1t
2n− 2tC2n− nt2(C3a(ε) + C4ε

3/4)

for all v ∈ GV ∩ FV with high probability, when t > 1. If ε is sufficiently small, one can choose a positive
constant M such that t0 +M > 1 and for all t > t0 +M the RHS in the above inequality exceeds ng−1

MLE(γ).
This establishes the desired result for all t > t0 +M . The case of t < t0 −M can be analyzed similarly and
is, therefore, omitted.

�

H.7.3 Proof. of Lemma 1

The event {span (V ) ∩ A 6= {0}} occurs if and only if

∃ a 6= 0 such that aV ∈ A.

Hence,
P [span (V ) ∩ A 6= {0}] ≤ P [∃ a > 0 s.t. aV ∈ A] + P [∃ a < 0 s.t. aV ∈ A] . (145)

From the definition of A in (32), it follows that

P [∃ a > 0 s.t. aV ∈ A] = P

 n∑
j=1

|Vj |1Vj<0 ≤ ε2
√
n‖V ‖

 ≤ P

 n∑
j=1

|Vj |1Vj<0 ≤ ε2n

+ C1 exp (−c1n) ,

(146)

where the last inequality follows from (136). Since |Vi|1Vi<0 − E |Vi|1Vi<0 is sub-gaussian, applying [34,
Proposition 5.10] we obtain

P

[
(E |V1|1V1<0)n

2
≤

n∑
i=1

|Vi|1Vi<0 ≤
3 (E |V1|1V1<0)n

2

]
≥ 1− C1 exp (−c1n) . (147)

Combining (146) and (147) yields that for sufficiently small ε,

P [∃ a > 0 s.t. aV ∈ A] ≤ C1 exp (−c1n) .

The second term in the RHS of (145) can be analyzed similarly.
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