Supplementary Information

Automated structure prediction of *trans*-acyltransferase polyketide synthase products

Eric J. N. Helfrich,¹* Reiko Ueoka,¹* Alon Dolev,¹* Michael Rust,¹ Roy A. Meoded,¹ Agneya Bhushan,¹ Gianmaria Califano,^{2,3} Rodrigo Costa,^{2,4} Muriel Gugger,⁵ Christoph Steinbeck,^{3,6} Pablo Moreno,^{6#} and Jörn Piel^{1#}

¹Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog Weg 4, 8093 Zurich, Switzerland.

²Centre of Marine Sciences, University of Algarve, Gambelas Campus, Building 7, 8005-139 Faro, Portugal.

³Institute for Inorganic and Analytical Chemistry, Friedrich-Schiller-Universität Jena, Lessingstrasse 8, 07743 Jena, Germany.

⁴Institute for Bioengineering and Biosciences (IBB), Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal.

⁵Institut Pasteur, Collection des Cyanobactéries, 28 Rue du Docteur Roux, 75724 Paris CEDEX15, France.

⁶European Bioinformatics Institute (EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, United Kingdom.

[#]Correspondence should be addressed to JP (jpiel@ethz.ch) and PM (pmoreno@ebi.ac.uk).

*Authors contributed equally to this work

Supplementary Figure 1: Distribution of *trans***-AT PKS BGCs** (a) Relative abundance of polyketide BGCs according to the antiSMASH database.¹ (b) Comparison between characterized and orphan *trans*-AT PKS BGCs. (c) Comparison of BGCs with characterized polyketides^{2,3} and published data^{1,4} on the occurrence of *trans*-AT PKS BGCs in published genomes.

Supplementary Figure 2: Module variants encountered in *trans***-AT PKSs.** Module variants were extracted and quantified from all annotated *trans*-AT PKS BGCs as described by Helfrich and Piel 2016⁵ and Piel 2010.² Module variants are grouped according to the modifications introduced into the polyketide backbone. "+" in module descriptors signifies non-covalent interactions with *trans*-acting enzymes. OXY: oxygenase, PAL: phenylalanine ammonia lyase, DUF: domain of unknown function, SH: cysteine lyase, DCR: 2,4-dienoyl-CoA reductase.

Supplementary Figure 3: Colinearity between gene order in the BGC and protein order during polyketide biosynthesis in 54 characterized *trans*-AT PKS clusters. (a) Colinearity between PKS genes and order at the protein level. (b) Table of all characterized *trans*-AT PKS BGCs that do not show a colinearity between gene order and order of the corresponding proteins in the PKS.

Supplementary Figure 4: KR alignment around the fuzzpro pattern used to distinguish between D-OH and L-OH groups. Red bar: KR Fuzzpro pattern used. Blue bar: Stereochemistry-determining residue with D (Asp) forming D-configured OH groups and all other amino acids giving rise to L-OH groups. Fuzzpro pattern:[GDPSERVIHKNAT]x(3)[GVTA][IVAL][VHILF][HYFVQY][SIATGMLCFNV][AVTPS][GLIMRP]x (3)D.

Supplementary Figure 5: Model for tartrolon biosynthesis. (a) *tar* BGC. Red: PKS genes, grey: hypothetical genes, brown: oxygenase genes, green: regulatory genes. (b) Proposed model for tartrolon biosynthesis, high-confidence part (3) of the structure generated by TransATor and used for MarinLit library search, and isolated homo- and heterodimeric tartrolon D, F and G (4-6).

Supplementary Figure 6: A: Structure of tartrolon F (5). B: COSY and key HMBC correlations of tartrolon F (5). C: Key NOESY correlation of tartrolon F (5).

С

Supplementary Figure 7: A: Structure of tartrolon G (6). B: COSY and key HMBC correlations of tartrolon G (6). C: Key NOESY correlation of tartrolon G (6).

Supplementary Figure 8: Key NMR correlations of leptolyngbyalide A-C. A: leptolyngbyalide A (10), B: leptolyngbyalide B (11), and C: leptolyngbyalide C (12).

Supplementary Figure 9: Key NOESY correlations of leptolyngbyalides A-C. A: leptolyngbyalide A (10), B: leptolyngbyalide B (11), and C: leptolyngbyalide C (12).

Supplementary Figure 10: PCR-based verification of the correct assembly of the last PKS gene (*leptP***).** Module 14 is putatively used iteratively and installs two beta branches. PCRs were conducted in duplicates (1-2). Neg: negative control. The detection of PCR fragments of the expected size indicates correct sequence assembly of the *lept* locus. Red arrows indicate translated primer annealing sites on the PKS level for the visualization of the corresponding PKS section and its assigned biosynthetic functions.

Supplementary Figure 11: Absolute stereochemistry of phormidolide. ¹H NMR chemical shifts of A: phormidolide triacetonide methyl ester (*R*)-MTPA ester and B: (*S*)-MTPA ester from the literature. C: $\Delta \delta_{S-R}$ values of phormidolide triacetonide methyl ester MTPA ester. D: Proposed revised absolute stereochemistry based on TransATor analysis and reexamination of published primary data.^{6,7}

Supplementary Figure 12: A: Structures of cuniculene 6A (14) and cuniculene 6B (15). B: COSY and key HMBC correlations of cuniculene 6A (14) and 6B (15).

Supplementary Table 1: Ubiquitous distribution of *trans*-AT PKS BGCs across bacterial phyla. Distribution of functionally assigned *trans*-AT PKS BGCs^{2,5} for which the corresponding metabolite is characterized versus the distribution of sequenced BGCs as reported by O'Brien *et al.*⁴ and based on the AntiSMASH database.⁸ This discrepancy between annotated *trans*-AT PKS BGCs and the studies by O'Brien *et al.*⁴ and Blin *et al.*⁸ is either due to a higher abundance of *trans*-AT PKS BGCs in certain phyla, or due to a general overrepresentation of these genomes in GenBank. Firmicutes, Actinobacteria, β -Proteobacteria and γ -Proteobacteria as well as bacterial phyla not traditionally studied for natural product discovery show a huge potential for the isolation of novel *trans*-AT PKS-derived polyketides.

Phylum/Class	Annotated BGCs	Sequenced BGCs (O`Brien <i>et al.</i>)	Sequenced BGCs (AntiSMASH database)
Firmicutes	9	97	66
Actinobacteria	15	55	21
α-Proteobacteria	1	7	3
β-Proteobacteria	10	37	107
δ-Proteobacteria	14	14	7
γ-Proteobacteria	17	41	20
Bacteroidetes	2	3	2
Cyanobacteria	6	5	2
Other	3	0	183
total	77	259	411

Supplementary Table 2: *trans*-AT PKS ketide clades. HMMs were trained for each clade and used for TransATor predictions.

Clade ID	Clade Description
Clade_1	GNAT starter
Clade_2	α-Me shifted double bond or OH
Clade_5	amino acids (oxa/thia)
Clade_7	β D-OH
Clade_8	unusual starter (AMT/succinate)
Clade_9	aromatic starter
Clade_10	amino acids (glycine)
Clade_11	shifted double bonds
Clade_12	vinylogous chain branching
Clade_13	lactate starter
Clade_14	exomethyl/exoester
Clade_21	α-Me red or keto
Clade_23	α-Me
Clade_25	completely reduced
Clade_26	pyran/furan rings
Clade_27	acetyl starter
Clade_28	amino acids
Clade_30	bimodule ß D-OH
Clade_31	non-elongating (bimodule ß D-OH)
Clade_32	cis-AT PKS
Clade_33	various starters
Clade_34	methoxycarbonyl starter
Clade_35	oxidative rearrangement
Clade_36	non-elongating (oxazole/thiazole rings)
Clade_38	non-elongating (pyran/furan rings)
Clade_39	amino acids (glycine)
Clade_40	β D-OH or β keto
Clade_42	shifted double bonds
Clade_43	α D-Me shifted double bonds
Clade_44	non-elongating (α-Me completely reduced or shifted double bond)

Clade ID	Clade Description
Clade_81	non-elongating (β D-OH)
Clade_82	double bonds (mostly <i>E</i> -configured)
Clade_83	non-elongating (mostly α-Me double bonds)
Clade_84	non-elongating
Clade_85	non-elongating (bimodule ß D-OH)
Clade_86	α-L-Me red or OH
Clade_88	non-elongating
Clade_89	α-Меβ-ОН
Clade_90	β-keto or double bonds
Clade_92	non-elongating (α D-OH β-L-OH)
Clade_93	non elongating (β-OH)
Clade_94	non-elongating (various)
Clade_95	various specificities
Clade_96	various specificies (mainly α-Me)
Clade_97	β D-OH
Clade_98	non-elongating (various)
Clade_99	double bonds (E-configured)
Clade_100	mainly double bonds
Clade_101	double bonds
Clade_102	β D-OH
Clade_103	ß OMe
Clade_104	β OMe or β Me double bond
Clade_106	lactate starter
Clade_107	mainly reduced
Clade_108	shifted double bonds
Clade_109	completely reduced
Clade_110	ß D-OH or double bonds (e-configured)
Clade_111	α L-(di)Me β OH
Clade_112	α L-(di)Me β OH
Clade_113	double bonds
	(e-configured) (some with α-Me)

Clade_45	non-elongating (β-keto)	Clade_114	β L-OH
Clade_46	non-elongating (hemiacetal)	Clade_115	β-keto or double bonds
Clade_47	amino acids (oxazole/thiazole rings)	Clade_116	β-keto or double bonds
Clade_49	shifted double bonds (some with α -Me)	Clade_117	α-Me red or keto
Clade_51	double bonds (Z-configured)	Clade_118	mainly double bonds
Clade_52	α-Me double bond	Clade_119	non elongating (β-OH)
Clade_53	β D-OH	Clade_120	non-elongating (various)
Clade_54	lactate starter	Clade_121	α D-OH β D-OH
Clade_55	α -Me double bonds (<i>E</i> -configured)	Clade_122	double bonds (<i>E</i> -configured) (some with α -Me)
Clade_56	α -Me double bonds (Z-configured)	Clade_123	βD-OH
Clade_57	double bonds (<i>E</i> -configured) (some with α -Me)	Clade_124	β D -OH
Clade_60	double bonds (Z-configured)	Clade_125	double bonds (E-configured)
Clade_61	α L-Me β D-OH	Clade_126	double bonds (E-configured)
Clade_62	β D-OH (some with α L-Me)	Clade_127	double bonds (E-configured)
Clade_64	non-elongating (double bonds (mostly Z-configured))	Clade_128	double bonds (E-configured)
Clade_65	double bonds	Clade_129	double bonds (E-configured)
Clade_66	βL-OH	Clade_130	double bonds (E-configured)
Clade_67	phosphoglycerate-derived straters	Clade_131	α -Me double bonds (Z-configured)
Clade_68	α L-OH/Me β D-OH	Clade_132	α -Me double bonds (<i>E</i> -configured)
Clade_70	$\alpha \text{ OH } \beta \text{ D-OH}$	Clade_133	α -Me double bonds (<i>E</i> -configured)
Clade_72	α L-(di)Me β OH	Clade_134	double bonds (E-configured)
Clade_73	Exomethylene	Clade_135	β D-OH
Clade_74	α Με β ΟΗ	Clade_136	β D-OH
Clade_75	non-elongating (β L-OH)	Clade_137	β D-OH
Clade_76	non-elongating (double bonds)	Clade_138	α L-Me β OH
Clade_77	vinylogous chain branching	Clade_139	βОН
Clade_78	non-elongating (mostly β OH)	Clade_140	β D-OH
Clade_79	starters or β OH	Clade_141	α-Me double bonds
Clade_80	non-elongating (β OH)	Clade_142	non-elongating (various)

Supplementary Table 3: Annotation of KS sequences based on their respective ketide clades. Sequence names contain the following descriptors: name of the corresponding polyketide_protein harboring the respective KS_number of KS on the respective protein_KS number when counting from first KS of the pathway_substrate specificity.

>basiliskamides_P615_14890_KS5_cDB Clade_1 >kalimantacin_batum_Batt_LKS1_AcStarter Clade_1 >onsperin_NpA_1_KS1_GNATStarter Clade_1 >posperin_NpA_1_KS1_GNATStarter Clade_1 >posperin_PsyA_1_KS1_GNATStarter Clade_1 >posmaindOnnB_1_KS1_GNATStarter Clade_10 >psymberin_PsyA_1_KS1_GNATStarter Clade_10 >broxazolomycin_OramH_2_KS6_Angly Clade_10 >virginiamycin_VirA_4_KS4_cDB Clade_100 >virginiamycin_VirA_4_KS4_cDB Clade_100 >virginiamycin_VirA_4_KS4_cDB Clade_100 >ktronwycin_KirAlV_1_KS7_cDB Clade_101 >ktronwycin_KirAlV_1_KS7_cDB Clade_102 >withixopdM_KBf3_S15_D_OH Clade_102 >withixopdM_KBf3_S15_D_OH Clade_102 >withixofMKf3_S15_D_OH Clade_102	Sequence	Clade
>kalimatacin_batumin_Batl_1_KS1_AcStarter Clade_1 >>onosprin_NapA_1_KS1_GNATstarter Clade_1 >>onosprin_NapA_1_KS1_GNATstarter Clade_1 >>pedrin_Pdf1_KS1_GNATstarter Clade_1 >>psymberin_PsyA_1_KS1_GNATStarter Clade_10 >>bysynberin_PsyA_1_KS1_GNATStarter Clade_10 >>durinaidi_LumA_1_KS1_AAgly Clade_10 >tumiaoidi_LumA_1_KS1_AAgly Clade_10 >virginiamycin_VirA_4_KS4_GDB Clade_100 >tyringinamycin_KirA_4Ks4_GDB Clade_100 >tartrolon_TrlF_1_KS9_b_D_OH Clade_100 >twirgniamycin_KirAV_2_KS3_oBB Clade_101 >kirromycin_KirAV_1_KS7_GDB Clade_101 >kirromycin_KirAV_2_KS3_AAoxz Clade_101 >hinianoidi_LumD_3_KS13_b_D_OH Clade_102 >tolytoxin_Toe_7_KS13_b_D_OH Clade_102 >tolytoxin_Toe_7_KS13_b_D_OH Clade_102 >tolytoxin_Toe_7_KS13_b_D_OH Clade_102 >tolytoxin_Toe_7_KS13_b_D_OH Clade_102 >tolytoxin_Toe_3_KS17_b_D_OH Clade_102 >tolytoxin_Toe_3_KS17_b_D_OH Clade_102 >tolytoxin_Toe_3_KS13_b_D_OH Clade_102 >tolytoxin_Toe_3_KS13_b_D_OH Clade	>basiliskamides_P615_14890_KS5_eDB	Clade_1
>diaphorin_DipP_1_KS1_GNATstarterClade_1>onnamic don B_1_KS1_GNATstarterClade_1>pederin_PedI_1_KS1_GNATstarterClade_1>pederin_PedI_1_KS1_GNATstarterClade_1>psymberin_PsyA_1_KS1_GNATstarterClade_1>oxazolomycin_OzmH_2_KS6_AAglyClade_10>luminaolid_LumA_1_KS1_AAglyClade_10>otaytoin_ToC_1_KS1_AAglyClade_10>otaytoin_ToC_1_KS1_AAglyClade_10>virginamycin_OzmH_2_KS3_GDBClade_100>virginamycin_VirA_4_KS4_GDBClade_100>virginamycin_OzmY_2_KS3_GDBClade_101>kirromycin_GZMY_2_KS3_GDBClade_101>kirromycin_KirAIV_1_KS7_GDBClade_101>kirromycin_KirAIV_2_KS3_aMeEDBClade_101>kirromycin_KirAIV_2_KS3_aMeEDBClade_101>kirromycin_KirAIV_2_KS3_AAxzClade_102>misakinolide_MisE_3_KS13_b_D_OHClade_102>misakinolide_MisE_3_KS17_b_D_OHClade_102>misakinolide_MisE_3_KS17_b_D_OHClade_102>misakinolide_MisE_3_KS17_b_D_OHClade_102>bryostatin_BryD_2_KS13_b_D_OHClade_102>phormidolide_MisE_3_KS17_b_D_OHClade_102>phorsinalide_MisE_3_KS17_b_D_OHClade_102>phormidolide_MisE_3_KS17_b_D_OHClade_102>phormidolide_MisE_3_KS12_b_D_OHClade_102>phormidolide_MisE_3_KS12_b_D_OHClade_102>phormidolide_MisE_3_KS12_b_D_OHClade_102>phormidolide_MisE_3_KS12_b_D_OHClade_102>phormidolide_MisE_3_KS12_b_D_OHClade_103>otalycuin_ToF_5_KS12_b_D_OMEClade_103<	>kalimantacin_batumin_Bat1_1_KS1_AcStarter	Clade_1
>nosperin_NspA_1_KS1_GNATstarter Clade_1 >onnamide_OnnB_1_KS1_GNATstarter Clade_1 >pedrein_Pel_1_KS1_GNATstarter Clade_1 >bryostatin_BryX_1_KS14_GNATstarter Clade_10 >thyoperin_RsyA_1_KS1_GNATstarter Clade_10 >toxazolomycin_OzmH_2_KS6_AAgly Clade_10 >tolytoxin_TroC_1_KS1_AAgly Clade_100 >virginiamycin_VirA_4_KS4_eDB Clade_100 >trartolon_TrtF_1_KS9_b_D_OH Clade_100 >tartrolon_TrtF_1_KS9_b_D_OH Clade_101 >kirromycin_KirAV_1_KS7_eDB Clade_101 >kirromycin_KirAV_2_KS8_aMeeDB Clade_101 >kirromycin_KirAV_2_KS8_aMeeDB Clade_101 >kirromycin_KirAV_1_KS1_5_D_OH Clade_102 >tolytoxin_Tofe_7_KS13_b_D_OH Clade_102 >tolytoxin_Tofe_7_KS13_b_D_OH Clade_102 >tolytoxin_Tofe_7_KS13_K1_D_D_OH Clade_102 >tolytoxin_Tof_3_KS17_b_D_OH Clade_102 >tolytoxin_Tof_3_KS17_b_D_OH Clade_102 >tolytoxin_Tof_3_KS17_b_D_OH Clade_102 >tonsinkinolide_Mise_3_KS13_b_D_OH Clade_102 >tolytoxin_Tofe_5_KS13_b_D_OH Clade_103 </td <td>>diaphorin_DipP_1_KS1_GNATstarter</td> <td>Clade_1</td>	>diaphorin_DipP_1_KS1_GNATstarter	Clade_1
>onnamide_OnnB_1_KSI_GNATStarter Clade_1 >pederin_PedI_1_KSI_GNATStarter Clade_1 >psymberin_PsyA_1_KSI_GNATStarter Clade_1 >boryostain_BryX_1_KSI4_GNATstarter Clade_10 >luminaolid_LumA_1_KS1_AAgly Clade_10 >volytoxin_ToC_1_KS1_AAgly Clade_10 >vrigrinamycin_VirA_4_KS4_eDB Clade_100 >vrigrinamycin_VirA_4_KS4_eDB Clade_100 >varronon_TrtF_1_KS9_b_D_OH Clade_101 >kirromycin_KirAIV_1_KS7_eDB Clade_101 >kirromycin_KirAIV_2_KS8_aMeeDB Clade_101 >rhizopodin_RizD_5_KS15_bimod_bOH Clade_101 >hinaskinolid_MisE_3_KS13_b_D_OH Clade_102 >misskinolid_MisE_3_KS13_b_D_OH Clade_102 >misskinolid_MisE_3_KS13_b_D_OH Clade_102 >luminaolid_LumD_3_KS13_b_D_OH Clade_102 >misskinolid_MisE_3_KS17_b_D_OH Clade_102 >misskinolid_MisE_3_KS17_b_D_OH Clade_102 >phorsidolid_MisE_3_KS17_b_D_OH Clade_102 >phorsidolid_MisE_3_KS17_b_D_OH Clade_102 >onsakinolid_MisE_3_KS17_b_D_OH Clade_102 >onsakinolid_MisE_3_KS17_b_D_OH <t< td=""><td>>nosperin_NspA_1_KS1_GNATstarter</td><td>Clade_1</td></t<>	>nosperin_NspA_1_KS1_GNATstarter	Clade_1
>pederin PedI_1KS1_GNATStarter Clade_1 >psymberin PsyA_1KS1_GNATStarter Clade_1 >bryostain, BryX_1KS1_GNATStarter Clade_10 >tormonycin_OrmH_2KS6_AAgly Clade_10 >topicatin, BryX_1KS1_AAgly Clade_10 >topicatin_TicC_1KS1_AAgly Clade_100 >topicatin_TicC_1KS1_AAgly Clade_100 >virginiamycin_VirA_4KS4_oDB Clade_100 >triginiamycin_OrmA_2KS3_oDB Clade_101 >tkiromycin_KirAIV_1KS7_oDB Clade_101 >kiromycin_KirAIV_2KS3_oDB Clade_101 >kiromycin_KirAIV_2KS3_abcDB Clade_101 >kiromycin_KirAIV_2KS3_abcDA Clade_101 >kiromycin_KirAIV_2KS3_abo_DOH Clade_101 >luminaolid_LumD_3_KS13_b_DOH Clade_102 >topitxxin_Tof6_7_KS13_b_DOH Clade_102 >topitxxin_Tof3_KS13_b_DOH Clade_102 >topitxxin_Tof3_KS1_b_DOH Clade_102 >topitxxin_Tof3_KS1_b_DOH Clade_102 >topitxxin_Tof3_KS1_b_DOH Clade_102 >topitxxin_Tof3_KS1_b_DOH Clade_102 >topitxxin_Tof3_KS1_b_D_OH Clade_102 >topitxxin_Tof3_K	>onnamide_OnnB_1_KS1_GNATstarter	Clade_1
>psymberin PsyA_I_KSI_GNATStarter Clade_1 >bryostatin_BryX_I_KSI4_GNATStarter Clade_10 >duminaolid_LumA_I_KSI_AAgly Clade_10 >toptozonycin_OzmH_2_KS6_AAgly Clade_10 >bryostatin_BryX_I_KSI_AAgly Clade_10 >brigniamycin_VirA_4_KS4_eDB Clade_100 >tartrolon_TrtF_1_KS9_b_D_OH Clade_100 >tartrolon_TrtF_1_KS9_b_D_OH Clade_101 >kirromycin_KirAIV_1_KS7_eDB Clade_101 >kirromycin_KirAIV_2_KS8_aMebDB Clade_101 >kirromycin_KirAIV_2_KS8_aMexDB Clade_101 >hirnomycin_KirAIV_2_KS8_aMexDB Clade_101 >hirnomycin_KirAIV_2_KS8_aMexDB Clade_101 >hirnomycin_KirAIV_2_KS8_aMexDB Clade_101 >hirnomycin_KirAIV_2_KS8_aMexDB Clade_102 >misakinolide_MisF_3_KS15_D_OH Clade_102 >misakinolide_MisF_3_KS15_D_OH Clade_102 >bipostatin_BryA_KS3_5_D_OH Clade_102 >bipostatin_BryD_2_KS13_0_D_OH Clade_102 >bipostatin_BryD_2_KS13_0_D_OH Clade_102 >bipostatin_BryA_KS3_5_0_D_OH Clade_103 >omanaiole_Onn_SK1_KS1_A_D_OME Clade_103	>pederin_PedI_1_KS1_GNATStarter	Clade_1
>bryostatin_BryX_1_KS14_GNATstarter Clade_1 >oxazolomycin_OzmH_2_KS6_AAgly Clade_10 >luminaolid_LumA_1_KS1_AAgly Clade_10 >virginiamycin_ToC_1_KS1_AAgly Clade_100 >virginiamycin_VirA_4_KS4_eDB Clade_100 >virginiamycin_VirA_4_KS4_eDB Clade_101 >tatrolon_Trff_1_KS9_b_D.OH Clade_101 >kirromycin_KirAIV_1_KS7_eDB Clade_101 >kirromycin_KirAIV_2_KS3_aMeeDB Clade_101 >kirromycin_KirAIV_2_KS3_AAoxz Clade_101 >leinamycin_Imn1_2_KS2_AAoxz Clade_101 >leinamycin_KirAIV_2_KS3_aMeeDB Clade_102 >todytoxin_Tote 7_KS13_b_D_OH Clade_102 >todytoxin_Tote 7_KS13_b_D_OH Clade_102 >todytoxin_Tote 7_KS13_b_D_OH Clade_102 >tomisakinolide_MisE_3_KS17_b_D_OH Clade_102 >topystatin_BryD_2_KS13_0b_D_OH Clade_102 >bryostatin_BryD_2_KS13_0b_D_OH Clade_102 >topystatin_BryD_2_KS13_b_D_OH Clade_102 >topystatin_BryD_2_KS13_0b_D_OH Clade_102 >bryostatin_BryD_2_KS13_0b_D_OH Clade_102 >topystatin_BryA_KS3_3_b_D_OH Clade	>psymberin_PsyA_1_KS1_GNATStarter	Clade_1
>oxazolomycin_0zmH_2_KS6_AAgly Clade_10 >luminaolid_LumA_1_KS1_AAgly Clade_10 >tolytoxin_TtoC_1_KS1_AAgly Clade_100 >griscoviridin_SgvE2_2_KS4_eDB Clade_100 >virginiamycin_VirA_4_KS4_eDB Clade_100 >tvirginiamycin_VirA_4_KS4_eDB Clade_101 >kirromycin_KirAIV_1_KS7_eDB Clade_101 >kirromycin_KirAIV_1_KS7_eDB Clade_101 >kirromycin_KirAIV_2_KS8_aMeeDB Clade_101 >luminaolid_LumD_3_KS13_b_D_OH Clade_102 >tolytoxin_TtoE_7_KS13_b_D_OH Clade_102 >tolytoxin_TtoF_7_KS13_b_D_OH Clade_102 >tolytoxin_TtoF_7_KS13_b_D_OH Clade_102 >tolytoxin_TtoF_7_KS13_b_D_OH Clade_102 >tolytoxin_TtoF_3_KS17_b_D_OH Clade_102 >tolytoxin_TtoF_3_KS17_b_D_OH Clade_102 >bryostatin_BryD_2_KS13_b_D_OH Clade_102 >bryostatin_BryD_2_KS13_b_D_OH Clade_102 >bryostatin_BryA_KS3_3_b_D_OH Clade_103 >bryostatin_BryA_KS3_b_D_OH Clade_103 >bryostatin_BryA_KS3_b_D_OME Clade_103 >calveuin_CalE_AKS19_b_D_OME Clade_103	>bryostatin_BryX_1_KS14_GNATstarter	Clade_1
>luminaolid_LumA_1_KS1_AAgly Clade_10 >totytoxin_TtoC_1_KS1_AAgly Clade_100 >virginiamyein_VirA_4_KS4_eDB Clade_100 >tratrolon_TrtF_1_KS9_b_D_OH Clade_100 >tartrolon_TrtF_1_KS9_b_D_OH Clade_101 >kirromyein_KirAIV_2_KS3_eDB Clade_101 >kirromyein_KirAIV_2_KS8_aMeeDB Clade_101 >kirromyein_KarAIV_2_KS8_aMeeDB Clade_101 >kirromyein_KarAIV_2_KS8_aMeeDB Clade_101 >hirromyein_KarAIV_2_KS8_aMeeDB Clade_102 >totytoxin_TotF_7_KS13_b_D_OH Clade_102 >totytoxin_TotF_7_KS13_b_D_OH Clade_102 >totytoxin_TotF_8_SK17_b_D_OH Clade_103 >totytoxin_TotF_8_SK17_b_D_OH Clade_103 >totytoxin_TotF_8_SK17_b_D_OH Clade_103 >totytoxin_TotF_8_SK12_b_D_OME Clade_103<	>oxazolomycin_OzmH_2_KS6_AAgly	Clade_10
>tolytoxin_TtoC_1_KS1_AAglyClade_10>griseoviridin_SgvE2_2_KS4_cDBClade_100>virginianycin_VirA_4_KS4_cDBClade_100>tatrolon_Trf1_LSS9_b_D_OHClade_101>kirromycin_KirAIV_2_KS3_eDBClade_101>kirromycin_KirAIV_2_KS3_abeDBClade_101>kirromycin_KirAIV_2_KS3_abeDBClade_101>hiropycin_KirAIV_2_KS3_abeDBClade_101>hiropycin_KirAIV_2_KS3_abeDBClade_101>hiropycin_KirAIV_2_KS3_b_D_OHClade_102>tolytoxin_TtbE_7_KS13_b_D_OHClade_102>tolytoxin_TtbE_7_KS13_b_D_OHClade_102>tolytoxin_TtbF_3_KS17_b_D_OHClade_102>tolytoxin_TtbF_3_KS17_b_D_OHClade_102>tolytoxin_TtbF_3_KS17_b_D_OHClade_102>tolytoxin_TtbF_3_KS17_b_D_OHClade_102>topstatin_BryD_2_KS13_0b_D_OHClade_102>bryostatin_BryD_2_KS13_0b_D_OHClade_102>bryostatin_BryD_2_KS13_0b_D_OHClade_103>tuminaolid_LumD_2_KS12_b_D_OMEClade_103>tolytoxin_TtbE_6_KS12_bD_OMEClade_103>tolytoxin_TtbE_6_KS12_bD_OMEClade_103>tolytoxin_TtbE_6_KS12_b_D_OMEClade_103>tolytoxin_TtbE_6_KS12_b_D_OMEClade_103>tolytoxin_TtbE_6_KS12_b_D_OMEClade_103>tolytoxin_TtbE_6_KS12_b_D_OMEClade_103>tolytoxin_TtbE_6_KS12_b_D_OMEClade_103>tolytoxin_TtbE_6_KS12_b_D_OMEClade_104>minakinolide_MisE_4_KS10_bD_OMEClade_104>tolytoxin_TtbE_6_KS12_b_D_OMEClade_104>tolytoxin_TtbE_6_KS12_b_D_OMEClade_104	>luminaolid_LumA_1_KS1_AAgly	Clade_10
$\label{eq:spinor} \begin{tabular}{lllllllllllllllllllllllllllllllllll$	>tolytoxin_TtoC_1_KS1_AAgly	Clade_10
>virginiamycin_VirA_4 KS4_eDB Clade_100 >tatrtolon_TrHF_1_KS9_b_D_OH Clade_100 >oxazolomycin_QzmN_2_KS3_eDB Clade_101 >kirromycin_KirAIV_1_KS7_eDB Clade_101 >kirromycin_KirAIV_2_KS8_aMeeDB Clade_101 >chiromycin_KirAIV_2_KS8_aMeeDB Clade_101 >chiromycin_KirAIV_2_KS8_aMeeDB Clade_101 >hiromycin_KirAIV_2_KS8_aMeeDB Clade_101 >hiromycin_KirAIV_2_KS8_aMeeDB Clade_102 >totytoxin_TtoE_7_KS13_b_D_OH Clade_102 >totytoxin_TtoF_3_KS17_b_D_OH Clade_102 >totytoxin_TtoF_3_KS17_b_D_OH Clade_102 >bryostatin_BryD_2_KS13_0b_D_OH Clade_102 >bryostatin_BryD_2_KS13_0b_D_OH Clade_102 >bryostatin_BryA_KS3_3_b_D_OH Clade_102 >bryostatin_BryA_KS3_3_b_D_OH Clade_102 >bryostatin_BryA_KS3_3_b_D_OH Clade_103 >totytoxin_TtoF_6_KS12_b_D_OMe Clade_103 >totyostatin_BryA_KS3_b_D_OME Clade_103 >totyostatin_BryA_KS3_b_D_OMe Clade_103 >cladyculin_Calf_F_KS19_b_L_OME Clade_103 >caloyculin_Calf_K_KS19_b_D_OME Clade_103	>griseoviridin SgvE2 2 KS4 eDB	Clade 100
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	>virginiamycin VirA 4 KS4 eDB	Clade 100
>oxazolomycin_0zmN_2 K3_cDB Clade_101 >kirromycin_KirAIV_1_KS7_cDB Clade_101 >kirromycin_KirAIV_2_KS8_aMeeDB Clade_101 >leinamycin_Lmm1_2_KS2_AAoxz Clade_101 >hrizopodin_RizD_5_KS15_bimod_bOH Clade_101 >luminaolid_LumD_3_KS13_b_D_OH Clade_102 >tolytoxin_TtoE_7_KS13_b_D_OH Clade_102 >tolytoxin_TtoF_3_KS17_b_D_OH Clade_102 >tolytoxin_TtoF_3_KS17_b_D_OH Clade_102 >tolytoxin_TtoF_3_KS17_b_D_OH Clade_102 >tolytoxin_TtoF_3_KS17_b_D_OH Clade_102 >bryostatin_BryD_2_KS13_0b_D_OH Clade_102 >bryostatin_BryD_2_KS13_0b_D_OH Clade_102 >bryostatin_BryA_KS3_3_b_D_OH Clade_102 >bryostatin_BryA_KS3_b_D_OH Clade_102 >bryostatin_BryA_KS3_b_D_OH Clade_103 >luminaolid_LumD_2_KS12_b_D_OMe Clade_103 >tolytoxin_TtoE_6_KS12_b_D_OME Clade_103 >tolytoxin_TtoE_6_KS12_b_D_OMe Clade_103 >tolytoxin_TtoE_6_KS12_b_D_OMe Clade_103 >tolytoxin_TtoE_6_KS12_b_D_OME Clade_103 >cadyculin_CalE_7_KS15_b_L_OH Clade_103	>tartrolon TrtF 1 KS9 b D OH	Clade 100
>kirromycin_KirAIV_1_KS7_eDB Clade_101 >kirromycin_KirAIV_2_KS8_aMeeDB Clade_101 >leinamycin_Lmn12_KS2_AAoxz Clade_101 >rhizopodin_RizD_5_KS15_bimod_bOH Clade_101 >luminaolid_LumD_3_KS13_b_D_OH Clade_102 >tolytoxin_TtoE_7_KS13_b_D_OH Clade_102 >tolytoxin_TtoF_3_KS17_b_D_OH Clade_102 >tolytoxin_TtoF_3_KS17_b_D_OH Clade_102 >tolytoxin_TtoF_3_KS17_b_D_OH Clade_102 >tolytoxin_TtoF_3_KS17_b_D_OH Clade_102 >tolytoxin_TtoF_3_KS17_b_D_OH Clade_102 >bryostatin_BryD_2_KS13_ob_D_OH Clade_102 >bryostatin_BryD_2_KS13_b_D_OH Clade_102 >bryostatin_BryA_KS3_3_b_D_OH Clade_102 >bryostatin_BryA_KS3_b_D_OME Clade_103 >bryostatin_BryA_KS3_b_D_OME Clade_103 >luminaolid_LumD_2_KS12_b_D_OME Clade_103 >tolytoxin_TtoE_6_KS12_b_D_OME Clade_103 >tolytoxin_TtoE_6_KS12_b_D_OME Clade_103 >calyculin_CalF_4_KS19_b_D_OME Clade_103 >coaralopyroin_CorL_3_KS12_b_D_OME Clade_103 >coaralopyroin_CorL_3_KS12_b_D_OME Cla	>oxazolomycin OzmN 2 KS3 eDB	Clade 101
>kirromycin_KirAIV_2_KS8_aMeeDB Clade_101 >leinamycin_Lnml_2_KS2_AAoxz Clade_101 >huminaolid_RizD_5_KS15_bimod_bOH Clade_101 >luminaolid_LumD_3_KS13_b_D_OH Clade_102 >tolytoxin_ToE_7_KS13_b_D_OH Clade_102 >misakinolide_MisE_3_KS13_b_D_OH Clade_102 >tolytoxin_ToE_7_KS13_b_D_OH Clade_102 >tolytoxin_ToF_3_KS17_b_D_OH Clade_102 >bryostatin_BryD_2_KS13_0b_D_OH Clade_102 >bryostatin_BryD_2_KS13_0b_D_OH Clade_102 >bryostatin_BryD_2_KS13_b_D_OH Clade_102 >bryostatin_BryD_3_KS17_b_D_OH Clade_102 >bryostatin_BryD_2_KS13_0b_D_OH Clade_102 >bryostatin_BryD_2_KS13_b_D_OH Clade_102 >bryostatin_BryA_KS3_3_b_D_OH Clade_102 >bryostatin_BryA_KS3_b_D_OME Clade_102 >bryostatin_BryA_KS1_b_D_OME Clade_103 >luminaolid_LumD_2_KS12_b_D_OME Clade_103 >tolytoxin_ToE_6_KS12_b_D_OME Clade_103 >calyculin_CalE_7_KS15_b_L_OH. Clade_103 >calyculin_CalE_4_KS19_b_D_OME Clade_103 >oxazolomycin_OmK_1_KS12_A_D_OME Cla	>kirromycin KirAIV 1 KS7 eDB	Clade 101
>leinanycin_Lnml_2_KS2_AAoxz Clade_101 >rhizopodin_RizD_5_KS15_bimod_bOH Clade_101 >luminaolid_LumD_3_KS13_b_D_OH Clade_102 >tolytoxin_ToE_7_KS13_b_D_OH Clade_102 >luminaolid_LumE_3_KS17_b_D_OH Clade_102 >luminaolid_LumE_3_KS17_b_D_OH Clade_102 >tolytoxin_ToF_3_KS17_b_D_OH Clade_102 >bunycatin_BryD_2_KS13_0b_D_OH Clade_102 >bryostatin_BryD_2_KS13_0b_D_OH Clade_102 >bryostatin_BryD_2_KS13_0b_D_OH Clade_102 >bryostatin_BryD_2_KS13_0b_D_OH Clade_102 >bryostatin_BryA_KS3_3_b_D_OH Clade_102 >bryostatin_BryA_KS3_3_b_D_OH Clade_103 >bryostatin_BryA_KS3_b_D_OMe Clade_103 >bryostatin_BryA_KS3_b_D_OMe Clade_103 >buninaolid_LumD_2_KS12_b_D_OMe Clade_103 >cluminaolid_LumD_2_KS12_b_D_OMe Clade_103 >calyculin_CalF_KS15_b_L_OH. Clade_103 >calyculin_CalF_KS15_b_L_OH. Clade_103 >calyculin_CalF_KS15_b_L_OH. Clade_103 >calyculin_CalF_KS15_b_L_OH. Clade_104 >myxopyronin_MAK_4_KS10_bMeDB Clade_104 >tolytoxin_ToD_1_KS4_a_D_Meb_D_OMe <	>kirromycin KirAIV 2 KS8 aMeeDB	Clade 101
>rhizopodin_RizD_5_KS15_bimod_bOH Clade_101 >luminaolid_LumD_3_KS13_b_D_OH Clade_102 >tolytoxin_TtoE_7_KS13_b_D_OH Clade_102 >luminaolid_LumE_3_KS17_b_D_OH Clade_102 >tolytoxin_TtoF_3_KS17_b_D_OH Clade_102 >tolytoxin_TtoF_3_KS17_b_D_OH Clade_102 >bryostatin_BryD_2_KS13_0b_D_OH Clade_102 >bryostatin_BryD_2_KS13_0b_D_OH Clade_102 >bryostatin_BryD_2_KS13_b_D_OH Clade_102 >bryostatin_BryA_KS3_3_b_D_OH Clade_102 >bryostatin_BryA_KS3_3_b_D_OH Clade_102 >bryostatin_BryA_KS3_3_b_D_OH Clade_102 >bryostatin_BryA_KS3_b_D_OH Clade_103 >etnangien_EttnG_3_KS13_b_L_OMe Clade_103 >luminaolid_LumD_2_KS12_b_D_OMe. Clade_103 >calyculin_CalF_4_KS19_b_D_OMe. Clade_103 >calyculin_CalF_4_KS19_b_D_OMe. Clade_103 >coaraloomycoin_OzmK_1_KS12_a_DOMe Clade_103 >coaraclomycoin_CarL_4_KS19_b_D_OMe. Clade_104 >winyxopyronin_MxnK_4_KS10_bMOB Clade_104 >dotytoxin_TtoD_1_KS4_a_D_Meb_D_OMe Clade_104 >hiniaakinolide_MisE_4_KS4_b_D_OMe Clade_104 >hiniaakinolid	>leinamycin LnmI 2 KS2 AAoxz	Clade 101
>luminaolid_LumD_3_KS13_b_D_OH Clade_102 >tolytoxin_TtoE_7_KS13_b_D_OH Clade_102 >misakinolide_MisE_3_KS13_b_D_OH Clade_102 >luminaolid_LumE_3_KS17_b_D_OH Clade_102 >tolytoxin_TtoF_3_KS17_b_D_OH Clade_102 >bysisakinolide_MisF_3_KS17_b_D_OH Clade_102 >bysisakinolide_MisF_3_KS17_b_D_OH Clade_102 >bysisakinolide_MisF_3_KS13_b_D_OH Clade_102 >bysisakinolide_MisF_3_KS3_3_b_D_OH Clade_102 >bysisakin_BryD_2_KS13_b_D_OH Clade_102 >bysisakin_BryA_KS3_3_b_D_OH Clade_102 >bysisakin_BryA_KS3_3_b_D_OME Clade_103 >clangien_EtnG_3_KS13_b_L_OMe Clade_103 >clangien_EtnG_3_KS12_b_D_OMe. Clade_103 >calyculin_CalF_KS12_b_D_OMe. Clade_103 >calyculin_CalF_KS12_b_D_OMe. Clade_103 >calyculin_CalF_KS12_b_D_OME. Clade_103 >coxazolomycin_OxmK_1_KS12_a_L_OME Clade_104 >myxopyronin_MxnK_4_KS10_bMOBB Clade_104 >dysopyronin_MxnK_4_KS10_bMOBB Clade_104 >huminaolid_LumB_1_KS4_a_D_Meb_D_OMe Clade_104 >misakinolide_MisC_4_KS4_bD_Me	>rhizopodin RizD 5 KS15 bimod bOH	Clade 101
http://image/fileClade_102>tolytoxin_TtoE_7_KS13_b_D_OH.Clade_102>luminaolid_LumE_3_KS17_b_D_OHClade_102>tolytoxin_TtoF_3_KS17_b_D_OHClade_102>boystatin_BryD_2_KS13_0b_D_OHClade_102>bryostatin_BryD_2_KS13_0b_D_OHClade_102>bryostatin_BryD_2_KS13_0b_D_OHClade_102>bryostatin_BryA_KS3_3_b_D_OHClade_102>bryostatin_BryA_KS3_3_b_D_OHClade_102>bryostatin_BryA_KS3_3_b_D_OHClade_102>bryostatin_BryA_KS3_3_b_D_OHClade_102>bryostatin_BryA_KS3_b_D_OMEClade_103>luminaolid_LumD_2_KS12_b_D_OMEClade_103>tolytoxin_TtoE_6_KS12_b_D_OMEClade_103>tolytoxin_TtoE_6_KS12_b_D_OME.Clade_103>calyculin_CalF_4_KS19_b_D_OME.Clade_103>calyculin_CalF_4_KS19_b_D_OME.Clade_103>corallopyronin_CorL_3_KS12_b_D_OME.Clade_103>corallopyronin_CorL_3_KS12_b_D_OMEClade_104>misakinolide_MisC_4_KS4_a_D_Meb_D_OMEClade_104>huminaolid_LumB_1_KS4_a_D_Meb_D_OMEClade_104>tolytoxin_TtoD_1_KS4_a_D_Meb_D_OMEClade_104>tolytoxin_TtoD_1_KS4_a_D_Meb_D_OMEClade_104>thizopodin_RizD_4_KS18_b_D_OMEClade_104>rhizopodin_RizB_4_KS4_a_D_Meb_D_OMEClade_104>rhizopodin_RizB_4_KS4_b_D_Meb_D_OMEClade_104>rhizopodin_RizB_4_KS4_b_D_Meb_D_OMEClade_104>rhizopodin_RizB_4_KS4_b_D_Meb_D_OMEClade_104>rhizopodin_RizB_4_KS4_b_D_Meb_D_OMEClade_104>rhizopodin_RizB_4_KS4_b_D_Meb_D_OMEClade_104	>luminaolid LumD 3 KS13 b D OH	Clade 102
InitialInitialmisakinolide_MisE_3_KS13_b_D_OHClade_102>luminaolid_LumE_3_KS17_b_D_OHClade_102>tolytoxin_TtoF_3_KS17_b_D_OHClade_102>bryostatin_BryD_2_KS13_0b_D_OHClade_102>bryostatin_BryD_2_KS13_0b_D_OHClade_102>bryostatin_BryA_KS3_3_b_D_OHClade_102>bryostatin_BryA_KS3_3_b_D_OHClade_102>bryostatin_BryA_KS3_b_D_OHClade_102>bryostatin_BryA_KS3_b_D_OHClade_103>cetnangien_EnG_3_KS12_b_D_OMeClade_103>uminaolid_LumD_2_KS12_b_D_OMeClade_103>umisakinolide_MisE_2_KS12_b_D_OMeClade_103>calyculin_CalE_7_KS15_b_L_OH.Clade_103>calyculin_CalF_4_KS19_b_D_OMe.Clade_103>calyculin_CalF_4_KS19_b_D_OMe.Clade_103>calyculin_CalF_4_KS19_b_D_OMe.Clade_103>corallopyronin_CorL_3_KS12_bMCDBClade_104>myxopyronin_MnK_4_KS10_bMCDBClade_104>tolytoxin_TtoD_1_KS4_a_D_Meb_D_OMeClade_104>thizopodin_RizD_4_KS4_a_D_Meb_D_OMeClade_104>rhizopodin_RizD_4_KS14_b_D_OMeClade_104>rhizopodin_RizD_4_KS14_b_D_OMeClade_104>rhizopodin_RizB_4_KS4_a_D_Meb_D_OMeClade_104>rhizopodin_RizB_4_KS4_bOMeClade_104>rhizopodin_RizB_4_KS4_b_D_MeClade_104>rhizopodin_RizB_4_KS4_b_D_MeClade_104>rhizopodin_RizB_4_KS4_b_D_MeClade_104>rhizopodin_RizB_4_KS4_b_D_MeClade_104>rhizopodin_RizB_4_KS4_b_D_MeClade_104>rhizopodin_RizB_4_KS12_b_D_MeClade_104 <tr< td=""><td><pre>>tolytoxin TtoE 7 K\$13 b D OH.</pre></td><td>Clade 102</td></tr<>	<pre>>tolytoxin TtoE 7 K\$13 b D OH.</pre>	Clade 102
ImmatcheImmatcheImmatche3 KS17 b D_OHClade_102>tolytoxin_TtoF_3_KS17 b D_OHClade_102>bryostatin_BryD_2_KS13_0b_D_OHClade_102>bryostatin_BryD_KS3_3_b_D_OHClade_102>bryostatin_BryA_KS3_b_D_OHClade_102>bryostatin_BryA_KS3_b_D_OHClade_102>bryostatin_BryA_KS3_b_D_OHClade_102>bryostatin_BryA_KS3_b_D_OMClade_103>luminaolid_LumD_2_KS12_b_D_OMeClade_103>luminaolid_LumD_2_KS12_b_D_OMeClade_103>calyculin_CalE_7_KS15_b_L_OH.Clade_103>calyculin_CalE_7_KS15_b_L_OH.Clade_103>calyculin_CalF_4_KS19_b_D_OMe.Clade_103>calyculin_CalF_4_KS19_b_D_OME.Clade_103>corallopyronin_OzmK_1_KS12_a_LOMEClade_103>corallopyronin_OzmK_1_KS12_a_LOMEClade_104>myxopyronin_MxnK_4_KS10_bMeDBClade_104>humiaolid_LumB_1_KS4_a_D_Meb_D_OMEClade_104>rhizopodin_RizD_4_KS14_b_D_OMEClade_104>rhizopodin_RizB_4_KS4_bOMEClade_104>rhizopodin_RizB_4_KS4_bOMEClade_104>rhizopodin_RizB_4_KS4_bOMEClade_104>rhizopodin_RizB_4_KS4_b_OMEClade_104>rhizopodin_RizB_4_KS4_b_DOMEClade_104>rhizopodin_RizB_4_KS4_b_DMeDClade_104>rhizopodin_RizB_4_KS4_b_OMEClade_104>rhizopodin_RizB_4_KS4_b_DMEClade_104>rhizopodin_RizB_4_KS4_b_DMEClade_104>rhizopodin_RizB_4_KS4_b_DMEClade_104>rhizopodin_RizB_4_KS4_b_DMEClade_104>rhizopodin_RizB_4_KS4_b_	>misakinolide MisE 3 KS13 b D OH	Clade 102
Humaning	>luminaolid LumE 3 KS17 b D OH	Clade 102
InterpretationClade_102>misakinolide_MisF_3_KS17_b_D_OHClade_102>bryostatin_BryD_2_KS13_0b_D_OHClade_102>bryostatin_BryA_KS3_3_b_D_OHClade_102>bryostatin_BryA_KS3_3_b_D_OHClade_102>phormidolide_EKU96423_PhorL_1_KS4_aMeb_D_OHClade_102>etnangien_EtnG_3_KS13_b_L_OMeClade_103>luminaolid_LumD_2_KS12_b_D_OMeClade_103>misakinolide_MisE_2_KS12_b_D_OMeClade_103>calyculin_CalE_7_KS15_b_L_OH.Clade_103>calyculin_CalF_4_KS19_b_D_OMe.Clade_103>caragicin_SorG_2_KS19_b_L_OH.Clade_103>corallopyronin_Cort_3_KS12_bMeDBClade_104>mixakinolide_MisE_4_KS10_bMeDBClade_104>luminaoli_LumB_1_KS4_a_D_Meb_D_OMeClade_104>luminaoli_LumB_1_KS4_a_D_Meb_D_OMeClade_104>hinisakinolide_MisC_4_KS4_bOMeClade_104>hinisakinolide_MisC_4_KS4_bOMeClade_104>hinisapoin_RizB_4_KS4_a_D_Meb_D_OMeClade_104>hinisapoin_RizB_4_KS4_a_D_Meb_D_OMeClade_104>hinisapoin_RizB_4_KS4_a_D_Meb_D_OMeClade_104>hinisapoin_RizB_4_KS4_a_D_Meb_D_OMeClade_104>hinisopoin_RizB_4_KS4_a_D_Meb_D_OMeClade_104>hinisopoin_RizB_4_KS4_a_D_Meb_D_OMeClade_104>hinisopoin_RizB_4_KS4_a_D_Meb_D_OMeClade_104>hinisopoin_RizB_4_KS4_a_D_Meb_D_OMeClade_104>hinisopoin_RizB_4_KS4_a_D_Meb_D_OMEClade_104>hinisopoin_RizB_4_KS4_B_D_MABClade_104>hinisopoin_RizB_4_KS4_B_D_MABClade_104>hinisopoin_RizB_4_KS4_B_D_MABCla	<pre>>talwind_Lame_5_1617_5_D_011</pre>	Clade 102
Initial Initia	>misakinolide MisE 3 KS17 b D OH	Clade 102
Solodata_DJ_2_RS15_05_2_STAClade_102>onnamide_Onnl_3_KS6_b_D_OHClade_102>bryostatin_BryA_KS3_3_b_D_OHClade_102>phormidolide_EKU96423_PhorL_1_KS4_aMeb_D_OHClade_103>tuminaolid_LumD_2_KS12_b_D_OMeClade_103>luminaolid_LumD_2_KS12_b_D_OMeClade_103>tolytoxin_TtoE_6_KS12_b_D_OMe.Clade_103>calyculin_Call_7_KS15_b_D_OMe.Clade_103>calyculin_Call_7_KS15_b_D_OMe.Clade_103>calyculin_Call_7_KS15_b_D_OMe.Clade_103>calyculin_Call_7_KS15_b_D_OMe.Clade_103>coalyculin_Call_4_KS19_b_D_OMe.Clade_103>coalonycin_OormK_1_KS12_a_L_OMeClade_103>corallopyronin_CorL_3_KS12_bMeDBClade_104>myxopyronin_MxnK_4_KS10_bMeDBClade_104>luminaolid_LumB_1_KS4_a_D_Meb_D_OMeClade_104>hisakinolide_MisC_4_KS4_bOMeClade_104>rhizopodin_RizD_4_KS14_b_D_OMeClade_104>rhizopodin_RizB_8_KS8_b_D_OMeClade_104>rhizopodin_RizB_8_KS8_b_D_OMeClade_104>rhizopodin_RizB_8_KS8_b_D_OMeClade_104>rhizopodin_RizB_8_KS8_b_D_OMeClade_104>rhizopodin_RizB_8_KS8_b_D_OMeClade_104>rhizopodin_RizB_8_KS8_b_D_OMeClade_104>rhizopodin_RizB_8_KS8_b_D_OMeClade_104>rhizopodin_RizB_8_KS8_b_D_OMeClade_104>rhizopodin_RizB_8_KS8_b_D_OMeClade_104>rhizopodin_RizB_8_KS8_b_D_OMeClade_104>rhizopodin_RizB_8_KS8_b_D_OMeClade_104>rhizopodin_RizB_8_KS8_b_D_OMeClade_104>rhizopodin_RizB_8_KS8_	>hrvostatin BryD 2 KS13 0b D OH	Clade 102
Numanika_OmiRobB_OHClade_102>bryostatin_BryA_KS3_3_b_D_OHClade_102>changien_EttnG_3_KS13_b_L_OMeClade_103>luminaolid_LumD_2_KS12_b_D_OMeClade_103>misakinolide_MisE_2_KS12_b_D_OMeClade_103>tolytoxin_TtoE_6_KS12_b_D_OMe.Clade_103>calyculin_CallF_4_KS19_b_D_OMe.Clade_103>calyculin_CallF_4_KS19_b_D_OMe.Clade_103>calyculin_CallF_4_KS19_b_D_OMe.Clade_103>coragicin_SorG_2_KS19_b_L_OH.Clade_103>corallopyronin_CorL_3_KS12_bMeDBClade_103>corallopyronin_CorL_3_KS12_bMeDBClade_104>myxopyronin_MxnK_4_KS10_bMeDBClade_104>luminaolid_LumB_1_KS4_a_D_Meb_D_OMeClade_104>hixiskinolide_MisC_4_KS4_bOMeClade_104>rhizopodin_RizD_4_KS14_b_D_OMeClade_104>rhizopodin_RizB_4_KS4_a_D_Meb_D_OMeClade_104>rhizopodin_RizB_4_KS4_a_D_Meb_D_OMeClade_104>rhizopodin_RizB_4_KS4_a_D_Meb_D_OMeClade_104>rhizopodin_RizB_4_KS4_a_D_Meb_D_OMeClade_104>rhizopodin_RizB_4_KS4_a_D_Meb_D_OMEClade_104>rhizopodin_RizB_4_KS4_a_D_Meb_D_OMEClade_104>rhizopodin_RizB_8_KS8_b_D_OMEClade_104>rhizopodin_RizB_8_KS8_b_D_OMEClade_104>rhizopodin_RizB_8_KS8_b_D_OMEClade_104>rhizopodin_RizB_8_KS8_b_D_OMEClade_104>rhizopodin_RizB_8_KS8_b_D_OMEClade_104>rhizopodin_RizB_8_KS8_b_D_OMEClade_104>rhizopodin_RizB_8_KS8_b_D_OMEClade_104>rhizopodin_RizB_8_KS8_b_D_OMEClade_104<	>onpamide Onnl 3 KS6 h D OH	Clade 102
School and LongChad Long>phormidolide EKU96423 PhorL 1 KS4_aMeb D_OHClade_102>etnangien_EtnG_3_KS13_b_L_OMeClade_103>luminaolid_LumD_2_KS12_b_D_OMeClade_103>misakinolide_MisE_2_KS12_b_D_OMeClade_103>calyculin_CalE_7_KS15_b_L_OH.Clade_103>calyculin_CalF_4_KS19_b_D_OMe.Clade_103>calyculin_CalF_4_KS19_b_L_OHClade_103>coragicin_SorG_2_KS19_b_L_OHClade_103>coragicin_SorG_2_KS19_b_L_OHClade_103>corallopyronin_CorL_3_KS12_bMeDBClade_104>myxopyronin_MxnK_4_KS10_bMeDBClade_104>luminaolid_LumB_1_KS4_a_D_Meb_D_OMeClade_104>luminaolid_KS4_a_D_Meb_D_OMeClade_104>rhizopodin_RizD_4_KS14_b_D_OMeClade_104>rhizopodin_RizD_4_KS14_b_D_OMeClade_104>rhizopodin_RizB_4_KS4_a_D_Meb_D_OMeClade_104>rhizopodin_RizB_4_KS4_bOMeClade_104>rhizopodin_RizB_4_KS4_bOMeClade_104>rhizopodin_RizB_4_KS4_bOMeClade_104>rhizopodin_RizB_4_KS4_b_D_OMeClade_104>rhizopodin_RizB_4_KS4_b_D_OMeClade_104>rhizopodin_RizB_4_KS4_b_D_OMeClade_104>rhizopodin_RizB_4_KS4_b_D_OMeClade_104>rhizopodin_RizB_4_KS4_b_D_OMeClade_104>rhizopodin_RizB_4_KS4_b_D_OMeClade_104>rhizopodin_RizB_4_KS4_b_D_OMeClade_104>rhizopodin_RizB_4_KS4_b_D_OMeClade_104>rhizopodin_RizB_4_KS4_b_D_OMeClade_104>rhizopodin_RizB_4_KS4_b_D_OMeClade_104>rhizopodin_RizB_4_KS4_b_D_OMeCla	>bryostatin Brya KS3 3 h D OH	Clade 102
Pinture Into CarloCitade_103>etnangien_EtnG_3_KS13_b_L_OMeClade_103>luminaolid_LumD_2_KS12_b_D_OMeClade_103>misakinolide_MisE_2_KS12_b_D_OMe.Clade_103>calyculin_CalE_7_KS15_b_L_OH.Clade_103>calyculin_CalF_4_KS19_b_D_OMe.Clade_103>caragicin_SorG_2_KS19_b_L_OHClade_103>oxazolomycin_OzmK_1_KS12_a_L_OMeClade_103>corallopyronin_CorL_3_KS12_bMeDBClade_104>myxopyronin_MxnK_4_KS10_bMeDBClade_104>luminaolid_LumB_1_KS4_a_D_Meb_D_OMeClade_104>totytoxin_TtoD_1_KS4_a_D_Meb_D_OMeClade_104>rhizopodin_RizB_4_KS4_a_D_Meb_D_OMeClade_104>rhizopodin_RizB_4_KS4_a_D_Meb_D_OMeClade_104>rhizopodin_RizB_4_KS4_a_D_Meb_D_OMeClade_104>rhizopodin_RizB_4_KS4_a_D_Meb_D_OMeClade_104>rhizopodin_RizB_4_KS4_b_D_OMeClade_104>rhizopodin_RizB_4_KS4_b_D_OMeClade_104>rhizopodin_RizB_4_KS4_b_D_OMeClade_104>rhizopodin_RizB_4_KS4_b_D_OMeClade_104>rhizopodin_RizB_4_KS4_b_D_OMeClade_104>rhizopodin_RizB_4_KS4_b_D_OMeClade_104>rhizopodin_RizB_4_KS4_b_D_OMeClade_104>rhizopodin_RizB_4_KS4_b_D_OMeClade_104>rhizopodin_RizB_4_KS1_B_L_OMEClade_104>rhizopodin_RizB_4_KS1_B_L_OMEClade_104>rhizopodin_RizB_4_KS1_B_L_OMEClade_104>rhizopodin_RizB_4_KS1_B_L_OMEClade_104>rhizopodin_RizB_4_KS1_B_L_OMEClade_104>rhizopodin_RizB_4_KS1_B_L_OMEClade_104>rhizopodin_Riz	<pre>>phormidolide EKU96423 PhorL 1 KS4 aMeb D OH</pre>	Clade 102
Numerical Lumb_2_RS12_b_D_OMeClade_103>luminaolid_LumD_2_KS12_b_D_OMeClade_103>tolytoxin_TtoE_6_KS12_b_D_OMe.Clade_103>calyculin_CalE_7_KS15_b_L_OH.Clade_103>calyculin_CalF_4_KS19_b_D_OMe.Clade_103>sorangicin_SorG_2_KS19_b_L_OHClade_103>oxazolomycin_OzmK_1_KS12_a_L_OMeClade_103>corallopyronin_CorL_3_KS12_bMeDBClade_104>myxopyronin_MxnK_4_KS10_bMeDBClade_104>luminaolid_LumB_1_KS4_a_D_Meb_D_OMeClade_104>tolytoxin_TtoD_1_KS4_a_D_Meb_D_OMeClade_104>trisakinolide_MisC_4_KS4_bOMeClade_104>trisopodin_RizB_4_KS4_a_D_Meb_D_OMeClade_104>rhizopodin_RizB_4_KS4_a_D_Meb_D_OMeClade_104>rhizopodin_RizB_4_KS4_a_D_Meb_D_OMeClade_104>rhizopodin_RizB_4_KS4_a_D_Meb_D_OMeClade_104>rhizopodin_RizB_4_KS4_a_D_Meb_D_OMeClade_104>rhizopodin_RizB_4_KS4_a_D_Meb_D_OMeClade_104>rhizopodin_RizB_4_KS4_a_D_Meb_D_OMeClade_104>rhizopodin_RizB_4_KS4_a_D_Meb_D_OMeClade_104>rhizopodin_RizB_4_KS4_a_D_Meb_D_OMeClade_104>rhizopodin_RizB_4_KS4_a_D_Meb_D_OMeClade_104>rhizopodin_RizB_4_KS4_b_D_MeClade_104>rhizopodin_RizB_4_KS4_B_D_MeClade_104>rhizopodin_RizB_4_KS4_B_D_MeClade_104>rhizopodin_RizB_4_KS4_B_D_MeClade_104>rhizopodin_RizB_4_KS4_B_A_B_B_KS_B_D_MEClade_104>rhizopodin_RizB_4_KS4_B_A_B_A_KS_B_B_KS_B_A_AClade_104>rhizopodin_RizB_4_KS4_B_A_B_A_AClade_104>rhizopodin_R	<pre>>etnangien EtnG 3 KS13 b L OMe</pre>	Clade 103
NinkinderCitade_103>misakinolide_MisE_2_KS12_b_D_OMeClade_103>calyculin_CalE_7_KS15_b_L_OH.Clade_103>calyculin_CalF_4_KS19_b_D_OMe.Clade_103>sorangicin_SorG_2_KS19_b_L_OHClade_103>oxazolomycin_OzmK_1_KS12_a_L_OMeClade_103>corallopyronin_CorL_3_KS12_bMeDBClade_104>myxopyronin_MxnK_4_KS10_bMeDBClade_104>luminaolid_LumB_1_KS4_a_D_Meb_D_OMeClade_104>luminaolid_KS2_4_KS4_bOMeClade_104>rhizopodin_RizD_4_KS14_b_D_OMeClade_104>rhizopodin_RizB_3_KS8_b_D_OMeClade_104>rhizopodin_RizB_3_KS8_b_D_OMeClade_104>rhizopodin_RizB_4_KS4_a_D_Meb_D_OMeClade_104>rhizopodin_RizB_4_KS4_a_D_Meb_D_OMeClade_104>rhizopodin_RizB_4_KS4_a_D_Meb_D_OMeClade_104>rhizopodin_RizB_4_KS4_a_D_Meb_D_OMeClade_104>rhizopodin_RizB_4_KS4_a_D_Meb_D_OMeClade_104>rhizopodin_RizB_4_KS4_a_D_Meb_D_OMeClade_104>rhizopodin_RizB_4_KS4_a_D_Meb_D_OMeClade_104>rhizopodin_RizB_8_KS8_b_D_OMeClade_104>rhizopodin_RizB_8_KS8_b_D_OMeClade_104>rhizopodin_RizB_8_KS8_b_D_OMeClade_104>rhizopodin_RizB_1_KS5_eDBClade_104>urginiamycin_VirF_1_KS5_bMeeDBClade_104>paenimacrolidin_KS2_DBClade_108>oocydin_Smar_OocR_2_KS12_shDBClade_108>oocydin_Smar_OocR_2_KS12_shDBClade_108>chi_t_incClade_108>chi_t_incClade_108>chi_t_incClade_108>oocydin_Smar_OocR_	<pre>>luminaolid LumD 2 KS12 h D OMe</pre>	Clade 103
Initial initia	>misakinolide MisE 2 KS12 b D OMe	Clade 103
Social CallSocial Call> calyculin_CalE_7_KS15_b_L_OH.Clade_103> calyculin_CalF_4_KS19_b_D_OMe.Clade_103> sorangicin_SorG_2_KS19_b_L_OHClade_103> coxazolomycin_OzmK_1_KS12_a_L_OMeClade_104> myxopyronin_CorL_3_KS12_bMeDBClade_104> myxopyronin_MxnK_4_KS10_bMeDBClade_104> luminaolid_LumB_1_KS4_a_D_Meb_D_OMeClade_104> totytoxin_TtoD_1_KS4_a_D_Meb_D_OMeClade_104> totytoxin_TtoD_1_KS4_a_D_Meb_D_OMeClade_104> rhizopodin_RizD_4_KS14_b_D_OMeClade_104> rhizopodin_RizB_4_KS4_a_D_Meb_D_OMeClade_104> rhizopodin_RizB_4_KS4_B_4_B_4_KS4Clade_104> rhizopodin_RizB_4_KS4_B_4_B_4_KS4Clade_104> rhizopodin_RizB_4_KS4_B_4_B_4_KS4Clade_104> clade_104Clade_104> clade	<pre>>tolytoxin TtoF 6 KS12 b D OMe</pre>	Clade 103
Callyeulin_CallINTSD_Clade_103>calyeulin_CalF_4_KS19_b_D_OMe.Clade_103>sorangicin_SorG_2_KS19_b_L_OHClade_103>oxazolomycin_OzmK_1_KS12_a_L_OMeClade_104>myxopyronin_CorL_3_KS12_bMeDBClade_104>myxopyronin_MxnK_4_KS10_bMeDBClade_104>luminaolid_LumB_1_KS4_a_D_Meb_D_OMeClade_104>tolytoxin_TtoD_1_KS4_a_D_Meb_D_OMeClade_104>misakinolide_MisC_4_KS4_bOMeClade_104>rhizopodin_RizD_4_KS14_b_D_OMeClade_104>rhizopodin_RizB_4_KS4_a_D_Meb_D_OMeClade_104>rhizopodin_RizB_4_KS4_a_D_Meb_D_OMeClade_104>rhizopodin_RizB_4_KS4_a_D_Meb_D_OMeClade_104>rhizopodin_RizB_4_KS4_b_D_OMeClade_104>rhizopodin_RizB_4_KS4_b_D_OMeClade_104>rhizopodin_RizB_5_B_B_B_D_OMeClade_104>rhizopodin_RizB_8_KS8_b_D_OMeClade_104>rhizopodin_RizB_8_KS8_b_D_OMeClade_104>rhizopodin_RizB_0_A_KS16_b_L_OMeClade_104>rhizopodin_RizB_2_KS18_b_L_OMeClade_104>reserviridin_SgvE3_1_KS5_eDBClade_104>paenimacrolidin_KS2_DBClade_104>oocydin_Smar_OocR_2_KS12_shDBClade_108>oocydin_Dad_OocR_2_KS12_shDBClade_108>ocydin_Dad_OocR_2_KS12_shDBClade_108>obistranian_RhiD_0_KSD_0ABDClade_108	<pre>>calyculin CalE 7 KS15 b L OH</pre>	Clade 103
>sorangicin_SorG_2_KS19_b_L_OHClade_103>oxazolomycin_OzmK_1_KS12_a_L_OMeClade_103>corallopyronin_CorL_3_KS12_bMeDBClade_104>myxopyronin_MxnK_4_KS10_bMeDBClade_104>luminaolid_LumB_1_KS4_a_D_Meb_D_OMeClade_104>tolytoxin_TtoD_1_KS4_a_D_Meb_D_OMeClade_104>misakinolide_MisC_4_KS4_bOMeClade_104>rhizopodin_RizD_4_KS14_b_D_OMeClade_104>rhizopodin_RizB_4_KS4_a_D_Meb_D_OMeClade_104>rhizopodin_RizB_4_KS4_a_D_Meb_D_OMeClade_104>rhizopodin_RizB_4_KS4_a_D_Meb_D_OMeClade_104>rhizopodin_RizB_4_KS4_a_D_Meb_D_OMeClade_104>rhizopodin_RizB_4_KS4_a_D_Meb_D_OMeClade_104>rhizopodin_RizB_4_KS4_a_D_Meb_D_OMeClade_104>rhizopodin_RizB_8_KS8_b_D_OMeClade_104>rhizopodin_RizB_8_KS8_b_D_OMeClade_104>rhizopodin_RizB_0_A_KS1_b_L_OMeClade_104>rhizopodin_RizE_2_KS18_b_L_OMeClade_104>reseoviridin_SgvE3_1_KS5_eDBClade_104>paenimacrolidin_KS2_DBClade_104>occydin_Smar_OocR_2_KS12_shDBClade_108>oocydin_Dad_OocR_2_KS12_shDBClade_108>occydin_Dad_OocR_2_KS12_shDBClade_108>obisianian_RibD_0_KSDClade_108>obisianian_R_BD_0_KSDClade_108	<pre>>calyculin_CalF_4_KS19_b_D_OMe</pre>	Clade 103
> sotargion_Dot G_L_KDTO_D_L_DOTChade_103> coxazolomycin_OzmK_1_KS12_a_L_OMeClade_103> corallopyronin_CorL_3_KS12_bMeDBClade_104> myxopyronin_MxnK_4_KS10_bMeDBClade_104> luminaolid_LumB_1_KS4_a_D_Meb_D_OMeClade_104> tolytoxin_TtoD_1_KS4_a_D_Meb_D_OMeClade_104> tolytoxin_TtoD_1_KS4_a_D_Meb_D_OMeClade_104> thizopodin_RizD_4_KS14_b_D_OMeClade_104> rhizopodin_RizB_4_KS4_a_D_Meb_D_OMeClade_104> rhizopodin_RizB_4_KS4_a_D_Meb_D_OMeClade_104> rhizopodin_RizB_8_KS8_b_D_OMeClade_104> rhizopodin_RizB_8_KS8_b_D_OMeClade_104> rhizopodin_RizE_2_KS18_b_L_OMeClade_104> rhizopodin_RizE_3_KS8_b_D_OMeClade_104> trizopodin_RizE_2_KS18_b_L_OMeClade_104> trizopodin_RizE_2_KS18_b_L_OMeClade_104> trizopodin_RizE_2_KS18_b_L_OMeClade_104> trizopodin_RizE_2_KS18_b_L_OMeClade_104> torginamycin_VirF_1_KS5_bMeeDBClade_104> torginamycin_VirF_1_KS5_bMeeDBClade_108> oocydin_Smar_OocR_2_KS12_shDBClade_108> oocydin_Dda_OocR_2_KS12_shDBClade_108> obiramica_RhiD_2_KS10_shDBClade_108> obiramica_RhiD_2_KS10_shDBClade_108	>sorangicin SorG 2 KS19 b L OH	Clade 103
> corallopyronin_CorL_3_KS12_bMeDBClade_104>myxopyronin_MxnK_4_KS10_bMeDBClade_104> luminaolid_LumB_1_KS4_a_D_Meb_D_OMeClade_104> tolytoxin_TtoD_1_KS4_a_D_Meb_D_OMeClade_104> tolytoxin_TtoD_1_KS4_a_D_Meb_D_OMeClade_104> misakinolide_MisC_4_KS4_bOMeClade_104> rhizopodin_RizD_4_KS14_b_D_OMeClade_104> rhizopodin_RizB_4_KS4_a_D_Meb_D_OMeClade_104> rhizopodin_RizB_4_KS4_a_D_Meb_D_OMeClade_104> rhizopodin_RizB_8_KS8_b_D_OMeClade_104> rhizopodin_RizE_2_KS18_b_L_OMeClade_104> rhizopodin_RizE_3_KS5_eDBClade_104> virginiamycin_VirF_1_KS5_bMeeDBClade_104> paenimacrolidin_KS2_DBClade_108> oocydin_Dad_OocR_2_KS12_shDBClade_108> oocydin_Dad_OocR_2_KS12_shDBClade_108> obisariae_RhiD_2_KS10_shDBClade_108> obisariae_RhiD_2_KS10_shDBClade_108	>ovazolomycin OzmK 1 KS12 a L OMe	Clade 103
ControlCitate_104>myxopyronin_MxnK_4_KS10_bMeDBClade_104>luminaolid_LumB_1_KS4_a_D_Meb_D_OMeClade_104>tolytoxin_TtoD_1_KS4_a_D_Meb_D_OMeClade_104>misakinolide_MisC_4_KS4_bOMeClade_104>rhizopodin_RizD_4_KS14_b_D_OMeClade_104>rhizopodin_RizB_4_KS4_a_D_Meb_D_OMeClade_104>rhizopodin_RizB_4_KS4_a_D_Meb_D_OMeClade_104>rhizopodin_RizB_4_KS4_a_D_Meb_D_OMeClade_104>rhizopodin_RizB_8_KS8_b_D_OMeClade_104>rhizopodin_RizE_2_KS18_b_L_OMeClade_104>rhizopodin_RizE_3_KS5_eDBClade_104>griseoviridin_SgvE3_1_KS5_eDBClade_104>paenimacrolidin_KS2_DBClade_104>oocydin_Smar_OocR_2_KS12_shDBClade_108>oocydin_Dad_OocR_2_KS12_shDBClade_108>obisianinaClade_108>obisianinaClade_108	<pre>>corallonyronin Corl 3 KS12 bMeDB</pre>	Clade 104
>IniyAdpytoinin_iNAIRINSTO_INNEDD Clade_104 >luminaolid_LumB_1_KS4_a_D_Meb_D_OMe Clade_104 >tolytoxin_TtoD_1_KS4_a_D_Meb_D_OMe Clade_104 >misakinolide_MisC_4_KS4_bOMe Clade_104 >rhizopodin_RizD_4_KS14_b_D_OMe Clade_104 >rhizopodin_RizB_4_KS4_a_D_Meb_D_OMe Clade_104 >rhizopodin_RizB_4_KS4_a_D_Meb_D_OMe Clade_104 >rhizopodin_RizB_8_KS8_b_D_OMe Clade_104 >rhizopodin_RizB_8_KS8_b_D_OMe Clade_104 >rhizopodin_RizE_2_KS18_b_L_OMe Clade_104 >rhizopodin_RizE_3_KS5_eDB Clade_104 >griseoviridin_SgvE3_1_KS5_eDB Clade_104 >virginiamycin_VirF_1_KS5_bMeeDB Clade_104 >paenimacrolidin_KS2_DB Clade_108 >oocydin_Smar_OocR_2_KS12_shDB Clade_108 >oocydin_Dda_OocR_2_KS12_shDB Clade_108 >obisariana_RhiD_2_KS10_shDB Clade_108	>muxonyronin MynK 4 KS10 bMeDB	Clade 104
>tdiminaoid_Ldinb_1_kS4_a_D_Meb_D_OMe Clade_104 >tolytoxin_TtoD_1_KS4_a_D_Meb_D_OMe Clade_104 >misakinolide_MisC_4_KS4_bOMe Clade_104 >rhizopodin_RizD_4_KS14_b_D_OMe Clade_104 >rhizopodin_RizB_4_KS4_a_D_Meb_D_OMe Clade_104 >rhizopodin_RizB_4_KS4_a_D_Meb_D_OMe Clade_104 >rhizopodin_RizB_8_KS8_b_D_OMe Clade_104 >rhizopodin_RizB_8_KS8_b_B_D_OMe Clade_104 >griseoviridin_SgvE3_1_KS5_eDB Clade_104 >paenimacrolidin_SgvE3_DB Clade_108 >oocydin_Smar_OocR_2_KS12_shDB Clade_108 >obcydin_Dda_OocR_2_KS12_shDB Clade_108 >whizemains Clade_108	Sumingolid LumB 1 KS4 a D Meb D OMe	Clade 104
> rbiytokni_1kbb_1_ikbb_1_kbb_b_okt Clade_104 > misakinolide_MisC_4_KS4_bOMe Clade_104 > rhizopodin_RizD_4_KS14_b_D_OMe Clade_104 > rhizopodin_RizB_4_KS4_a_D_Meb_D_OMe Clade_104 > rhizopodin_RizB_8_KS8_b_D_OMe Clade_104 > rhizopodin_RizE_2_KS18_b_L_OMe Clade_104 > rhizopodin_RizE_2_KS18_b_L_OMe Clade_104 > rhizopodin_RizE_3_KS5_eDB Clade_104 > griseoviridin_SgvE3_1_KS5_eDB Clade_104 > virginiamycin_VirF_1_KS5_bMeeDB Clade_104 > paenimacrolidin_KS2_DB Clade_108 > oocydin_Smar_OocR_2_KS12_shDB Clade_108 > oocydin_Ddad_OocR_2_KS12_shDB Clade_108 > obiramina Clade_108	<pre>>talwavia_bankg_i_kS4_a_D_web_D_owe</pre>	Clade 104
>hitsahilohde_MiserKS4_ooMe Clade_104 >rhizopodin_RizD_4_KS14_b_D_OMe Clade_104 >rhizopodin_RizB_4_KS4_a_D_Meb_D_OMe Clade_104 >rhizopodin_RizB_8_KS8_b_D_OMe Clade_104 >rhizopodin_RizE_2_KS18_b_L_OMe Clade_104 >rhizopodin_RizE_2_KS18_b_L_OMe Clade_104 >rhizopodin_RizE_2_KS18_b_L_OMe Clade_104 >reiseoviridin_SgvE3_1_KS17_reda_L_Me Clade_104 >griseoviridin_SgvE3_1_KS5_eDB Clade_104 >virginiamycin_VirF_1_KS5_bMeeDB Clade_104 >paenimacrolidin_KS2_DB Clade_108 >oocydin_Smar_OocR_2_KS12_shDB Clade_108 >oocydin_Ddad_OocR_2_KS12_shDB Clade_108 >wirginiamy a PkiD_2_KS10_shDB Clade_108	>misakinolide MisC 4 KS4 bOMe	Clade 104
>rhizopdai_Nizb_4_KS14_0_b_Mt Clade_104 >rhizopodin_RizB_4_KS4_a_D_Meb_D_OMe Clade_104 >rhizopodin_RizB_8_KS8_b_D_OMe Clade_104 >rhizopodin_RizE_2_KS18_b_L_OMe Clade_104 >rhizopodin_RizE_2_KS18_b_L_OMe Clade_104 >etnangien_Etnl_1_KS17_reda_L_Me Clade_104 >griseoviridin_SgvE3_1_KS5_eDB Clade_104 >virginiamycin_VirF_1_KS5_bMeeDB Clade_104 >paenimacrolidin_KS2_DB Clade_108 >oocydin_Smar_OocR_2_KS12_shDB Clade_108 >oocydin_Ddad_OocR_2_KS12_shDB Clade_108 >obinamino_RhiD_2_KS10_shDB Clade_108	>rhizonodin RizD 4 KS14 h D OMe	Clade 104
>rhizopodin_RizB_4_KS4_a_D_MC5_D_OMC Clade_104 >rhizopodin_RizB_8_KS8_b_D_OMe Clade_104 >rhizopodin_RizE_2_KS18_b_L_OMe Clade_104 >etnangien_Etnl_1_KS17_reda_L_Me Clade_104 >griseoviridin_SgvE3_1_KS5_eDB Clade_104 >virginiamycin_VirF_1_KS5_bMeeDB Clade_104 >paenimacrolidin_KS2_DB Clade_108 >oocydin_Smar_OocR_2_KS12_shDB Clade_108 >oocydin_Ddad_OocR_2_KS12_shDB Clade_108 >okinaming_RhiD_2_KS10_shDB Clade_108	Schizopodin RizB 4 KS4 a D Mah D OMa	Clade 104
>rhizopodni_Kh2b_s_K3s_b_b_OMe Clade_104 >rhizopodi_RizE_2_KS18_b_L_OMe Clade_104 >etnangien_Etnl_1_KS17_reda_L_Me Clade_104 >griseoviridin_SgvE3_1_KS5_eDB Clade_104 >virginiamycin_VirF_1_KS5_bMeeDB Clade_104 >paenimacrolidin_KS2_DB Clade_108 >oocydin_Smar_OocR_2_KS12_shDB Clade_108 >oocydin_Ddad_OocR_2_KS12_shDB Clade_108 >obicarine_Rhip_2_KS10_shDB Clade_108	>rhizopodin_RizD_4_RS4_a_D_Web_D_OWe	Clade 104
>etnangien_Etnl_1_KS17_reda_L_Me Clade_104 >griseoviridin_SgvE3_1_KS5_eDB Clade_104 >virginiamycin_VirF_1_KS5_bMeeDB Clade_104 >paenimacrolidin_KS2_DB Clade_108 >oocydin_Smar_OocR_2_KS12_shDB Clade_108 >oocydin_Ddad_OocR_2_KS12_shDB Clade_108 >obcydin_Ddad_OocR_2_KS10_shDB Clade_108	>rhizopodin_RizE_2_KS18_b_L_OMe	Clade 104
>changion_chin_i_KS1/_icda_L_ivic Clade_104 >griseoviridin_SgvE3_1_KS5_eDB Clade_104 >virginiamycin_VirF_1_KS5_bMeeDB Clade_104 >paenimacrolidin_KS2_DB Clade_108 >oocydin_Smar_OocR_2_KS12_shDB Clade_108 >oocydin_Ddad_OocR_2_KS12_shDB Clade_108 >obicamina_Rbin_2_KS10_shDB Clade_108	Setnangien Etal 1 KS17 reda I Me	Clade 104
>virginiamycin_VirF_1_KS5_bMeeDB Clade_104 >virginiamycin_VirF_1_KS5_bMeeDB Clade_104 >paenimacrolidin_KS2_DB Clade_108 >oocydin_Smar_OocR_2_KS12_shDB Clade_108 >oocydin_Ddad_OocR_2_KS12_shDB Clade_108 >okiramiae_Rbib_2_KS10_shDB Clade_108	>ariseoviridin SavE3 1 KS5 eDB	Clade 104
>yaenimacrolidin_KS2_DB Clade_104 >oocydin_Smar_OocR_2_KS12_shDB Clade_108 >oocydin_Ddad_OocR_2_KS12_shDB Clade_108 >oocydin_Ddad_OocR_2_KS12_shDB Clade_108	virginiamucin VirE 1 KSS hMaaDB	Clade 104
>pacininacionalin_KS2_DB Clade_108 >oocydin_Smar_OocR_2_KS12_shDB Clade_108 >oocydin_Ddad_OocR_2_KS12_shDB Clade_108 >shinaxing_RhiD_2_KS10_shD Clade_108	>virginianychi_vhr_i_K3_UviceDb	Clade 104
>oocydin_Shiai_OocK_2_KS12_ShDB Clade_108 >oocydin_Ddad_OocR_2_KS12_shDB Clade_108	>pacininacionum_KS2_DD	Clade 108
>vovyum_Duad_OUCK_2_N312_SIDD Clade_108 >skiroving DkiD_2_KS10_skD Cl_1_1_100	Soordin Ddad OosP 2 KS12 shDB	Clade 100
Clode LOV	> bity an _ Duad_OUCK_2_K512_SIDD	Clade 108

>corallopyronin_CorL_2_KS11_red	Clade_109
>myxopyronin_MxnK_3_KS9_red	Clade_109
>macrolactin_MlnB_3_KS3_red	Clade_109
>corallopyronin_CorK_3_KS9_red	Clade_109
>rhizopodin_RizB_2_KS2_eDB	Clade_109
>bacillaene_Bamy_BaeN_2_KS11_shDB	Clade_11
>bacillaene_Bsub_PksN_2_KS12_shDB	Clade_11
>bacillaene_Bamy_BaeN_3_KS12_shDB	Clade_11
>bacillaene_Bsub_PksN_3_KS13_shDB	Clade_11
>9methylstreptimidone SmdI 4 KS4 eDB	Clade_110
>cycloheximide ChxE 4 KS4 b D OH	Clade_110
>dorrigocin migrastatin MgsF 1 KS4 b D OH eDB	Clade 110
>onnamide OnnI 4 KS7 adiMeb D OH	Clade 111
>psymberin PsyD 4 KS6 adiMeb D OH	Clade 111
>phormidolide EKU96423 PhorL 3 KS6 adiMeb D OH	Clade 111
<pre>>rhizoxins RhiD 1 K9 aMeb D OH</pre>	Clade 111
>calveulin CalG 1 KS21 a L Meb L OH	Clade 111
>luminaolid LumC 4 KS10 a L Meb L OH	Clade 112
Stalutovin TtoF 4 KS10 a L Meb L OH	Clade 112
>misokinolide MicD 4 KS10 a L Meb L OH	Clade 112
> salessing ColE 4 KS12 h L OH	Clade_112
<pre>>calyculin_Cale_4_KS13_b_L_OH</pre>	Clade_112
>rhizoxins_RhiC_2_KS/_a_D_Meb_L_OH	Clade_112
>psymberin_PsyD_6_KS8_a_D_Meb_L_OH	Clade_112
<pre>>calyculin_CalF_5_KS20_a_L_Meb_L_OH</pre>	Clade_112
>sorangicin_SorA_4_KS4_aMeeDB	Clade_113
>sorangicin_SorC_1_KS12_eDB	Clade_113
>elansolid_Csan_ElaQ_2_KS12_b_L_OH	Clade_114
>elansolid_Cpin_ElsP_2_KS12_b_L_OH	Clade_114
>thailandamide_TaiD_2_KS2_b_L_OH	Clade_114
>disorazole_DszB_1_KS5_zDB	Clade_115
>disorazole_DszB_2_KS6_zDB	Clade_115
>SIA7248_SiaF_2_KS5_b_D_OH	Clade_115
>rhizopodin_RizB_5_KS5_bketo	Clade_115
>chlorotonil_CtoD_2_KS6_eDB	Clade_115
>SIA7248_SiaG_2_KS9_eDB	Clade_115
>legioliulin_LglD_4_KS4_bketo	Clade_115
>SIA7248_SiaH_KS12_bketo	Clade_115
>thailandamide_TaiL_2_KS10_bketo	Clade_116
>psymberin PsyD 8 KS10 aMebketo	Clade 116
>dorrigocin migrastatin MgsF 3 KS6 aMeeDB	Clade 116
>basiliskamides P615 BasF 1 KS1 GNATstarter	Clade 117
>basiliskamides P615 BasE 1 KS2 a L Me red	Clade 117
>elansolid Csan ElaK 2 KS4 aMe	Clade 117
>elansolid Cnin ElsJ 2 KS4 aMe	Clade 117
>elansolid Csan ElaK 1 KS3 adiMeb D OH	Clade 117
>elansolid Cpin ElsI 1 KS3 adiMeb D OH	Clade 117
>difficidin Diff_1 KS14 redaMe	Clade 117
Scalvenlin CalE 6 KS16 adiMbketo	Clade 117
Segrandicin Sort 3 KS3 rado D Ma	
>sorangicin_SorA_5_KS5_reda_D_we	Clade_117
>inyxovirescin_1ar_1_KS1_reda_D_ivie	
>paenimacrolidin_K55_DMe	
>paenimacrolidin_KS4_bMe	Clade_117
>bryostatin_BryB_2_KS5_adiMEbketo	Clade_117
>bryostatin_BryC_3_KS10_adiMebketo	Clade_117
>corallopyronin_CorK_2_KS8_eDB	Clade_118
>myxopyronin_MxnK_2_KS8_0red	Clade_118
>disorazole_DszA_2_KS2_eDB	Clade_118
>disorazole_DszB_4_KS8_0zDB	Clade_118
>difficidin_DifF_1_KS1_unusualStarters_acryloyl	Clade_118

>calyculin_CalE_2_KS11_aketo	Clade_118
>9methylstreptimidone_SmdI_3_KS3_vinylogous	Clade_12
>cycloheximide_ChxE_3_KS3_vinylogous	Clade_12
>dorrigocin_migrastatin_MgsE_3_KS3_vinylogous	Clade_12
>tartrolon TrtF 2 KS10 0reda D Me	Clade 120
>griseoviridin SgvE4 1 KS7 b D OH	Clade 120
>virginiamycin VirH 1 KS7 0AAoxz	Clade 120
>munirocin MmnA 2 KS6 a D OHb D OH	Clade 121
>thiomarinol TmpA 2 KS6 a D OHb D OH	Clade 121
Scalvenlin CalF 2 KS17 a D OHb D OH	Clade 121
>carycum_car_2_K31/a_D_0h0_D_0h	Clade 121
>hiykovitesem_1a1_4_K54_b_L_On	Clade_121
<pre>>cnivosazoie_cnic_4_KS/_eDB</pre>	Clade_122
>lankacidin_LkcU_1_KS2_aMeeDB	Clade_122
>leinamycin_LnmJ_3_KS6_aMeDB	Clade_122
>diaphorin_DipT_3_KS6_b_D_OH	Clade_123
>pederin_PedF_3_KS6_b_D_OH	Clade_123
>thiomarinol_TmpA_3_KS7_bOH	Clade_124
>mupirocin_MmpA_3_KS7_b_D_OH	Clade_124
>SIA7248_SiaG_3_KS10_eDB	Clade_125
>myxovirescin_Ta1_7_KS7_eDB	Clade_125
>thailandamide_TaiL_4_KS12_eDB	Clade_125
>legioliulin_LglD_2 KS2 eDB	Clade_126
>chlorotonil CtoE 1 KS9 DB DA	Clade 126
>rhizopodin RizD 6 KS16 eDB	Clade 126
>mupirocin MmpB 1 KS8 esterification	Clade 126
<pre>>chivosazole ChiC 3 KS6 eDB zDB</pre>	Clade 127
>disorazole_DszB_3_KS7_eDB	Clade 127
>chlorotonil CtoD 1 KS5 eDB	Clade 127
Schivosozole ChiE 3 KS17 aDB zDB	Clade 127
<pre>>cliivosazote_cliir_5_K317_cDB_ZDB</pre>	Clade 127
>kilioniychi_KilAv_1_KS12_CDB	Clade 128
>anthracimycin_AtcE_KS6_eDB	Clade_128
>anthracimycin_AtcE_KS5_eDB	Clade_128
>lankacidin_Lkcf_1_kS3_b_D_OH.	Clade_128
>oxazolomycin_OzmH_3_KS7_eDB	Clade_128
>anthracimycin_AtcF_2_KS9_eDB_DA	Clade_128
>thiomarinol_TmpB_1_KS8_eDBbMe	Clade_129
>thiomarinol_TmpD_3_KS3_eDB	Clade_129
>mupirocin_MmpD_3_KS3_eDB	Clade_129
>tartrolon_TrtD_1_KS1_unusualStarter_lactate	Clade_13
>SIA7248_SiaD_1_KS1_unusualStarter_lactate	Clade_13
>FR901464_Fr9C_1_KS1_unusualstarter_lactate	Clade_13
>thailanstatin_TstC_1_KS1_lactateStarter	Clade_13
>bryostatin_BryA_1_KS1_lactateStarter	Clade_13
>etnangien_EtnH_2_KS16_eDB	Clade_130
>kirromycin KirAII 1 KS3 eDB	Clade 130
>bacillaene Bamy BaeM 2 KS9 zDBaMe	Clade 131
>bacillaene Bsub PksM 2 KS9 zDBaMe	Clade 131
>difficidin Difl 1 KS7 aMezDB	Clade 131
<pre>>calvculin CalG 2 KS22 aMeDB</pre>	Clade 132
>albicidin AlbI 2 KS2 aMeeDB	Clade 132
>FR901464 Fr9F 4 KS7 aMeeDR	Clade 133
>thailanstatin TstDFF 4 KS7 aMeeDR	Clade 122
>mallailaatana hurkhaldaria aaid Dure 2 KS2 aMaaDD	Clade 122
>manenacione_ourknoidente_acid_Durr_2_K52_awreeDB >theilendemide_TeiM_2_KS15_eMeeDD	Clade 133
>cniorotonii_UtoU_3_KS3_eDB	Clade_134
>anthracimycin_AtcD_3_KS3_eDB	Clade_134
>FR901464_Fr9H_3_KS9_b_D_OH	Clade_135
>thaılanstatin_TstGH_2_KS9_b_D_OH	Clade_135
>rhizopodin_RizB_1_KS1_AAgly	Clade_136

>disorazole_DszA_4_KS4_b_D_OH	Clade_136
>chivosazole_ChiB_2_KS2_b_D_OH	Clade_136
>kirromycin_KirAII_3_KS5_b_D_OH	Clade_136
>thailandamide TaiL 3 KS11 b D OH	Clade 137
>psymberin PsyD 3 KS5 b D OH	Clade 137
>basiliskamides P615 BasE 2 KS3 a D Meb D OH	Clade 137
>oocydin Smar OocS 1 KS13 aMebOH	Clade 138
<pre>>oocydin Ddad OocS 1 KS13 aMebOH</pre>	Clade 138
<pre>>dianhorin DinT 4 KS7 adiMebOH</pre>	Clade 138
>udphorm_Dip1_4_K37_adiMebOff	Clade 138
>pedenii_redr_4_K5/_additeb_D_OH	Clade 138
	Clade_138
>tolytoxin_ItoE_I_KS/ a_D_Meb_D_OH	Clade_138
>mupirocin_MmpA_KS2_b_D_OH	Clade_138
>thiomarinol_TmpD_2_KS2_a_L_Meb_L_OH	Clade_138
>onnamide_OnnI_4_KS7_adiMeb_D_OH	Clade_138
>luminaolid_LumC_4_KS10_a_L_Meb_L_OH	Clade_138
>tolytoxin_TtoE_4_KS10_a_L_Meb_L_OH	Clade_138
>misakinolide_MisD_4_KS10_a_L_Meb_L_OH	Clade_138
>psymberin_PsyD_4_KS6_adiMeb_D_OH	Clade_138
>phormidolide_EKU96423_PhorL_3_KS6_adiMeb_D_OH	Clade_138
>calyculin CalE 4 KS13 b L OH	Clade 138
>rhizoxins RhiC 2 KS7 a D Meb L OH	Clade 138
>rhizoxins RhiD 1 K9 aMeb D OH	Clade 138
>nsymberin PsyD 6 KS8 a D Meb L OH	Clade 138
Scalveylin CalE 5 KS20 a L Mab L OH	Clade 138
Sealyeulin ColG 1 KS20 a L Meb L OH	Clade 138
>calycum_CalO_1_KS21_a_L_Meb_L_OH	Clade_138
Zoachiaene_Bsub_PKSN_3_KS10_00H	Clade_139
>oocydin_smar_Oocs_5_KS15_0b_L_OH	Clade_139
>oocydin_Ddad_OocS_3_KS15_0b_L_OH	Clade_139
>elansolid_Csan_ElaP_2_KS9_0bimod_bOH	Clade_139
>elansolid_Cpin_ElsO_2_KS9_0bimod_bOH	Clade_139
>etnangien_EtnF_3_KS10_b_L_OH	Clade_139
>etnangien_EtnG_2_KS12_0b_L_OH	Clade_139
>etnangien_EtnI_4_KS20_0b_L_OH	Clade_139
>bongkrekic_acid_BonA_4_KS4_b_L_OH	Clade_139
>bryostatin_BryA_2_KS2_b_L_OH	Clade_139
>bryostatin_BryD_1_KS12_b_L_OH	Clade_139
>bryostatin_BryB_4_KS7_b_L_OH	Clade_139
>phormidolide EKU96420 PhorO 3 KS11 b L OH	Clade 139
>rhizoxins RhiE 2 KS13 b L OH	Clade 139
>diaphorin DipT 6 KS9 b L OH	Clade 139
>pederin PedF 6 KS9 b L OH	Clade 139
<pre>>luminaolid LumC 3 KS9 b L OH</pre>	Clade 139
>tolytoxin TtoF 3 KS9 b L OH	Clade 139
>misakinolide MisD 3 KS9 h L OH	Clade 130
Sonnamide OnnI 6 KS0 b I OH	Clade 130
Schlimentosig kotymin Bot2 2 KS2 kOU	Clade_139
-kanmanacin_batumin_Bat2_2_KS5_bOH	Clade_139
>sorangicin_SorA_5_KS5_a_L_OHb_L_OH	Clade_139
>sorangicin_SorD_2_KS14_b_L_OH	Clade_139
>difficidin_Difl_2_KS8_bOH	Clade_139
>oocydin_Smar_OocN_3_KS7_b_L_OH	Clade_139
>oocydin_Ddad_OocN_3_KS7_b_L_OH	Clade_139
>psymberin_PsyD_7_KS9_b_L_OH	Clade_139
>elansolid_Csan_ElaQ_2_KS12_b_L_OH	Clade_139
>elansolid_Cpin_ElsP_2_KS12_b_L_OH	Clade_139
>thailandamide_TaiD_2_KS2_b_L_OH	Clade_139
>SIA7248_SiaF_1_KS4_b_D_OH	Clade_139
>SIA7248_SiaF_3_KS6_b_D_OH	Clade_139
>SIA7248_SiaF_4_KS7_b_D_OH	Clade_139

>SIA7248_SiaE_2_KS3_b_L_OH	Clade_139
>SIA7248_SiaE_1_KS2_b_D_OH	Clade_139
>FR901464_Fr9H_2_KS10_exometh	Clade_14
>thailanstatin_TstGH_3_KS10_exometh	Clade_14
>bryostatin_BryB_1_KS4_exoester	Clade_14
>bryostatin_BryC_1_KS8_exoester	Clade_14
>kalimantacin_batumin_Bat2_4_KS5_redbMe	Clade_14
>kalimantacin_batumin_Bat3_4_KS11_redbMe	Clade_14
>psymberin_PsyA_2_KS2_exometh	Clade_14
>oocydin_Smar_OocJ_2_KS2_exometh	Clade_14
>oocydin_Ddad_OocJ_2_KS2_exometh	Clade_14
>phormidolide EKU96419 PhorP 1 KS13 redbMe	Clade 14
>phormidolide EKU96424 PhorK 2 KS2 exometh	Clade 14
>nosperin NspA 3 KS3 exometh	Clade 14
>onnamide OnnB 3 KS3 exometh	Clade 14
>etnangien EtnD 2 KS2 eDBbMe	Clade 14
>mvxovirescin TaO 1 KS8 redbethvl	Clade 14
>kalimantacin hatumin Bat3 3 KS10 exometh	Clade 14
>naenimacrolidin KS5 bMe	Clade 14
>dianharin DinP 3 KS3 exameth	Clade 14
Sumption II_DIPL_5_KS5_CROITCUI	Clade 14
>peacrim_real_y_KS3_exometin	
>9methylstreptimidone_SmdI_4_KS4_eDB	Clade_140
>cycloheximide_ChxE_4_KS4_b_D_OH	Clade_140
>dorrigocin_migrastatin_MgsF_1_KS4_b_D_OH_eDB	Clade_140
>nosperin_NspA_2_KS2_a_L_Meb_D_OH	Clade_140
>diaphorin_DipP_2_KS2_a_L_Meb_D_OH	Clade_140
>onnamide_OnnB_2_KS2_a_L_Me_D_OH	Clade_140
>pederin_PedI_2_KS2_a_L_Meb_D_OH	Clade_140
>etnangien_EtnD_3_KS3_b_D_OH	Clade_140
>etnangien_EtnI_2_KS18_a_L_Meb_D_OH	Clade_140
>etnangien_EtnI_3_KS19_a_L_Meb_D_OH	Clade_140
>kalimantacin_batumin_Bat2_3_KS4_bOH	Clade_140
>etnangien_EtnF_2_KS9_b_D_OH	Clade_140
>elansolid Csan ElaQ 1 KS11 a L Meb D OH	Clade 140
>elansolid Cpin ElsP 1 KS11 a L Meb D OH	Clade 140
>myxovirescin Ta1 2 KS2 b L OH	Clade 140
>difficidin DifG 1 KS4 OH	Clade 140
>luminaolid LumD 3 KS13 b D OH	Clade 140
<pre>>talwavia_balab_5_18513_b_D_0H</pre>	Clade 140
>misekinolide MisE 3 KS13 b D OH	Clade 140
Sumingolid LumE 3 KS17 b D OH	Clade 140
Stalutovia TtoF 2 KS17 b D OH	Clade 140
<pre>>tolytoxin_ltor_5_KS1/_0_D_OH</pre>	Clade_140
>misakinoide_MisF_3_KS1/_b_D_OH	Clade_140
>bryostatin_BryD_2_KS13_06_D_OH	Clade_140
>onnamide_Onnl_3_KS6_b_D_OH	Clade_140
>bryostatin_BryA_KS3_3_b_D_OH	Clade_140
>phormidolide_EKU96423_PhorL_1_KS4_aMeb_D_OH	Clade_140
>diaphorin_DipT_3_KS6_b_D_OH	Clade_140
>pederin_PedF_3_KS6_b_D_OH	Clade_140
>thailandamide_TaiL_3_KS11_b_D_OH	Clade_140
>psymberin_PsyD_3_KS5_b_D_OH	Clade_140
>basiliskamides_P615_BasE_2_KS3_a_D_Meb_D_OH	Clade_140
>elansolid_Csan_ElaJ_2_KS2_eDB	Clade_141
>elansolid_Cpin_ElsI_2_KS2_eDB	Clade_141
>elansolid_Csan_ElaQ_3_KS13_aMeDB	Clade_141
>elansolid Cpin ElsP 3 KS13 aMeDB	Clade 141
>sorangicin SorA 4 KS4 aMeeDB	Clade 141
>sorangicin SorC 1 KS12 eDB	Clade 141
>misakinolide MisF 4 KS18 aMeeDB	Clade 141

>tolytoxin_TtoF_4_KS18_aMeeDB	Clade_141
>difficidin_DifF_2_KS2_aMeeDB	Clade_141
>rhizoxins_RhiB_3_KS4_aMeeDB	Clade_141
>chivosazole_ChiF_1_KS15_aMeeDB	Clade_141
>oxazolomycin_OzmH_1_KS5_aMezDB	Clade_141
>corallopyronin_CorL_4_KS13_aMeDB	Clade_141
>myxopyronin_MxnK_5_KS11_aMeDB	Clade_141
>calyculin_CalG_2_KS22_aMeDB	Clade_141
>albicidin_AlbI_2_KS2_aMeeDB	Clade_141
>FR901464_Fr9F_4_KS7_aMeeDB	Clade_141
>thailanstatin_TstDEF_4_KS7_aMeeDB	Clade_141
>malleilactone_burkholderic_acid_BurF_2_KS2_aMeeDB	Clade_141
>thailandamide TaiM 3 KS15 aMeeDB	Clade 141
>bacillaene Bamy BaeM 2 KS9 zDBaMe	Clade 141
>bacillaene Bsub PksM 2 KS9 zDBaMe	Clade 141
>difficidin Difl 1 KS7 aMezDB	Clade 141
>elansolid Csan ElaR 1 KS14 0eDB	Clade 142
>elansolid FIsO 1 KS14 0eDB	Clade 142
Suminaolid LumE 4 KS18 0b D OH	Clade 142
Stalutovin TtoF 5 KS19 0eDB	Clade 142
>rolytoxin_1tor_5_KS19_0cDB	Clade_142
>misakinolide_MisF_5_KS19_0eDB	Clade_142
>pederin_PedH_4_KS13_0eDB	Clade_142
>rhizoxins_RhiF_2_KS16_0eDB	Clade_142
<pre>>sorangicin_SorB_1_KS8_0zDB</pre>	Clade_142
>enacyloxin_Bamb_5919_2_KS11_0eDB	Clade_142
>bacillaene_Bamy_BaeR_1_KS13_0aMeDB	Clade_142
>bacillaene_Bsub_PksR_1_KS14_OaMeDB	Clade_142
>onnamide_OnnI_7_KS10_0red	Clade_142
>calyculin_CalH_3_KS27_eDB	Clade_142
>nosperin_NspC_3_KS6_0biomod_aMeeDB	Clade_142
>rhizoxins_RhiD_3_KS11_0bimod_aMeeDB	Clade_142
>chivosazole_ChiF_4_KS18_0zDB	Clade_142
>luminaolid_LumA_3_KS3_0bimod_a_D_Meb_D_OH	Clade_142
>tolytoxin TtoC 3 KS3 0a D Meb D OH	Clade 142
>misakinolide MisC 3 KS3 0bimod b D OMe	Clade 142
>chivosazole ChiD 1 KS10 0AAoxz	Clade 142
>disorazole DszC 1 KS9 0AAoxz	Clade 142
<pre>>rhizonodin RizD 1 KS11 0A Aoxa</pre>	Clade 142
>calveulin CalC 1 KS7 KS00va	Clade 142
>rhizoving PhiP 1 KS2 04 Aove	Clade 142
Solomony Lam L KS1 04 Aoya	Clade_142
>leinamycin_Linni_1_KS1_0AA0xZ >dianadia_Dianadia_Dianadia_D_OU	Clade_142
	Clade_142
>rhizopodin_RizD_3_KS13_0bimod_b_D_OH	Clade_142
>rhizopodin_RizB_3_KS3_0bimod_a_D_Meb_D_OH	Clade_142
>rhizopodin_RizE_1_KS17_obimod_b_L_OH	Clade_142
<pre>>tartrolon_TrtF_2_KS10_0reda_D_Me</pre>	Clade_142
>griseoviridin_SgvE4_1_KS7_b_D_OH	Clade_142
>virginiamycin_VirH_1_KS7_0AAoxz	Clade_142
>disorazole_DszC_1_KS2_0AAoxz	Clade_142
>corallopyronin_CorJ_2_KS5_0aMe	Clade_142
>myxopyronin_MxnJ_2_KS5_0reda_L_Me	Clade_142
>chlorotonil_CtoC_4_KS4_aMezshDB	Clade_2
>chlorotonil_CtoD_4_aMeshDB	Clade_2
>anthracimycin_AtcE_KS7_redaMe	Clade_2
>disorazole_DszA_3_KS3_adiMeb_L_OH	Clade_2
>corallopyronin CorL 1 KS10 bMeDB	Clade 2
>chivosazole ChiC 1 KS4 a D Meb D OH	Clade 2
>luminaolid LumC 2 KS8 a D Meb D OH b D OH	Clade 2
>tolytoxin TtoE 2 KS8 a D Me D OH	Clade 2
	_

>misakinolide_MisD_2_KS8_b_L_OH	Clade_2
>9methylstreptimidone_SmdI_KS5_5_a_D_Mebketo	Clade_21
>cycloheximide_ChxE_5_KS5_a_D_Mebketo	Clade_21
>FR901464_Fr9F_2_KS5_reda_L_Me	Clade_21
>thailanstatin_TstDEF_2_KS5_reda_L_Me	Clade_21
>calyculin_CalB_3_KS5_0reda_L_Me	Clade_21
>dorrigocin_migrastatin_MgsF_2_KS5_a_D_MebketodH	Clade_21
>dorrigocin_migrastatin_MgsF_5_KS8_b_L_OH	Clade_21
>bongkrekic acid BonA 3 KS3 aMeDB	Clade 23
>bongkrekic acid BonD 1 KS10 a L Me	Clade 23
>chlorotonil CtoD 3 KS7 redaMe	Clade 23
>bacillaene Bamy BaeJ 2 KS2 red	Clade 25
>bacillaene Bsub PksJ 2 KS2 red	Clade 25
>bacillaene Bamy BaeN 2 KS11 shDB	Clade 25
>bacillaene Bsub PksN 2 KS12 shDB	Clade 25
<pre>>bacillaene Bamy BaeN 3 KS12 shDB</pre>	Clade 25
Shacillaene Bruh PkeN 3 KS13 shDB	Clade 25
>definition Diff 2 KS0 rod	Clade 25
Zainician_Din_5_KS9_red	Clade_25
>paenimacronoin_KS2_DB	Clade_25
>kalimantacin_batumin_Bat3_2_KS9_eDB	Clade_25
>diaphorin_DipO_2_KSI1_DB	Clade_25
>pederin_PedH_2_KS11_red	Clade_25
>oocydin_Smar_OocR_2_KS12_shDB	Clade_25
>oocydin_Ddad_OocR_2_KS12_shDB	Clade_25
>rhizoxins_RhiD_2_KS10_shD	Clade_25
>myxovirescin_TaO_4_KS11_red	Clade_25
>myxovirescin_TaO_2_KS9_red	Clade_25
>calyculin_CalE_3_KS12_a_D_Meb_L_OH	Clade_25
>dorrigocin_migrastatin_MgsF_6_KS9_eDB	Clade_25
>dorrigocin_migrastatin_MgsG_1_KS10_red	Clade_25
>difficidin DifF 3 KS3 red	Clade 25
>oocydin Smar OocN 5 KS9 red	Clade 25
>oocydin Ddad OocN 5 KS9 red	Clade 25
>sorangicin SorA 2 KS2 red	Clade 25
>sorangicin SorB 4 KS11 red	Clade 25
>myxovirescin TaO 3 KS10 bketo	Clade 25
>nhormidolide FKU96424 PhorK 3 KS3 h D OH	Clade 25
>muvovirescin Tal 5 KS5 red	Clade 25
Seelyevin CelA 2 KS2 A Ager	Clade 25
<pre>>carycum_CarA_2_KS2_AAser</pre>	Clade_25
>bongkrekic_acid_BonB_2_KS8_red	Clade_25
>bryostatin_BryC_2_KS9_pyran	Clade_26
<pre>>diapnorin_Dip1_5_KS8_pyran</pre>	Clade_26
>pederin_PedF_5_KS8_pyran	Clade_26
>luminaolid_LumE_2_KS16_pyran	Clade_26
>tolytoxin_TtoF_2_KS16_pyran	Clade_26
>misakinolide_MisF_2_KS16_pyran	Clade_26
>onnamide_OnnI_5_KS8_pyran	Clade_26
>psymberin_PsyD_5_KS7_pyran	Clade_26
>oocydin_Smar_OocN_4_KS8_furan	Clade_26
>oocydin_Ddad_OocN_4_KS8_furan	Clade_26
>phormidolide_EKU96420_PhorO_4_KS12_furan	Clade_26
>sorangicin_SorH_1_KS20_pyran	Clade_26
>sorangicin_SorE_2_KS16_pyran	Clade_26
>sorangicin_SorB_2_KS9_pyran	Clade_26s
>corallopyronin CorK 1 KS7 acetyl	Clade 27
>myxopyronin MxnK 1 KS7 starter	Clade 27
>disorazole DszA 1 KS1 acetvlStarter	Clade 27
>macrolactin MlnB 1 KS1 acetylStarter	Clade 27
>anthracimycin AtcD 1 KS1 acetylStarter	Clade_27

>chlorotonil_CtoC_1_KS1_acetylStarter	Clade_27
>misakinolide_MisC_1_KS1_acetylStarter	Clade_27
>calyculin_CalA_KS1_KS0AAser	Clade_28
>bacillaene_Bamy_BaeJ_1_KS1_Agly	Clade_28
>bacillaene_Bsub_PksJ_1_KS1_AAgly	Clade_28
>bacillaene_Bamy_BaeN_1_KS10_AAala	Clade_28
>bacillaene Bsub PksN 1 KS11 AAala	Clade 28
>diaphorin DipT 2 KS5 AAgly	Clade 28
>pederin PedF 2 KS5 AAgly	Clade 28
>onnamide OnnI 2 KS5 AAgly	Clade 28
>psymberin PsyD 2 KS4 AAgly	Clade 28
>calvculin CalH 2 KS26 AAala	Clade 28
>nosperin NspC 2 KS5 AAgly	Clade 28
>calvculin CalB 2 KS4 AAgly	Clade 28
>kalimantacin hatumin Bat2 1 KS2 AAGly	Clade 28
>myyovirescin Tal 1 KS1 A Agly	Clade 28
> ER 001464 Fr9D 1 KS4 A A thr	Clade 28
Stheilenstatin TetDEF 1 KS4 AAthr	Clade 28
>thailandamide TaiF 1 KS5 AAala	Clade 28
>ulananudinud_1alE_1_KS5_AAala	Clade 28
virainiamvain VirA 2 KS2 AAaly	Clade 20
>virginiamycin_virA_5_KS5_AAgiy	Clade_28
>oxazolomycin_OzmN_1_KS2_AAoxa.	Clade_28
>oxazolomycin_OzmQ_1_KS1_AAgly	Clade_28
>malleilactone_burkholderic_acid_BurA_1_KS1_unusualStarter	Clade_28
>basiliskamides_P615_BasE_3_KS3_bOH	Clade_30
>elansolid_Csan_ElaO_2_KS/_bimod_b_D_OH	Clade_30
>elansolid_Cpin_ElsN_2_KS/_bimod_b_D_OH	Clade_30
>difficidin_Difl_4_KS10_bimod_bOH	Clade_30
>etnangien_EtnG_4_KS14_0bOH	Clade_30
>chivosazole_ChiC_2_KS5_bimod_bOH	Clade_30
>chivosazole_ChiD_3_KS12_bimod_bOH	Clade_30
>chivosazole_ChiF_2_KS16_bimod_bOH	Clade_30
>macrolactin_MinE_2_KS8_bimod_bOH	Clade_30
>macrolactin_MlnG_1_KS11_bimod_bOH	Clade_30
>kirromycin_KirAIV_5_KS11_b_D_OH	Clade_30
>leinamycin_Lnmi_5_KS5_ZDB	Clade_30
>kirromycin_KirAI_2_KS2_zcrotonyl	Clade_30
>tartrolon_IrtD_KS3_3_bimod_bOH	Clade_30
>bacillaene_Bamy_BaeJ_3_KS3_0Hbimod_bOH	Clade_31
>bacillaene_Bsub_PksJ_3_KS3_OHbimod_OH	Clade_31
>bacillaene_Bamy_BaeL_4_KS/_0Hbimod_bOH	Clade_31
>bacillaene_Bsub_PKsL_4_KS/_Obimod_bOH	Clade_31
>difficidin_DifG_2_KS5_0Hbimod_bOH	Clade_31
>luminaolid_LumD_4_KS14_0bimod_b_D_OH	Clade_31
<pre>>tolytoxin_ltoE_8_KS14_0bimod_b_D_OH</pre>	Clade_31
>misakinolide_MisE_4_KS14_0b_L_OH	Clade_31
>bongkrekic_acid_BonA_6_KS6_Ubimod_bOH	Clade_31
>kalimantacin_batuminBat2_6_KS/_0bimod_bOH	Clade_31
<pre>>sorangicin_SorA_/_KS/_0bimod_bOH</pre>	Clade_31
>sorangicin_SorH_3_KS22_00imod_bOH	Clade_31
<pre>>Uxazululliyelli_Uzillin_4_NS0_UEUB >thailandamide Toik 2 KS8 0hOU</pre>	Clade_31
<pre>>ulananualinut_1alK_2_K30_00011</pre>	Clade 21
>bondkrakie agid BonA KS1 1 GNATeterter	Clade 22
Seneral vin Ramb 5021 2 KS7 h D OU	Clade 22
> chacyloxin_Damb_5021_2_K57_0_D_011	Clade 22
\sim enacyloxin Bamb 5924 2 KS2 \circ DR	Clade 32
> enacyloxin Bamb $5920 2 \text{ KS2} \text{ CDB}$	Clade 32
>ncymberin PsyD 9 KS11 bketo	Clade 32
· psymour 1590 / Roll_okew	51000_32

>SIA7248_SiaI_1_KS13_2biMod_OH	Clade_32
>2qo3_chainA_EryKS3_OUTGROUP	Clade_32
>2hg4_chainA_EryKS5_OUTGROUP	Clade_32
>enacyloxin_Bamb_5922_1_KS5_b_D_OH.	Clade_32
>enacyloxin_Bamb_5920_1_KS8_eDB	Clade_32
>enacyloxin Bamb 5919 1 KS10 bketo	Clade_32
>enacyloxin Bamb 5923 1 KS4 b L OH	Clade 32
>thiomarinol TmpD 1 KS1 acetylStarter	Clade 33
>mupirocin MmpD 1 KS1 acetylStarter	Clade 33
Sthailandamide TaiD 1 KS1 aromaticStarter	Clade 33
>corallopyronin Corl 1 KS1 unusualStarter methoxycarbonyl	Clade 34
>myxonyronin MxnI 1 KS1 unusualstarter	Clade 34
>dianhorin DinO 1 KS10 rearrangement	Clade 35
>nederin PedH 1 KS10 rearrangement	Clade 35
Socordin Smar Ocel 1 KS3 rearrangement	Clade 35
Socydin_Shial_OocL_1_KS3_rearrangement	Clade 35
>obcydin_Ddad_Oocl_1_K55_teanaigement	Clade_33
>cmvosazote_cmb_i_Ksi0_0AAoxz	Clade_30
>disorazole_Dszc_1_KS9_0AA0xz	Clade_36
rnizopodin_KiZD_1_KS11_UAAOXa Seekuwika_CelC_1_KS7_KS0cccc	Clade_36
	Clade_36
>rhizoxins_RhiB_1_KS2_0AAoxa	Clade_36
>leinamycin_Lnml_1_KS1_0AAoxa	Clade_36
>FR901464_Fr91_2_KS12_0pyran	Clade_38
>thailanstatin_TstI_2_KS12_0pyran	Clade_38
<pre>>corallopyronin_CorI_2_KS2_AAgly</pre>	Clade_39
>myxopyronin_MxnI_2_KS2_AAgly	Clade_39
>lankacidin_LkcA_1_KS1_AAgly	Clade_39
>chivosazole_ChiC_5_KS8_b_L_OH	Clade_40
>anthracimycin_AtcF_3_KS10_bketo	Clade_40
>chlorotonil_CtoE_2_KS10_bketo	Clade_40
>kirromycin_KirAIV_4_KS10_b_L_OH	Clade_40
>macrolactin_MlnD_2_KS6_b_D_OH	Clade_40
>corallopyronin_CorJ_1_KS4_shDB	Clade_42
>myxopyronin_MxnJ_1_KS4_shDB	Clade_42
>luminaolid_LumA_2_KS2_a_D_MeshDB	Clade_43
>tolytoxin_TtoC_2_KS2_a_D_MeshDB	Clade_43
>bacillaene_Bamy_BaeR_2_KS14_0shDBMe	Clade_44
>bacillaene_Bsub_PksR_2_KS15_OshDBaMe	Clade_44
>calyculin_CalH_1_KS25_bMeDB	Clade_44
>calyculin_CalB_4_KS6_0reda_L_Me	Clade_44
>thailandamide_TaiD_4_KS4_0reda_D_Me	Clade_44
>oocydin_Smar_OocN_6_KS10_0bketo	Clade_45
>oocydin_Ddad_OocN_6_KS10_0bketo	Clade_45
>diaphorin_DipT_1_KS4_0acetal	Clade_46
>pederin_PedF_1_KS4_0hacetal	Clade_46
>nosperin_NspC_1_KS4_0hacetal	Clade_46
>onnamide_OnnI_1_KS4_0hacetal	Clade_46
>nosperin_NspC_4_KS7_aMeshDB	Clade_49
>rhizoxins_RhiE_1_KS1_aMeshDB	Clade_49
>onnamide OnnJ 1 KS11 bOH	Clade 49
>calyculin CalI 1 KS24 shDB	Clade 49
>chivosazole_ChiD_2_KS11_AAoxa	Clade 5
>rhizopodin RizD 2 KS12 AAoxa	Clade 5
>rhizoxins RhiB 2 KS3 AAoxa	Clade 5
>calyculin CalC 2 KS8 AAoxa	Clade 5
>bacillaene Bamy BaeL 1 KS4 zDB	Clade 51
>bacillaene Bsub PksL 1 KS4 zDB	Clade 51
>bacillaene Bamy BaeM 1 KS8 zDB	Clade 51
>bacillaene_Bsub_PksM_1_KS8_zDB	Clade_51

>difficidin_DifH_1_KS6_zDB	Clade_51
>chivosazole_ChiF_1_KS15_aMeeDB	Clade_52
>oxazolomycin_OzmH_1_KS5_aMezDB	Clade_52
>corallopyronin_CorL_4_KS13_aMeDB	Clade_52
>myxopyronin_MxnK_5_KS11_aMeDB	Clade_52
>macrolactin_MlnB_2_KS2_b_D_OH	Clade_53
>chlorotonil_CtoC_2_KS2_bOH	Clade_53
>anthracimycin_AtcD_2_KS2_bOH	Clade_53
>griseoviridin SgvE1_2 KS2 b D OH	Clade_53
>virginiamycin VirA 2 KS2 a L Meb D OH	Clade 53
>griseoviridin SgvE3 2 KS6 b L OH	Clade 53
>virginiamycin VirG 1 KS6 b D OH	Clade 53
>misakinolide MisF 4 KS18 aMeeDB	Clade 55
>tolytoxin TtoF 4 KS18 aMeeDB	Clade 55
>difficidin DifF 2 KS2 aMeeDB	Clade 55
>rhizoxins RhiB 3 KS4 aMeeDB	Clade 55
>oocydin Smar OocS 2 KS14 aMezDB	Clade 56
Socydin_Bhat_Cock_2_KS14_aMezDB	Clade 56
Selensolid Coop EloL 2 KS2 aDB	Clade 57
<pre>>clansolid_Csan_ElaJ_2_KS2_cDD</pre>	Clade_57
>elansolid_Cpin_Elsi_2_KS2_eDB	Clade_57
>elansolid_Csan_ElaQ_3_KS13_aMeDB	Clade_57
>elansolid_Cpin_ElsP_3_KS13_aMeDB	Clade_57
>luminaolid_LumE_1_KS15_zDB	Clade_60
>tolytoxin_TtoF_1_KS15_zDB	Clade_60
>misakinolide_MisF_1_KS15_zDB	Clade_60
>nosperin_NspA_2_KS2_a_L_Meb_D_OH	Clade_61
>diaphorin_DipP_2_KS2_a_L_Meb_D_OH	Clade_61
>onnamide_OnnB_2_KS2_a_L_Me_D_OH	Clade_61
>pederin_PedI_2_KS2_a_L_Meb_D_OH	Clade_61
>etnangien_EtnD_3_KS3_b_D_OH	Clade_62
>etnangien_EtnI_2_KS18_a_L_Meb_D_OH	Clade_62
>etnangien_EtnI_3_KS19_a_L_Meb_D_OH	Clade_62
>kalimantacin_batumin_Bat2_3_KS4_bOH	Clade_62
>etnangien EtnF 2 KS9 b D OH	Clade_62
>elansolid Csan ElaQ 1 KS11 a L Meb D OH	Clade 62
>elansolid Cpin ElsP 1 KS11 a L Meb D OH	Clade 62
>myxovirescin Tal 2 KS2 b L OH	Clade 62
>difficidin DifG 1 KS4 OH	Clade 62
>9methylstreptimidone SmdL 2 KS2 ozDB	Clade 64
<pre>>cyclobeximide ChxE 2 KS2 0zDB</pre>	Clade 64
<pre>>dorrigacin_migrastatin_MgsF_2_KS2_0zDB</pre>	Clade 64
>rhizoving RhiF 3 KS14 0eDB	Clade 64
Shadilaana Ramy Roal 1 KS4 zD	Clade 65
Shapillaana Bayh Diat 1 KS4 zD	Clade_05
> vacinavit_DsuU_1 ASL_1_K34_ZD	Clade 65
Vaciliana Dally_DaciN_1_KS0_ZDD	Clade_05
	Clade_05
>Iuminaolid_LumE_1_KSI5_ZDB	Clade_65
>tolytoxin_TtoF_I_KS15_zDB	Clade_65
>misakinolide_MisF_1_KS15_zDB	Clade_65
>oocydin_Smar_OocS_2_KS14_aMezDB	Clade_65
>oocydin_Ddad_OocS_2_KS14_aMezDB	Clade_65
>difficidin_DifJ_1_KS11_zDB_zDB	Clade_65
>elansolid_Csan_ElaP_1_KS8_eDB	Clade_65
>elansolid_Cpin_ElsO_1_KS8_eDB	Clade_65
>oxazolomycin_OzmN_3_KS4_zDB	Clade_65
>kalimantacin_batumin_Bat3_1_KS8_eDB	Clade_65
>oxazolomycin_OzmH_5_KS9_eDB	Clade_65
>thailandamide_TaiL_1_KS9_eDB	Clade_65

>leinamycin_LnmJ_1_KS4_eDB	Clade_65
>SIA7248_SiaH_KS11_eDB	Clade_65
>bongkrekic_acid_BonA_4_KS4_b_L_OH	Clade_66
>bryostatin_BryA_2_KS2_b_L_OH	Clade_66
>bryostatin BryD 1 KS12 b L OH	Clade 66
>bryostatin BryB 4 KS7 b L OH	Clade 66
>phormidolide EKU96420 PhorO 3 KS11 b L OH	Clade 66
>rhizoxins RhiE 2 KS13 b L OH	Clade 66
>diaphorin DipT 6 KS9 b L OH	Clade 66
>pederin PedF 6 KS9 b L OH	Clade 66
>luminaolid LumC 3 KS9 b L OH	Clade 66
<pre>>tolytoxin TtoE 3 KS9 b L OH</pre>	Clade 66
>misakinolide MisD 3 KS9 b L OH	Clade 66
>onnamide OnnI 6 KS9 b L OH	Clade 66
<pre>>kalimantacin hatumin Bat2 2 KS3 bOH</pre>	Clade 66
>sorangicin SorA 5 KS5 a L OHb L OH	Clade 66
>sorangicin_SorD_2_KS14_b_L_OH	Clade 66
>difficidin Diff 2 KS8 bOH	Clade_66
Socydin Smar OccN 3 KS7 h L OH	Clade_66
Soocydin Shar OccN 3 KS7 b L OH	Clade 66
\rightarrow neumberin DevD 7 KS9 h L OH	Clade 66
>poymorin_1 syD_/_K37_0_L_OII	Clade 67
Zoocydin_Sinal_Oocj_1_KS1_unusualStarter	Clade_07
>oocydin_Ddad_Oocj_1_KS1_unusualStarter	Clade_67
>phormidonde_EK030424_rhork_1_KS1_undsdarstarter	Clade_07
-sorangicin_SorD_1_KS15_a_L_OH0_L_OH	Clade_08
>solarigiciti_SolO_1_KS16_a_L_MoL_Off	Clade_08
>chivosazote_chil_2_KS14_a_L_Web_L_OH	Clade 7
>phormidolida_EKU06423_PhorL_4_KS7_b_D_0H	Clade_7
>phonindonde_EK030425_niorE_4_K37_0_D_011	Clade_7
Society Smar OccN 2 KS6 a D OHb L OH	Clade 70
Soocydin Shar OocN 2 KS6 a D OHb L OH	Clade 70
>nbormidolide EKU96420 Phoro 2 KS10 0aOHaMeh D OH	Clade 70
>horinadiad_EKO50420_Filoro_2_K010_0d0Halvico_D_0H	Clade 73
>bacillaene_Bsub_PksL_3_KS6_bMeeDB	Clade 73
>elansolid Csan ElaO 1 KS6 hMeDB	Clade 73
<pre>>elansolid Cnin ElsN 1 KS6 hMeDB</pre>	Clade 73
<pre>>oocvdin Smar Oocl 2 KS4 eDBbMe</pre>	Clade 73
<pre>>oocydin_bind_Oocl_2_KS4_eDBbMe</pre>	Clade 73
<pre>>nhormidolide EKU96423PhorL 5 KS8 eDBhMe</pre>	Clade 73
<pre>>bongkrekic acid BonA 2 KS2 bMeDB</pre>	Clade 73
<pre>>sorangicin SorA 6 KS6 zDB</pre>	Clade 73
>etnangien EtnE 3 KS3 eDBbMe	Clade 73
<pre>>calvculin CalG 3 KS23 bMeDB</pre>	Clade 73
<pre>>thailandamide TaiM 1 KS13 bMeeDB</pre>	Clade 73
>mvxovirescin Ta1 6 KS6 eDBbMe	Clade 73
>SIA7248 SiaG 1 KS8 bMeDB	Clade 73
>thailandamide TaiK 1 KS7 bMeDB	Clade 73
>basiliskamides P615 BasF 1 KS1 GNATstarter	Clade 74
>basiliskamides P615 BasE 1 KS2 a L Me red	Clade 74
>elansolid Csan ElaK 2 KS4 aMe	Clade 74
>elansolid_Cpin_ElsJ_2_KS4_aMe	Clade_74
>elansolid_Csan_ElaK_1_KS3_adiMeb_D_OH	Clade_74
>elansolid_Cpin_ElsJ_1_KS3_adiMeb_D_OH	Clade_74
>difficidin_DifL_1_KS14_redaMe	Clade_74
>calyculin_CalE_6_KS16_adiMbketo	Clade_74
>sorangicin_SorA_3_KS3_reda_D_Me	Clade_74
>myxovirescin_TaP_1_KS1_reda_D_Me	Clade_74
>paenimacrolidin_KS3_bMe	Clade_74

>paenimacrolidin_KS4_bMe	Clade_74
>bryostatin_BryB_2_KS5_adiMebketo	Clade_74
>bryostatin_BryC_3_KS10_adiMebketo	Clade_74
>thiomarinol_TmpD_4_KS4_a_D_OH	Clade_74
>sorangicin_SorE_1_KS15_a_D_Mb_L_OH	Clade_74
>etnangien EtnF 1 KS8 a D Meb D OH	Clade_74
>mupirocin MmpD 4 KS4 a D Me	Clade 74
>mupirocin MmpD 2 KS2 a L Meb L OH	Clade 74
>dorrigocin migrastatin MgsF 4 KS7 a D Meb L OH	Clade 74
>bacillaene Bsub PksM 3 KS10 bOH	Clade 75
>oocvdin Smar OocS 3 KS15 0b L OH	Clade 75
>oocydin Ddad OocS 3 KS15 0b L OH	Clade 75
<pre>>elansolid Csan ElaP 2 KS9 0bimod bOH</pre>	Clade 75
<pre>>elansolid Chin ElsO 2 KS9 Obimod bOH</pre>	Clade 75
>etnangien_EtnF_3_KS10_b_L_OH	Clade 75
Setnangian EtnG 2 KS12 0h I OH	Clade 75
>changion_Etal_4_KS20_0b_L_0H	Clade_75
>changled_Lun_4_KS20_00_L_ON	Clade_75
<pre>>clansolid_ElaC_1_KS14_0cDD</pre>	Clade_/0
>elansolid_ElsQ_1_KS14_0eDB	Clade_/6
>luminaolid_LumE_4_KS18_06_D_OH	Clade_/6
>tolytoxin_ItoF_5_KS19_0eDB	Clade_76
>misakinolide_MisF_5_KS19_0eDB	Clade_76
>pederin_PedH_4_KS13_0eDB	Clade_76
>rhizoxins_RhiF_2_KS16_0eDB	Clade_76
>sorangicin_SorB_1_KS8_0zDB	Clade_76
>enacyloxin_Bamb_5919_2_KS11_0eDB	Clade_76
>bongkrekic_acid_BonD_3_KS12_0vinylbranch	Clade_76
>sorangicin_SorI_2_KS24_0zDB	Clade_76
>oocydin_Smar_OocR_1_KS11_0bimod_bOH	Clade_78
>oocydin_Ddad_OocR_1_KS11_obimod_bOH	Clade_78
>tartrolon_TrtE_2_KS5_0red	Clade_78
>griseoviridin_SgvE1_1_KS1_acetylStarter	Clade_79
>virginiamycin_VirA_1_KS1_unusualstarter	Clade_79
>FR901464_Fr9I_1_KS11_0b_D_OH	Clade_79
>thailanstatin_TstI_1_KS11_0b_D_OH	Clade_79
>lankacidin_LkcG_1_KS5_aMebketo	Clade_79
>kirromycin_KirAI_1_KS1_AcStarter	Clade_79
>9methylstreptimidone_SmdI_1_KS1_unusualstarter_AMT	Clade_8
>cycloheximide ChxE 1 KS1 unusualStarter AMT	Clade 8
>dorrigocin migrastatin MgsE 1 KS1 unusualStarter AMT	Clade 8
>sorangicin SorA 1 KS1 unusualStarter	Clade 8
>etnangien EtnD 1 KS1 unusualStarters Succ	Clade 8
>FR901464 Fr9C 2 KS2 0bOH	Clade 80
>thailanstatin TstC 2 KS2 0bOH	Clade 80
>bryostatin BryC 4 KS11 0b D OH	Clade 81
<pre>>nosperin NspC 5 KS5 aMebOH</pre>	Clade 81
<pre>>luminaolid LumD 1 KS11 0bimod b D OH</pre>	Clade 81
>misakinolide MisE 1 KS11 0b D OH	Clade 81
<pre>>talytaxin TtaF 5 KS11 0b D OH</pre>	Clade 81
>calvenlin CalE 5 KS14 0b L OH	Clade 81
>calyculin CalE 3 KS18 0b D OH	Clade \$1
>ovazolomycin OzmI 2 KS11 0a I OMekketo	Clade \$1
Stationdamide TaiN 1 KS16 00 D Mab D OH	Clade 81
> uananualinut_lanv_l_KSto_va_D_vic0_D_OII	Clade 82
Shooillana Reub Dict 2 KS5 CDD	Clade 92
Vacinatic_Doub_LASLKSJ_CDD	Clade 02
Salangolid Chin Eld 2 KS5 aDD	Clade_62
Consolid Coor Elop 2 KS10 aDD	Clade_62
Caliboration Elar 3_N310_ZDB	Clade_82
<pre>>eiansona_Cpin_EisO_5_K510_ZDB</pre>	Clade_82

>etnangien_EtnD_4_KS4_eDB	Clade_82
>kalimantacin_batumin_Bat2_5_KS6_eDB	Clade_82
>sorangicin_SorB_3_KS10_eDB	Clade_82
>sorangicin_SorH_2_KS21_eDB	Clade_82
>sorangicin_SorE_3_KS17_eDB	Clade_82
>sorangicin_SorI_1_KS23_zDB	Clade_82
>etnangien EtnE 1 KS5 eDB	Clade 82
>etnangien EtnE 2 KS6 eDB	Clade 82
>bongkrekic acid BonA 5 KS5 DB	Clade 82
>bongkrekic acid BonC 1 KS9 eDB	Clade 82
>bongkrekic acid BonB 1 KS7 DB	Clade 82
>bongkrekic acid BonD 2 KS11 eDB	Clade 82
>bacillaene Bamy BaeR 1 KS13 0aMeDB	Clade 83
>bacillaene Bsub PksR 1 KS14 QaMeDB	Clade 83
>onnamide Onnl 7 KS10 0red	Clade 83
<pre>>calvculin CalH 3 KS27 eDB</pre>	Clade 83
<pre>>nosperin NspC 3 KS6 0biomod aMeeDB</pre>	Clade 83
>rhizovins_RhiD_3_KS11_0himod_aMeeDB	Clade 83
>chivosazole ChiF 4 KS18 0zDB	Clade 83
>disorazole DszC 1 KS2 0A Aoya	Clade 84
<pre>>corallonvronin Corl 2 KS5 0aMe</pre>	Clade 84
>muxonyronin Myn 2 KS5 Oreda L Me	Clade 84
>rhizopadin RizB 7 KS7 0himodh D OH	Clade 85
<pre>>rhizopodin_RizD_3_KS13_0bimod_b_D_OH</pre>	Clade 85
>rhizopodin_RizB_3_KS3_0bimod_a_D_Meh_D_OH	Clade 85
<pre>>rhizopodin_RizE_1_KS17_obimod_b_L_OH</pre>	Clade 85
>chivosazole ChiB 3 KS3 a L Meb L OH	Clade 86
>anthracimycin AtcD 4 KS4 aMezshDB	Clade 86
>luminaolid LumB 3 KS6 reda L Me	Clade 86
<pre>>tolytoxin TtoD 3 KS6 reda L Me</pre>	Clade 86
>misakinolide MisD 1 KS6 reda L Me	Clade 86
>rhizopodin RizB 6 KS6 reda L Me	Clade 86
>rhizopodin RizC 1 KS9 adiMeb L OH	Clade 86
>FR901464 Fr9C 3 KS3 0eDB	Clade 88
>thailanstatin_TstC_3_KS3_0eDB	Clade_88
>oocydin_Smar_OocS_4_KS16_0	Clade_88
>oocydin Ddad OocS 4 KS16 0	Clade 88
>phormidolide EKU96419 PhorP 3 KS15 0eDBbMe	Clade 88
>luminaolid LumC 1 KS7 a L Meb L OMe a L Meb L OH	Clade 89
>tolytoxin TtoE 1 KS7 a D Meb D OH	Clade 89
>mupirocin MmpA KS2 b D OH	Clade_89
>thiomarinol_TmpD_2_KS2_a_L_Meb_L_OH	Clade_89
>albicidin_AlbI_1_KS1_aromaticStarter_AL	Clade_9
>elansolid_Csan_ElaJ_1_KS1_aromaticstarter	Clade_9
>elansolid_Cpin_ElsI_1_KS1_aromaticstarter	Clade_9
>chivosazole_ChiE_1_KS13_zDB_eDB	Clade_90
>mupirocin_MmpE_1_KS9_cyclization	Clade_90
>macrolactin_MlnF_1_KS9_zD_zDB	Clade_90
>luminaolid_LumB_2_KS5_bketo	Clade_90
>tolytoxin_TtoD_2_KS5_bketo	Clade_90
>macrolactin_MlnC_1_KS4_eDB	Clade_90
>macrolactin_MlnD_1_KS5_eDB	Clade_90
>macrolactin_MlnE_1_KS7_b_D_OH	Clade_90
>oocydin_Smar_OocN_1_KS5_0a_D_OHb_L_OH	Clade_92
>oocydin_Ddad_OocN_1_KS5_0a_D_OHb_L_OH	Clade_92
>diaphorin_DipT_1_KS4_0hacetal	Clade_93
>pederin_PedF_1_KS4_0hacetal	Clade_93
>nosperin_NspC_1_KS4_0hacetal	Clade_93
>onnamide_OnnI_1_KS4_0hacetale	Clade_93

>psymberin_PsyD_1_KS3_bimod_0b_L_OH	Clade_93
>calyculin_CalB_1_KS3_KS0_b_L_OH.	Clade_93
>calyculin_CalF_1_KS16_0_b_L_OH_a_L_Meb_L_OH	Clade_93
>mupirocin MmpA_1_KS5_0b_D_OH	Clade_93
>thiomarinol TmpA 1 KS5 0b D OH	Clade 93
>myxovirescin Tal 3 KS3 0b L OH	Clade 93
>oocydin Smar OocN 1 KS5 0a D OHb L OH	Clade 93
>oocydin Ddad OocN 1 KS5 0a D OHb L OH	Clade 93
>oocydin Smar OocN 1 KS5 0a D OHb L OH	Clade 93
>oocvdin Ddad OocN 1 KS5 0a D OHb L OH	Clade 93
>phormidolide EKU96420 PhorO 1 KS9 aMe D OH	Clade 93
>luminaolid LumA 3 KS3 0bimod a D Meb D OH	Clade 94
<pre>>tolytoxin TtoC 3 KS3 0a D Meb D OH</pre>	Clade 94
>misakinolide MisC 3 KS3 Obimod b D OMe	Clade 94
>rhizopodin RizB 7 KS7 Obimodb D OH	Clade 94
<pre>>rhizopodin_rdzD_3_KS13_0bimod_b_D_0H</pre>	Clade 94
>rhizopodin_RizB_3_KS3_0bimod_a_D_Meh_D_OH	Clade 94
<pre>>rhizopodin_RizE_1_KS17_objmod_b_L_OH</pre>	Clade 94
>chivosazole ChiC 6 KS9 0a D Meb D OH	Clade 94
>corallonyronin_Cort. 2_KS11_red	Clade 95
>mvyonyronin MynK 3 KS9 red	Clade 05
>myxopytonin_wink_5_k69_red	Clade 95
> macrolactin_whild_5_K55_red	Clade 95
>thizopodin RizB 2 KS2 eDB	Clade 95
>mizopodni_Kizb_2_KS2_CDB	Clade 95
Slagioliulin LgD 1 KS1 gromaticStarter	Clade 95
>legiolulin LgID 3 KS3 bketo	Clade 95
>9methylstrentimidane SmdL 3 KS3 vinylagous	Clade 96
>cyclobevimide ChyF 3 KS3 vinylogous	Clade 96
>dorrigocin migrastatin MgsF 3 KS3 vinylogous	Clade 96
>kirromycin KirAII 2 KS4 diMb L OH	Clade 96
>kirromycin_KirAIV_3_KS9_aMebketo	Clade 96
>kirromycin KirAIII 4 KS6 AAgly	Clade 96
>corallopyronin CorJ 3 KS6 a D Me	Clade 96
>myxopyronin MxnJ 3 KS6 reda L Me	Clade 96
>rhizoxins RhiF 1 KS15 vinylogous	Clade 96
>SIA7248 SiaF 1 KS4 b D OH	Clade 97
>SIA7248 SiaF 3 KS6 b D OH	Clade 97
>SIA7248 SiaF 4 KS7 b D OH	Clade 97
>SIA7248 SiaE 2 KS3 b L OH	Clade 97
>SIA7248 SiaE 1 KS2 b D OH	Clade 97
>bacillaene Bamy BaeR 2 KS14 0shDBMe	Clade 98
>bacillaene Bsub PksR 2 KS15 OshDBaMe	Clade 98
>calyculin CalH 1 KS25 bMeDB	Clade 98
>calyculin CalB 4 KS6 0reda L Me	Clade 98
>thailandamide TaiD 4 KS4 0reda D Me	Clade 98
>diaphorin DipT 1 KS4 0acetal	Clade 98
>pederin PedF 1 KS4 0hacetal	Clade 98
>nosperin_NspC_1_KS4_0hacetal	Clade_98
>onnamide_OnnI_1_KS4_0hacetale	Clade_98
>psymberin_PsyD_1_KS3_bimod_0b_L_OH	Clade_98
>calyculin_CalB_1_KS3_KS0_b_L_OH	Clade_98
>calyculin_CalF_1_KS16_0_b_L_OH_a_L_Meb_L_OH	Clade_98
>mupirocin_MmpA_1_KS5_0b_D_OH	Clade_98
>thiomarinol_TmpA_1_KS5_0b_D_OH	Clade_98
>myxovirescin_Ta1_3_KS3_0b_L_OH	Clade_98
>oocydin_Smar_OocN_1_KS5_0a_D_OHb_L_OH	Clade_98
>oocydin_Ddad_OocN_1_KS5_0a_D_OHb_L_OH	Clade_98
>oocydin_Smar_OocR_1_KS11_0bimod_bOH	Clade_98

>oocydin_Ddad_OocR_1_KS11_0bimod_bOH				
>phormidolide_EKU96420_PhorO_1_KS9_aMe_D_OH				
>rhizoxins_RhiA_1_KS1_0GNATStarter	Clade_98			
>calyculin_CalE_1_KS10_KS0ox	Clade_98			
>etnangien_EtnG_1_KS11_red	Clade_98			
>oocydin_Smar_OocN_6_KS10_0bketo	Clade_98			
>oocydin_Ddad_OocN_6_KS10_0bketo	Clade_98			
>tartrolon_TrtE_2_KS5_0red	Clade_98			
>bryostatin_BryB_3_KS6_eDB	Clade_99			
>bryostatin_BryX_2_KS15_0	Clade_99			
>onnamide_OnnJ_2_KS12_bimod_eDB	Clade_99			
>calyculin_CalG_4_KS24_eDB	Clade_99			
>calyculin_CalC_3_KS9_eDB	Clade_99			
>rhizoxins_RhiB_4_KS5_eDB	Clade_99			
>phormidolide_EKU96419_PhorP_2_KS14_b_D_OH	Clade_99			
>pederin_PedH_3_KS12_bimod_bOH	Clade_99			
>difficidin_DifK_1_KS13_eDB	Clade_99			
>FR901464_Fr9G_1_KS8_eDB	Clade_99			
>thailanstatin_TstGH_1_KS8_eDB	Clade_99			
>thailandamide_TaiD_3_KS3_eDB				
>thailandamide_TaiM_2_KS14_eDB	Clade_99			

Supplementary Table 4: Selection of TransATor-based structure predictions of known metabolites and structures of the actual polyketides. Accuracy: number of correctly assigned KS substrate specificities (only top hits; as determined by comparison with published biosynthetic proposals) divided by total number of KSs present in a PKS. Hydroxyl group stereochemistry shown in the TransATor-based prediction panel, but missing in the original TransATor output representation are based on KR Fuzzpro patterns.

Polyketide	TransATor-based prediction	Actual polyketide	KS substrates	Original TransATor output	Accuracy
Pederin	HO HO HO HO HO HO HO HO HO HO HO HO HO H	Meg OH H Meg OH H OH H OH OH OH	KS1: GNAT starter KS2: α L-Me β D-OH KS3: exomethyl/exoester KS4: non-elongating (hemiacetal) KS5: amino acids KS6: β D-OH KS7: α L-(di)Me β OH KS8: pyran/furan rings KS9: β L-OH KS10: oxidative rearrangement KS11: completely reduced KS12: double bonds (<i>E</i> -configured) KS13: non-elongating (double bonds)	HO J CH J OH J OH J OH J OH J OH J OH J	13/13 100%
Oocydin			KS1: phosphoglycerate-derived straters KS2: exomethylene KS3: oxidative rearrangement KS4: beta-branch KS5: non-elongating (α D-OH β -L-OH) KS6: α OH β D-OH KS7: β L-OH KS8: pyran/furan rings KS9: completely reduced KS10: non-elongating (various) KS11: non-elongating (mostly β OH) KS12: shifted double bonds KS13: α L-Me β OH KS14: α Me double bonds (Z- configured) KS15: non-elongating (β L-OH) KS16: non-elongating	$- \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \end{array} \\ \\ \\ H D \end{array} \\ H D \end{array} \\ H D \end{array} \\ H D \\ H \\ H$	14/16 87.5%

Rhizoxin	$R = \left(\begin{array}{c} HO \\ HO $	KS1: non-elongating (various specificities) KS2: non-elongating (oxazole/thiazole rings) KS3: amino acids (oxazole/thiazole rings) KS4: α Me double bonds (<i>E</i> - configured) KS5: double bonds (<i>E</i> -configured) KS6: α Me double bondsKS7: α L- (di)Me β OH KS8: β D-OH KS9: α L-(di)Me β OH KS10: shifted double bonds KS11: non-elongating (mostly α -Me double bonds) KS12: shifted double bonds (some with α -Me) KS13: β L-OH KS14: non-elongating (double bonds (mostly <i>Z</i> -configured)) KS15: vinylogous chain branching/ (di)- methyl reduced KS16: non-elongating (double bonds)	R' C CH CH CH CH CH	13/16 81%
Difficidin		 KS1: mainly double bonds KS2: α Me double bonds (<i>E</i>-configured) KS3: completely reduced KS4: β D-OH (some with α L-Me) KS5: non-elongating (bimodule β D-OH) KS6: double bonds (<i>Z</i>-configured) KS7: α Me double bonds (<i>Z</i>-configured) KS8: β L-OH KS9: completely reduced KS10: bimodule β D-OH KS11: double bonds KS12: non-elongating (bimodule β D-OH) KS13: double bonds (<i>E</i>-configured) KS13: double bonds (<i>E</i>-configured) 	HO I I I I I I I I I I I I I I I I I I I	14/14 100%

Macrolactin	OH OH OH OH HO ^M	HOW HOW	KS1: acetyl starter KS2: β D-OH KS3: completely reduced KS4: β -keto or double bonds KS5: β -keto or double bonds KS6: β D-OH or β keto KS7: β -keto or double bonds KS8: bimodule β D-OH KS9: β -keto or double bonds KS10: β -keto or double bonds KS11: bimodule β D-OH		10/11 90%
Predicted thailandamide structure	R OH	он Сон Сон Сон Сон Сон Сон Сон Сон Сон С	Y OH HO HO		
Actual structure of thailandamide	HO LO OH ON N	он он	KS1: various starters KS2: β L-OH KS3: double bonds (<i>E</i> -configured) KS4: non-elongating (α -Me completely reduced or shifted double bond) KS5: amino acids KS6: double bonds (mostly <i>E</i> -configured) KS7: beta branch KS8: non-elongating (bimodule β D-OH) KS9: double bonds KS10: β -keto or double bonds KS11: β D-OH KS12: double bonds (<i>E</i> -configured) KS13: beta branch KS14: double bonds (<i>E</i> -configured) KS15: a Me double bonds (<i>E</i> -configured) KS16: non-elongating (β D-OH)		15/16 94%

Supplementary Table 5: Comparison between TransATor, PRISM3, and antiSMASH4.0-based structural predictions of *trans*-AT PKS-derived polyketides that were not part of the initial training set used to generate HMMs for TransATor and that were deposited to GenBank. No accuracy predictions could be made for PRISM3-based predictions, as predicted structures differ too much from isolated compounds and no monomers are predicted. Accuracy: the provided ratio values signify the number of correctly assigned KS and A domain substrates (only top hits; as determined by comparison with published biosynthetic proposals) divided by the total number of KSs and A domains present in a PKS. The percentage value denotes the number of correctly assigned substrate specificities divided by total number of KS and A domains. The shown structures are outputs of the respective prediction tools (for TransATor predictions structures are derived from predictions in "Viewer" window). antiSMASH nomenclature: mal: β keto; ohmal: β hydroxyl. For monomer predictions in antiSMASH and TransATor, KSs were sorted according to their location in the proposed biosynthetic pathway. Green: correct prediction; red: incorrect prediction.

Actual polyketide	TransATor prediction	PRISM3 prediction	antiSMASH4.0 prediction
(Brevibacillus sp. Leaf 182)	Accuracy: $15/19$ 79%		
KS1: acetyl starters KS2: α Me reduced KS3: β OH KS4: α Me shifted double bonds KS5: non-elongating (double bonds) KS6: shifted double bonds KS7: α-Me shifted double bonds KS8: α-Me reduced KS9: β OH KS10: α Me OH KS11: double bonds KS12: double bonds KS13: beta-branch KS14: α Me double bonds (<i>E</i> -configured)	KS1: various starters KS2: α Me reduced/keto/D-OH KS3: double bonds (mostly e-configured) KS4: α Me reduced/keto/D-OH KS5: non-elongating (α -Me double bonds) KS6: shifted double bonds (with α -Me) KS7: α Me reduced/keto/D-OH KS8: α Me reduced/keto/D-OH KS9: β D-OH (some with α L-Me) KS10: α Me reduced/keto/D-OH KS11: double bonds (mostly <i>E</i> - configured)	No monomers predicted	KS1: ohmal KS2: ohmal KS3: ohmal KS4: ohmal KS5: mal KS6: mal KS7: ohmal KS8: mal KS9: ohmal KS10: ohmal KS11: ohmal KS12: mal KS13: ohmal KS14: ohmal

KS15: β OH KS16: non-elongating (bimodule β D- OH) KS17: shifted double bonds KS18: α Me D-OH KS19: non-elongating (double bonds)	KS12: double bonds (mostly <i>E</i> - configured) KS13: beta-branch KS14: α Me double bonds (<i>E</i> -configured) KS15: β L-OH KS16: non-elongating (bimodule β D-OH) KS17: double bonds (<i>E</i> -configured) KS18: α Me reduced/keto/D-OH		KS15: ohmal KS16: mal KS17: ohmal KS18: ohmal KS19: mal
 	KS19: non-elongating (double bonds)		
	H ₂ N OH		
Ho Chejuenolide ¹⁰ (<i>Hahella chejuensis</i> MB-1084) PKS contains iterative modules	Accuracy: 5/6 83%		
A1: gly KS1: amino acids (glycine) KS2: α Me double bonds (<i>E</i> -configured) KS3: double bonds (<i>E</i> -configured) KS4: β -OH KS5: α Me b-OH	 A1: gly KS1: amino acids (glycine) KS2: double bonds (<i>E</i>-configured) (some with α Me) KS3: double bonds (<i>E</i>-configured) KS4: various specificies (mainly α-Me) KS5: α Me reduced/keto/D-OH 	No monomers predicted	A1: Gly KS1: mal KS2: mal KS3: ohmal KS4: mal KS5: mal
CH OH OH OH OH OH OH HO HO Lacunalide ¹¹ (Gynuella sunshinyii)	Accuracy: 21/25 84%	j ^{aninin} injäätöj	

KS1: acetyl starters	KS1: various starters	No monomers predicted	No monomers predicted
KS2: β D-OH	KS2: β D-OH (some with α L-Me)	_	_
KS3: completely reduced	KS3: completely reduced		
KS4: completely reduced	KS4: completely reduced		
KS5: β D-OH with α L-Me	KS5: β D-OH (some with α L-Me)		
KS6: β D-OH with α L-Me	KS6: β D-OH (some with α L-Me)		
KS7: double bonds <i>E</i> -configured	KS7: double bonds (mostly <i>E</i> -configured)		
KS8: completely reduced	KS8: completely reduced		
KS9: completely reduced	KS9: completely reduced		
KS10: completely reduced	KS10: completely reduced		
KS11: β D-OH	KS11: β D-OH		
KS12: completely reduced	KS12: completely reduced		
KS13: β D-OH	KS13: β D-OH (some with α L-Me)		
KS14: completely reduced	KS14: completely reduced		
KS15: β D-OH	KS15: D-OH		
KS16: double bond with a Me	KS16: β D-OH (some with α L-Me)		
KS17: a Me D-OH	KS17: β D-OH (some with α L-Me)		
KS18: β L-OH	KS18: β L-OH		
KS19: β D-OH	KS19: β D-OH (some with α L-Me)		
KS20: β L-OH	KS20: β L-OH		
KS21: β D-OH	KS21: β D-OH		
KS22: β L-OH	KS22: β L-OH		
KS23: β D-OH	KS23: β D-OH (some with α L-Me)		
KS24: double bond e-configured	KS24: β D-OH (some with α L-Me)		
KS25: non-elongating (double bonds e-	KS25: : β D-OH (some with α L-Me)		
configured)			
С Ripostatin ¹²	он он он он о о	L'Lalla , La	
(Sorangium cellulosum)	Accuracy: 5/9 56%		
KS1: cis-AT PKS		No monomers predicted	KS1: ccmal
KS2: α Me double bond	KS1: cis-AT PKS	-	KS2: redmal

KS3: reduced KS4: β keto KS5: β D-OH	KS2: cis-AT PKS KS3: cis-AT PKS KS4: β D-OH or β keto		KS3: mal KS4: ohmal KS5: ohmal
KS6: β D-OH	KS5: β D-OH or β keto		KS6: mal
KS7: β Me double bond	KS6: various specificities		KS7: ohmal
KS8: completely reduced	KS7: β OMe or β Me double bond		KS8: mal
KS9: shifted double bonds (some with α -	KS8: bimodule β D-OH		KS9: ccmal
Me)	KS9: shifted double bonds (some with α -		
	Me)		
	бон он о		
Pyxipyrrolone ¹³ (<i>Pyxidicoccus</i> sp.)	Accuracy: 6/11 55%	No monomer predicted	
KS0: loading	KS1: acetyl starter		KS1: mal
KS1: isobutyl starter	KS2: β D-OH or β keto		KS2: mal
KS2: skipped?	KS2: g-L-Me red or OH		KS3: ohmal
KS3: α- Me b-OH	KS4: a-L-Me red or OH		KS4: mal
KS4: double bond (e-configured)	KS4: β D-OH		KS5: mal
KS5: double bond (e-configured)	KS5: double bonds (e-configured)		KS6: ohmal
KS6: α-Me double bond	KS6: α -Me double bond		KS7: mal
KS7: β Me double bond	KS7: β OMe or β Me double bond		KS8: ohmal
KS8: double bond (e-configured)	KS8: α-L-Me red or OH		KS9: mal
KS9: α-L-Me b-keto	KS9: α -Me shifted double bond or OH		KS10: mal
A1: ser	A1: ser		A1: ser
KS10: amino acids	KS10: amino acids		KS11: ohmal

Alpiniamide ¹⁴ (<i>Streptomyces</i> sp. IB2014/011-12) KS1: cis-AT PKS loading KS2: double bond (<i>E</i> -configured) KS3: non-elongating (α-Me β-OH A1: gly KS4: amino acids KS5: α Me keto	Accuracy: 5/683%KS1: cis-AT PKSKS2: cis-AT PKSKS3: non-elongating (α-Me completely reduced or shifted double bond)A1: glyKS4: amino acidsKS5: α Me reduced/keto/D-OH	No monomer predicted	KS1: mal A1: gly KS2: ccmal
Phthoxazolin A^{15}	Accuracy: $14/14$		
(<i>Streptomyces avermitilis</i>) The PKS has additional modules that suggest phthoxazolin A is a cleavage product of a larger polyketide			ну — " ^н ^ц ^о ^{он} ^о ^{он}
 A1: gly KS1: amino acids KS2: amino acids KS3: double bonds (<i>E</i>-configured) KS4: double bonds (<i>Z</i>-configured) KS5: α-Me double bond A2: gly KS6: amino acids (glycine) KS7: double bonds (<i>E</i>-configured) KS8: non-elongating (bimodule β D-OH) KS9: double bonds (mostly <i>E</i>-configured) KS10: non-elongating (double bonds) A3: ser A4: tyr 	 A1: gly KS1: amino acids KS2: amino acids KS3: double bonds KS4: double bonds KS5: α-Me double bond A2: gly KS6: amino acids (glycine) KS7: double bonds (<i>E</i>-configured) KS8: non-elongating (bimodule β D-OH) KS9: double bonds (mostly <i>E</i>-configured) KS10: non-elongating (double bonds) A3: ser A4: tyr 	No monomer predicted	A1: gly KS1: mal KS2: ohmal KS3: ohmal KS4: ohmal KS5: ohmal A2: gly KS6: ohmal KS7: ohmal KS8: mal KS9: ohmal KS9: ohmal KS10: mal A3: ser

			A4: ala
Lagriamide ¹⁶ (<i>Burkholderia gladioli</i> Lv-StB)	Accuracy: $17/20$	· Jon · · · · · · · · · · · · · · · · · · ·	
KS1: GNAT starter KS2: double bond <i>E</i> -configured KS3: L-OH KS4: double bond <i>E</i> -configured KS5: α-Me KS6: non-elongating (double bonds) A1: gly KS7: amino acids KS8: α L-Me β OH A1: gly KS9: amino acids KS10: completely reduced KS11: α L-Me β OH KS12: completely reduced KS13: skipped KS14: D-OH KS15: completely reduced KS16: β L-OH KS17: α Me DB KS18: reduced	KS1: cis-AT PKSKS2: double bonds (mostly <i>E</i> -configured)KS3: L-OHKS4: double bonds (mostly <i>E</i> -configured)KS5: α -MeKS6: non-elongating (double bonds)A1: glyKS7: amino acidsKS8: α L-Me β OHA2: glyKS9: amino acidsKS10: completely reducedKS11: α L-(di)Me β OHKS12: completely reducedKS13: α Me double bondsKS14: D-OHKS15: completely reducedKS16: β L-OHKS17: α Me reduced/keto/D-OHKS18: α Me double bonds	No monomers predicted	KS1: ohmal KS2: ohmal KS3: ohmal KS4: ohmal KS5: ohmal KS6: mal A1: gly KS7: ohmal KS8: mal A2: gly KS9: ohmal KS10: ohmal KS11: ohmal KS12: mal KS13: ohmal KS13: ohmal KS14: ohmal KS15: ohmal KS16: mal KS16: mal KS17: mal

$\begin{array}{c} & \overset{OH}{\longrightarrow} & \overset{H}{\longrightarrow} & \overset{OH}{\longrightarrow} & O$	Accuracy: 11/11 100%	j to the	
KS1: GNAT starter KS2: α L-Me β D-OH KS3: exomethyl/exoester KS4: non-elongating (hemiacetale) A1: gly KS5: amino acids KS6: non-elongating (double bonds) KS7: shifted double bonds with α -Me KS8: non-elongating (α -Me β D-OH) A2: pro A3: gly	KS1: GNAT starter KS2: α L-Me β D-OH KS3: exomethyl/exoester KS4: non-elongating (hemiacetale) A1: gly KS5: amino acids KS6: non-elongating (α -Me double bonds) KS7: shifted double bonds (with α -Me) KS8: non-elongating (β D-OH) A2: pro A3: gly	No monomers predicted	KS1: ohmal KS2: mal KS3: ohmal KS4: mal A1: gly KS5: ohmal KS6: mal KS7: ohmal KS8: mal A2: pro A3: gly KS9: mal
Total accuracy of TransATor (absolute/relativ)	99/121 82%		21/96 22%

Supplementary Table 6: Proteins encoded in the tartrolon (tar) BGC and their putative functions.

Protein	Amino acids	Proposed function	Closest homolog	Identity (%)	Accession number7
TarK	211	TetR/AcrR family transcriptional regulator	Saccharospirillum impatiens (WP_037337596.1)	57	WP_044617971.1
TarL	259	enoyl-CoA hydratase	Rheinheimera nanhaiensis (WP_008218131.1)	41	WP_044617970.1
TarM	959	peptidase M16	<i>Motiliproteus</i> sp. MSK22-1 (WP_076719499.1)	56	WP_076719499.1
TarO	193	thymidine kinase	<i>Vibrio</i> sp. S234-5 (WP_045571983.1)	65	WP_044617968.1
TarP	407	Cyclic di-GMP phosphodiesterase	<i>Marinimicrobium</i> sp. LS-A18 (WP_024461494.1)	42	WP_052830363.1
TarB	289	AT	Teredinibacter (WP_018276260.1)	74	WP_044617967.1
TarQ	236	hypothetical protein	Teredinibacter turnerae (WP_018416731.1)	65	WP_044620136.1
TarD	4388	PKS (DH*-KR*-FkbH-ACP-KS-DH- KR-ACP-KS-KR-ACP-KS)	<i>Teredinibacter turnerae</i> (WP_018416727.1)	51	AJQ95776.1
TarE	4856	PKS (KR-ACP-KS-DH-KR-MT-ACP- KS-ACP-KS-ACP)	<i>Teredinibacter</i> sp. 991H.S.0a.06 (WP_045825587.1)	52	WP_044620134.1
TarF	4540	PKS (KR-ACP-KS-DH-KR-MT-ACP- KS-ACP-KS-ACP)	<i>Teredinibacter turnerae</i> (WP_028876839.1)	54	AJQ95774.1
TarG	372	Flavin-dependent oxidoreductase	<i>Teredinibacter turnerae</i> (WP_028886452.1)	82	WP_044617966.1
TarH	262	TE	<i>Teredinibacter turnerae</i> (WP_028886452.1)	50	WP_082070762.1
TarR	283	ABC transporter ATP-binding protein	Enterovibrio pacificus (WP_068904725.1)	70	WP_044617965.1
TarS	227	hypothetical protein	Enterovibrio pacificus (WP_068904723.1)	55	WP_044617964.1
TarT	241	hypothetical protein	Enterovibrio pacificus (WP_068904723.1)	64	WP_044617963.1
TarI	452	dioxygenase	<i>Teredinibacter turnerae</i> (WP_028886454.1)	77	WP_044617962.1

Supplementary Table 7: Deduced proteins encoded on the <i>lept</i> BGC and their puta

Gene	Protein	Protein size	Proposed function	Closest homolog*	Identity	Accession number
431	LeptA	532	ABC transporter permease/secreted hydrolase	<i>Leptolyngbya</i> sp. ISBN3-Nov-94-8 (AMH40428.1)	38%	WP_006512961.1
430	LeptB	417	hypothetical protein	delta proteobacterium NaphS2 (EFK06465.1)	45%	WP_006512960.1
429	LeptC	84	hypothetical protein	Desulfobacter hydrogenophilus (WP 111956780.1)	46%	WP_006512959.1
428	LeptD	476	class III lipase	<i>Leptolyngbya</i> sp. ISBN3-Nov-94-8 (AMH40431.1)	52%	WP_006512958.1
427	LeptE	292	alpha/beta hydrolase/AT	Planctomycetes bacterium (REK15718.1)	37%	WP_006512957.1
426	LeptF	477	class III lipase	Leptolyngbya sp. ISBN3-Nov-94-8 (AMH40431.1)	62%	WP_006512956.1
425	LeptG	407	class III lipase	Leptolyngbya sp. ISBN3-Nov-94-8 (AMH40431.1)	94%	WP_006512955.1
424	LeptH	417	3-oxoacyl-acyl-carrier protein synthase	Leptolyngbya sp. ISBN3-Nov-94-8 (AMH40432.1)	96%	WP_006512954.1
423	LeptI	85	АСР	Leptolyngbya sp. ISBN3-Nov-94-8 (AMH40442.1)	99%	WP_006512953.1
422	LeptJ	315	AT (malonyl-CoA)	Leptolyngbya sp. ISBN3-Nov-94-8 (AMH40435.1)	94%	WP_006512952.1
421	LeptK	326	malonyl CoA-acyl carrier protein transacylase	Leptolyngbya sp. ISBN3-Nov-94-8 (AMH40436.1)	99%	WP_006512951.1
420	LeptL	5057	PKS (DH-FkbM-FkbH-ACP-KS-ECH-ECH- ACP-ACP-KS-KR-ACP-KS-KR)	Leptolyngbya sp. ISBN3-Nov-94-8 (AMH40422.1)	93%	WP_006512950.1
419	LeptM	7161	PKS (MT-ACP-KS-KR-ACP-KS-KR-MT- ACP-KS-KR-ACP-KS-ACP-ACP-KS-MT- KR-ACP)	Leptolyngbya sp. ISBN3-Nov-94-8 (AMH40421.1)	92%	WP_006512949.1
418	LeptN	589	Ser/Thr protein kinase	Leptolyngbya sp. ISBN3-Nov-94-8 (AMH40427.1)	95%	WP_006512948.1
417	LeptO	384	Flavin dependent mono-oxygenase	Leptolyngbya sp. ISBN3-Nov-94-8 (AMH40433.1)	99%	WP_006512947.1
416	LeptP	4430	PKS (KS-ACP-KS-KR-ACP-KS-DH-PS- KR-ACP-KS-ACP)	Leptolyngbya sp. ISBN3-Nov-94-8 (AMH40423.1)	89%	WP_006512946.1
415	LeptQ	4309	PKS (ACP-KS-KR-ACP-KS-ACP-ACP- ACP-KS-ACP-C)	Leptolyngbya sp. ISBN3-Nov-94-8 (AMH40443.1)	61%	WP_006512945.1
414	LeptR	634	FAD-dependent halogenase	Leptolyngbya sp. ISBN3-Nov-94-8 (AMH40426.1)	96%	WP_006512944.1
413	LeptS	559	hydrolase	Leptolyngbya sp. ISBN3-Nov-94-8 (AMH40428.1)	93%	WP_006512943.1
412	LeptT	115	hypothetical protein	Leptolyngbya sp. ISBN3-Nov-94-8 (AMH40441.1)	95%	WP_006512942.1
411	LeptU	237	PPTase	Leptolyngbya sp. ISBN3-Nov-94-8 (AMH40439.1)	89%	WP_006512941.1
410	LeptV	486	long-chain fatty acid CoA-ligase	<i>Leptolyngbya</i> sp. ISBN3-Nov-94-8 (AMH40429.1)	95%	WP_006512940.1

409	LeptW	255	enoyl-CoA hydratase	<i>Leptolyngbya</i> ISBN3-Nov-94-8 (AMH40437.1)	sp.	97%	WP_006512939.1
408	LeptX	255	enoyl-CoA hydratase	Leptolyngbya ISBN3-Nov-94-8 (AMH40438.1)	sp.	98%	WP_006512938.1
407	LeptY	440	HMG-CoA synthase	Leptolyngbya ISBN3-Nov-94-8 (AMH40430.1)	sp.	99%	WP_006512937.1
406	LeptZ	357	type IV secretion protein Rhs/WD40 repeat containing protein	Leptolyngbya ISBN3-Nov-94-8 (AMH40434.1)	sp.	96%	WP_006512936.1
405	LeptAA	1395	type IV secretion protein Rhs/WD40 repeat containing protein	Leptolyngbya ISBN3-Nov-94-8 (AMH40424.1)	sp.	98%	WP_006512935.1

KR	Predicted stereochemistry of phormidolide	Predicted stereochemistry of leptolyngbyalide	Stereochemistry assigned by Williamson <i>et al.</i> ⁷	Suggested correct stereochemistry
Module 3	D-OH	D-OH	L-OH	D-OH
Module 4	D-OH	D-OH	L-OH	D-OH
Module 5	D-OH	D-OH	L-OH	D-OH
Module 6	D-OH	D-OH	L-OH	D-OH
Module 7	D-OH	D-OH	L-OH	D-OH
Module 9	D-OH	D-OH	L-OH	D-OH
Module 11	L-OH	L-OH	D-OH	L-OH
Module 12	D-OH	D-OH	L-OH	D-OH
Module 15	D-OH	D-OH	L-OH	D-OH
Module 16	D-OH	D-OH	L-OH	D-OH

Supplementary Table 8: Predicted stereochemistry for phormidolide and leptolyngbyalide A.

Supplementary Table 9: deduced proteins encoded in the *cun* BGC and their putative functions.

Aq349 protein	# amino acids	Proposed function	Closest homolog (NCBI Ref. Seq.)	Identity (%)	Accession number
CunA	195	transcriptional activator	<i>Aquimarina megaterium</i> EL33 (WP 074405477.1)	100	WP_074405477.1
CunB	3516	PKS (ACP-DUF-PLP-KS-DH- KR-ACP-KS-DH)	Aquimarina megaterium EL33 (WP 074405476.1)	99	WP_108807999.1
CunC	589	Aminotransferase/aminomutase	Aquimarina megaterium EL33 (WP 074405475.1)	100	WP_074405475.1
CunD	1265	PKS (ACP-KS ⁰ -ACP-TE)	Aquimarina megaterium EL33 (WP 074405474.1)	99	WP_108807998.1
CunE	813	transporter	Aquimarina megaterium EL33 (WP_074405473.1)	100	WP_074405473.1
CunF	295	hypothetical protein	Aquimarina megaterium (WP 074405472.1)	100	WP_074405472.1
CunG	421	oxidoreductase	Aquimarina megaterium EL33 (WP 074405471.1)	98	WP_108807997.1
CunH	204	hypothetical protein	Aquimarina megaterium EL33 (WP_074405470.1)	100	WP_074405470.1
CunI*	1482	PKS (GNAT-ACP-KS-ECH- ECH-ECH)	Aquimarina sp. AU58 (WP 109851288.1)	93	*
CunJ	4377	PKS (ACP-KS-KR-ACP-KS- DH ⁰ -KR-cMT-ACP-KS-DH)	Aquimarina sp. AU58 (WP 109851288.1)	93	WP_108809475.1
CunK	1550	PKS (KR-ACP-KS-DH ⁰)	<i>Aquimarina</i> sp. AU58 (WP 109851289.1)	93	WP_132066262.1
CunL*	1373	PKS (ECH-ECH-ECH-ACP- ACP-KS-DH)	<i>Aquimarina</i> sp. AU58 (WP_109851289.1)	94	*
CunM	4745	PKS (KR-ACP-KS-DH ⁰ -ECH- ECH-ECH-ACP-ACP-KS- DH ⁰ -KR-ACP-KS)	Aquimarina sp. AU58 (WP_109851290.1)	93	WP_108807996.1
CunN	411	hypothetical protein	Aquimarina megaterium EL33 (WP 074409437.1)	99	WP_108807995.1
CunO	4617	PKS (DH-KR-ACP-KS-DH ⁰ - KR-ACP-KS-KR-ACP-KS- DH)	Aquimarina sp. AU58 (WP_109851292.1)	94	WP_108807994.1
CunP	273	hypothetical protein	Aquimarina megaterium EL33 (WP 074409439.1)	100	WP_074409439.1
CunQ	403	cysteine desulfurase	Aquimarina megaterium EL33 (WP 082994979.1)	100	WP_082994979.1
CunR	206	methyltransferase	Aquimarina megaterium EL33 (WP_074409440.1)	100	WP_074409440.1
CunS	664	aminotransferase	Aquimarina megaterium EL33 (WP 025666766.1)	99	WP_108807993.1
CunT	419	HMG-CoA synthase homolog	Aquimarina megaterium EL33 (WP 074409442.1)	100	WP_074409442.1
CunU	263	enoyl-CoA hydratase	Aquimarina megaterium EL33 (WP 074409443.1)	100	WP_074409443.1
CunV	450	hypothetical protein	Aquimarina megaterium (WP_074409444.1) EL33	100	WP_074409444.1
CunW	316	AT	Aquimarina megaterium EL33 (WP_074409445.1)	100	WP_074409445.1
CunX	241	hydroxyaxylglutathione hydrolase-like enzyme	Aquimarina megaterium EL33 (WP 082994980.1)	100	WP_082994980.1
CunY	86	ACP	Aquimarina megaterium EL33 (WP_074409446.1)	100	WP_074409446.1
CunZ	426	KS	Aquimarina megaterium EL33 (WP 074409447.1)	99	WP_108808230.1
CunAa	396	AT	Aquimarina megaterium EL33 (WP 074409448.1)	99	WP_108807992.1

* putatively split genes at contig borders. No accession numbers available.

Supplementary Dataset 1: Maximum likelihood phylogenetic tree from a MUSCLE alignment of 655 KS sequences of all 54 characterized *trans*-AT PKS BGCs (as of December 2016). Legend: aMe: α -methyl, bOH: β -hydroxyl, aOH: α -hydroxyl, 0: non elongating KS: hacetal: hemiacetal, DB: double bond, shDB: shifted double bond, red: completely reduced, vinylogous: vinylogous chain branching, Oxa: oxazole, Thia: thiazole, eDB: *E*-configured DB, zDB: *Z*-configured DB, D_OH: D-configured hydroxyl group, L_OH: L-configured hydroxyl group, rearrangement: oxygen insertion. Branch nomenclature: polyketide name_protein name_number of KS on the respective protein_number of KS in the PKS_substrate specificity. Numbers on tree nodes indicate bootstrap values.

References

- 1 Blin K., M. M., Kottmann R., Lee S. Y., and Weber T. The antiSMASH database, a comprehensive database of microbial secondary metabolite biosynthetic gene clusters. *Nucleic Acids Res.*, 555-559 (2016).
- 2 Helfrich, E. J. & Piel, J. Biosynthesis of polyketides by *trans*-AT polyketide synthases. *Nat. Prod. Rep.* **33**, 231-316 (2016).
- 3 Piel, J. Biosynthesis of polyketides by *trans*-AT polyketide synthases. *Nat. Prod. Rep.* 27, 996-1047 (2010).
- 4 O'Brien, R. V., Davis, R. W., Khosla, C. & Hillenmeyer, M. E. Computational identification and analysis of orphan assembly-line polyketide synthases. J. Antibiot. **67**, 89-97 (2014).
- 5 Piel, J. Biosynthesis of polyketides by *trans*-AT polyketide synthases. *Nat. Prod. Rep.* 27, 996-1047 (2010).
- 6 Bertin, M. J. *et al.* The phormidolide biosynthetic gene cluster: A *trans*-AT PKS pathway encoding a toxic macrocyclic polyketide. *ChemBioChem* **17**, 164-173 (2016).
- 7 Williamson, R. T., Boulanger, A., Vulpanovici, A., Roberts, M. A. & Gerwick, W. H. Structure and absolute stereochemistry of phormidolide, a new toxic metabolite from the marine cyanobacterium *Phormidium* sp. J. Org. Chem. **67**, 7927-7936 (2002).
- 8 Blin, K., Medema, M. H., Kottmann, R., Lee, S. Y. & Weber, T. The antiSMASH database, a comprehensive database of microbial secondary metabolite biosynthetic gene clusters. *Nucleic Acids Res.* **45**, 555-559 (2017).
- 9 Helfrich, E. J. N. *et al.* Bipartite interactions, antibiotic production and biosynthetic potential of the *Arabidopsis* leaf microbiome. *Nature Microbiology* **3**, 909-919, (2018).
- 10 Ng, B. G., Han, J. W., Lee, D. W., Choi, G. J. & Kim, B. S. The chejuenolide biosynthetic gene cluster harboring an iterative *trans*-AT PKS system in *Hahella chejuensis* strain MB-1084. *J. Antibiot.* **71**, 495-505, (2018).
- 11 Ueoka, R. *et al.* Genome-based identification of a plant-associated marine bacterium as a rich natural product source. *Angew. Chem. Int. Ed.* **57**, 14519-14523, (2018).
- 12 Fu, C. Z. *et al.* Solving the puzzle of one-carbon loss in ripostatin biosynthesis. *Angew. Chem. Int. Ed.* **56**, 2192-2197, (2017).
- 13 Kjaerulff, L. *et al.* Pyxipyrrolones: Structure elucidation and biosynthesis of cytotoxic myxobacterial metabolites. *Angew. Chem. Int. Ed.* **56**, 9614-9618, (2017).
- 14 Paulus, C. *et al.* New alpiniamides from *Streptomyces* sp. IB2014/011-12 assembled by an unusual hybrid non-ribosomal peptide synthetase *trans*-AT polyketide synthase enzyme. *Front. Microbiol.* **9**, (2018).
- 15 Suroto, D. A., Kitani, S., Arai, M., Ikeda, H. & Nihira, T. Characterization of the biosynthetic gene cluster for cryptic phthoxazolin A in Streptomyces avermitilis. *PLoS One* **13**, (2018).
- 16 Florez, L. V. *et al.* An antifungal polyketide associated with horizontally acquired genes supports symbiont-mediated defense in Lagria villosa beetles. *Nat. Commun.* **9**, (2018).
- 17 Kust, A. *et al.* Discovery of a pederin family compound in a nonsymbiotic bloom-forming Cyanobacterium. *ACS Chem. Biol.* **13**, 1123-1129, (2018).