Supplementary Note

Automated structure prediction of *trans*-acyltransferase polyketide synthase products

Eric J. N. Helfrich,¹* Reiko Ueoka,¹* Alon Dolev,¹* Michael Rust,¹ Roy A. Meoded,¹ Agneya Bhushan,¹ Gianmaria Califano,^{2,3} Rodrigo Costa,^{2,4} Muriel Gugger,⁵ Christoph Steinbeck,^{3,6} Pablo Moreno,^{6#} and Jörn Piel^{1#}

¹Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog Weg 4, 8093 Zurich, Switzerland.

²Centre of Marine Sciences, University of Algarve, Gambelas Campus, Building 7, 8005-139 Faro, Portugal. ³Institute for Inorganic and Analytical Chemistry, Friedrich-Schiller-Universität Jena, Lessingstrasse 8, 07743 Jena,

Germany.

⁴Institute for Bioengineering and Biosciences (IBB), Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal.

⁵Institut Pasteur, Collection des Cyanobactéries, 28 Rue du Docteur Roux, 75724 Paris CEDEX15, France. ⁶European Bioinformatics Institute (EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, United Kingdom.

[#]Correspondence should be addressed to JP (jpiel@ethz.ch) and PM (pmoreno@ebi.ac.uk). *Authors contributed equally to this work

Supplementary Note Figure 1: HR-ESI-MS spectrum of tartrolon D (4) from *Gynuella sunshinyii* (*m/z* 838.4935 [M+NH₄]⁺, *m/z* 843.4475 [M+Na]⁺) (n = 1).

Supplementary Note Figure 2: ¹H NMR spectrum of tartrolon D (4) from *Gynuella sunshinyii* in CD₃OD (n = 1).

Supplementary Note Figure 3: HR-ESI-MS spectrum of tartrolon F (5) from *Gynuella sunshinyii* (*m/z* 840.5090 [M+NH₄]⁺, *m/z* 845.4635 [M+Na]⁺) (n = 1).

Supplementary Note Figure 4: ¹H NMR spectrum of tartrolon F (5) from *Gynuella sunshinyii* in CD₃OD (n = 1).

Supplementary Note Figure 5: HSQC spectrum of tartrolon F (5) from *Gynuella sunshinyii* in CD₃OD (n = 1).

Supplementary Note Figure 7: HMBC spectrum of tartrolon F (5) from *Gynuella sunshinyii* in CD₃OD (n = 1).

Supplementary Note Figure 8: NOESY spectrum of tartrolon F (5) from *Gynuella sunshinyii* in CD₃OD (n = 1).

Supplementary Note Figure 9: HR-ESI-MS spectrum of tartrolon G (6) from *Gynuella sunshinyii* (*m/z* 842.5243 [M+NH₄]⁺, *m/z* 847.4791 [M+Na]⁺) (n = 1).

Supplementary Note Figure 10: ¹H NMR spectrum of tartrolon G (6) from *Gynuella sunshinyii* in CD₃OD (n = 1).

Supplementary Note Figure 11: HSQC spectrum of tartrolon G (6) from *Gynuella sunshinyii* in CD₃OD (n = 1).

Supplementary Note Figure 12: COSY spectrum of tartrolon G (6) from *Gynuella sunshinyii* in CD₃OD (n = 1).

Supplementary Note Figure 13: HMBC spectrum of tartrolon G (6) from *Gynuella sunshinyii* in CD₃OD (n = 1).

Supplementary Note Figure 14: NOESY spectrum of tartrolon G (6) from *Gynuella sunshinyii* in CD₃OD (n = 1).

Supplementary Note Figure 15: ESI-MS² spectrum of tartrolon G (6) from *Gynuella sunshinyii* (n = 1).

Supplementary Note Figure 16: HR-ESI-MS spectra of 10-12. A: leptolyngbyalide A (**10**) (*m*/*z* 1055.6403, 1057.6370 [M+H]⁺, *m*/*z* 1072.6664, 1074.6653 [M+NH4]⁺, *m*/*z* 1077.6213, 1.79.6201 [M+Na]⁺), B: leptolyngbyalide B (**11**) (*m*/*z* 977.7289 [M+H]⁺, *m*/*z* 994.7554 [M+NH4]⁺, *m*/*z* 999.7105 [M+Na]⁺) and C: leptolyngbyalide C (**12**) (*m*/*z* 963.7126 [M+H]⁺, *m*/*z* 980.7391 [M+NH4]⁺, *m*/*z* 985.6940 [M+Na]⁺) from *Leptolyngbya* sp. PCC 7375 (n = 1).

С

Supplementary Note Figure 17: ¹H NMR spectrum of leptolyngbyalide A (10) from *Leptolyngbya* sp. PCC 7375 in CDCl₃ (n = 1).

Supplementary Note Figure 18: HSQC spectrum of leptolyngbyalide A (10) from *Leptolyngbya* sp. PCC 7375 in CDCl₃ (n = 1).

Supplementary Note Figure 19: COSY spectrum of leptolyngbyalide A (10) from *Leptolyngbya* sp. PCC 7375 in CDCl₃ (n = 1).

Supplementary Note Figure 20: HMBC spectrum of leptolyngbyalide A (10) from *Leptolyngbya* sp. PCC 7375 in CDCl₃ (n = 1).

Supplementary Note Figure 21: NOESY spectrum of leptolyngbyalide A (10) from *Leptolyngbya* sp. PCC 7375 in CDCl₃ (n = 1).

Supplementary Note Figure 22: ¹H NMR spectrum of leptolyngbyalide B (11) from *Leptolyngbya* sp. PCC 7375 in CDCl₃ (n = 1).

Supplementary Note Figure 23: HSQC spectrum of leptolyngbyalide B (11) from *Leptolyngbya* sp. PCC 7375 in CDCl₃ (n = 1).

Supplementary Note Figure 24: COSY spectrum of leptolyngbyalide B (11) from *Leptolyngbya* sp. PCC 7375 in CDCl₃ (n = 1).

Supplementary Note Figure 25: HMBC spectrum of leptolyngbyalide B (11) from *Leptolyngbya* sp. PCC 7375 in CDCl₃ (n = 1).

Supplementary Note Figure 26: NOESY spectrum of leptolyngbyalide B (11) from *Leptolyngbya* sp. PCC 7375 in CDCl₃ (n = 1).

Supplementary Note Figure 27: ¹H NMR spectrum of leptolyngbyalide C (12) from *Leptolyngbya* sp. PCC 7375 in CDCl₃ (n = 1).

Supplementary Note Figure 28: HSQC spectrum of leptolyngbyalide C (12) from *Leptolyngbya* sp. PCC 7375 in $CDCl_3$ (n = 1).

Supplementary Note Figure 29: COSY spectrum of leptolyngbyalide C (12) from *Leptolyngbya* sp. PCC 7375 in CDCl₃ (n = 1).

Supplementary Note Figure 30: HMBC spectrum of leptolyngbyalide C (12) from *Leptolyngbya* sp. PCC 7375 in CDCl₃ (n = 1).

Supplementary Note Figure 31: NOESY spectrum of leptolyngbyalide C (12) from *Leptolyngbya* sp. PCC 7375 in CDCl₃ (n = 1).

Supplementary Note Figure 33: HR-ESI-MS spectra of cuniculene 6A from *Aquimarina* sp. Aq78 and *Aquimarina* sp. Aq349. A: Extracted ion chromatogram (m/z 371.2174-371.2212) of the extract from *Aquimarina* sp. Aq78 (upper) and *Aquimarina* sp. Aq349 (lower). B: HR-ESI-MS spectrum of cuniculene 6A (14) from *Aquimarina* sp. Aq78 (m/z 349.2376 [M+H]⁺, m/z 371.2196 [M+Na]⁺, m/z 331.2270 [M+H-H₂O]⁺, m/z 313.2164 [M+H-2H₂O]⁺) (n = 1).

Supplementary Note Figure 34: ¹H NMR spectrum of cuniculene 6A (14) from *Aquimarina* sp. Aq78 in DMSO- d_6 (n = 1).

Supplementary Note Figure 35: HSQC spectrum of cuniculene 6A (14) from Aquimarina sp. Aq78 in DMSO d_6 (n = 1).

Supplementary Note Figure 36: COSY spectrum of cuniculene 6A (14) from Aquimarina sp. Aq78 in DMSO d_6 (n = 1).

Supplementary Note Figure 37: HMBC spectrum of cuniculene 6A (14) from Aquimarina sp. Aq78 in DMSO- d_6 (n = 1).

Supplementary Note Figure 38: HR-ESI-MS spectrum of cuniculene 6B (15) from *Aquimarina* sp. Aq78 (m/z 609.3577 [M+H]⁺, m/z 631.3394 [M+Na]⁺) (n = 1).

Supplementary Note Figure 39: ¹H NMR spectrum of cuniculene 6B (15) from *Aquimarina* sp. Aq78 in DMSO- d_6 (n = 1).

Supplementary Note Figure 40: HSQC spectrum of cuniculene 6B (15) from *Aquimarina* sp. Aq78 in DMSO- d_6 (n = 1).

Supplementary Note Figure 41: COSY spectrum of cuniculene 6B (15) from *Aquimarina* sp. Aq78 in DMSO-*d*₆ (n = 1).

⁸ Supplementary Note Figure 42: HMBC spectrum of cuniculene 6B (15) from *Aquimarina* sp. Aq78 in DMSO*d*₆ (n = 1).

		Compound 5		Compound 6			
No.	δ_{C}	$\delta_{\rm H}$, mult.	No.	$\delta_{\rm C}$	$\delta_{\rm H}$, mult.	δ _C	$\delta_{\rm H}$, mult.
				172.		172.	
1	172.2		1'	4		5	
2	74.5	4.15 s	2'	74.7	4.18 s	74.6	4.17 s
3	99.3		3'	99.1		99.2	
4	35.3	2.05 ovlp	4'	35.4	2.05 ovlp	35.5	2.09 m
5	28.9	1.54 ovlp	5'	28.9	1.54 ovlp	28.9	1.55 ovlp
		1.70 ovlp			1.70 ovlp		1.70 ovlp
6	33.0	1.24 m	6'	33.0	1.24 m	33.2	1.24 ovlp
							1.53 ovlp
7	68.2	4.27 m	7'	67.5	4.03 m	67.1	4.02 ovlp
		2.40 (dd, 4.2,					
8	49.9	14.9)	8'	44.8	1.44 (dd, 6.1, 6.1)	45.1	1.40 m
		2.54 (dd, 8.8, 14.9)					
9	211.3		9'	67.9	3.97 m	67.1	4.02 ovlp
		2.53 (dd, 8.8,					
10	52.3	15.8)	10'	45.2	1.53 ovlp	45.4	1.46 ovlp
		2.63 (dd, 3.9, 15.8)					1.55 ovlp
11	67.7	4.08 m	11'	70.8	3.75 m	70.5	3.76 m
12	37.7	1.52 ovlp	12'	37.7	1.52 ovlp	37.3	1.48 ovlp
		1.57 ovlp			1.57 ovlp		1.61 m
13	29.7	2.18 ovlp	13'	29.7	2.18 ovlp	30.0	2.14 ovlp
		2.25 ovlp			2.25 ovlp		2.26 m
		1		135.	1	135.	5.68 (ddd, 7.8, 7.8,
14	135.6	5.70 ovlp	14'	6	5.70 ovlp	6	15.0)
				126.		126.	
15	126.8	6.36 ovlp	15'	8	6.36 ovlp	8	6.36 (dd, 11.0, 15.0)
		5.99 (dd, 10.8,		130.	5.99 (dd, 10.8,	130.	
16	130.7	10.8)	16'	120	10.8)	6	5.98 (dd, 11.0, 11.0)
17	120.2	5 20 av1a	171	129.	5 20 av1a	129.	5.26
1/	129.2	5.29 oVIp	1/	2	5.29 ovlp		5.26 m
18	24.6	2.240VIp	18	24.0	2.24 ovip	24.4	2.19 m
10	267	2.30 oVlp	1.01	267	2.30 ovip	26.2	2.38 m
19	36.7	1.63 oVlp	19'	36.7	1.63 ovip	36.3	1.65 m
20	70 7	1./5 oVIp	201	72.7	1./5 ovip	70.4	1./6 m
20	12.1	4.99 ovip	20'	12.7	4.9/ ovlp	12.4	4.95 m
21	20.4	1.29 (d, 6.2)	21'	20.3	1.27 (d, 6.3)	20.4	1.26 (d, 6.1)
22	16.7	0.99 (d, 6.7)	22'	16.7	1.00 (d, 6.7)	16.6	0.99 (d, 6.7)

Supplementary Note Table 1: NMR chemical shifts of tartrolons F (5) and G (6) in CD₃OD.

		Compound 10	0	Compound 11		Compound 12
No.	$\delta_{\rm C}$	$\delta_{\rm H}$, mult.	$\delta_{\rm C}$	$\delta_{\rm H}$, mult.	$\delta_{\rm C}$	$\delta_{\rm H}$, mult.
1	165.9		165.9		166.0	
2	117.7	5.89 s	117.7	5.89 s	117.7	5.89 s
3	161.3		161.3		161.3	
4	51.0	2.03 (dd, 11.8, 11.8)	51.1	2.02 (dd, 11.7, 11.7)	51.0	2.03 ovlp
		2.37 ovlp		2.35 ovlp		2.37 ovlp
5	26.8	2.26 ovlp	26.8	2.24 m	26.8	2.26 ovlp
6	48.2	1.37 ovlp	48.2	1.36 ovlp	48.2	1.37 ovlp
		1.49 ovlp		1.48 ovlp		1.49 ovlp
7	68.8	3.86 ovlp	68.9	3.86 ovlp	68.8	3.86 ovlp
8	48.4	1.12 m	48.4	1.12 m	48.4	1.12 m
9	27.3	1.29 ovlp	27.2	1.30 ovlp	27.2	1.32 ovlp
10	44.4	1.32 ovlp	44.4	1.29 ovlp	44.4	1.32 ovlp
		1.73 m		1.74 ovlp		1.73 m
11	76.7	4.25 (dd, 10.3, 10.3)	76.7	4.27 br	76.7	4.25 br
12	36.1	1.78 m	36.1	1.78 ovlp	36.1	1.76 ovlp
		2.43 (ddd, 4.4, 8.7, 13.1)		2.44 m		2.43 (ddd, 4.5, 8.9, 14.4)
13	78.6	5.10 (d, 4.3)	78.6	5.10 (d, 4.3)	78.6	5.10 (d, 4.3)
14	87.0		86.8		86.9	
15	70.1	4.73 (dd, 3.7, 9.0)	70.1	4.72 (dd, 3.4, 8.9)	70.0	4.73 (dd, 3.7, 8.9)
16	127.5	5.42 (d, 9.0)	127.5	5.42 (d, 8.9)	127.4	5.42 (d, 8.9)
17	137.7		137.7		137.8	
18	42.3	2.06 (dd, 10.9, 13.1)	42.4	2.06 (dd, 10.9, 13.2)	42.3	2.06 (dd, 11.1, 13.1)
		2.37 ovlp		2.37 ovlp		2.38 ovlp
19	77.3	3.65 (d, 10.9)	77.2	3.65 ovlp	77.2	3.66 (d, 10.6)
20	40.6		40.5		40.6	
21	81.6	3.86 ovlp	81.6	3.86 ovlp	81.5	3.86 ovlp
22	35.1	1.48 ovlp	35.2	1.46 ovlp	35.0	1.47 ovlp
		1.65 ovlp		1.66 ovlp		1.66 ovlp
23	78.0	4.08 (d, 9.7)	78.0	4.07 (d, 9.8)	77.9	4.08 (d, 9.9)
24	41.3	1.48 ovlp	41.3	1.48 ovlp	41.3	1.49 ovlp
25	73.7	3.99 (dd, 6.4, 6.4)	73.9	3.99 (dd, 6.7, 6.7)	73.9	3.98 (dd, 6.2, 6.2)
26	39.5	1.66 ovlp	39.1	1.75 ovlp	39.2	1.78 ovlp
		1.82 ovlp		1.80 ovlp		
27	70.5	5.05 m	71.1	5.07 m	70.5	4.99 m
28	36.4	2.39 ovlp	39.1	2.45	39.4	2.55 (dd, 6.2, 14.3)
		2.76 (dd, 3.4, 13.9)		2.61 (dd, 6.9, 14.1)		2.60 (dd, 6.8, 14.3)
29	145.4		139.2		138.4	
30	199.5		160.1		158.6	
31	25.7	2.33 s	83.6	4.17 brd	78.9	5.34 s

Supplementary Note Table 2: NMR chemical shifts of leptolyngbyalides A-C (10-12) in CDCl₃.

				4.46 (d, 2.7)		
32	18.5	2.27 brs	18.5	2.27 brs	18.4	2.27 brs
33	24.9	1.02 (d, 6.9)	25.0	1.02 (d, 6.8)	24.9	1.02 (d, 6.8)
34	21.4	0.91 ovlp	21.4	0.92 ovlp	21.4	0.91 ovlp
35	20.9	1.17 s	21.0	1.17 s	20.9	1.17 s
36	17.4	1.82 brs	17.5	1.82 brs	17.5	1.82 brs
37	21.5	0.76 s	21.6	0.75 s	21.5	0.76 s
38	13.8	0.92 s	14.0	0.92 s	13.9	0.92 s
39	5.0	0.94 (d, 7.0)	4.9	0.92 ovlp	4.9	0.94 (d, 7.2)
40	127.3	5.83 s	115.8	5.02 brs	122.2	5.39 brs
		6.03 s		5.54 brd		5.43 brs
41	173.8		173.8		173.8	
42	34.7	2.24 m	34.8	2.28 ovlp	34.8	2.29 ovlp
43	25.1	1.59 ovlp	25.2	1.62 ovlp	24.9	1.62 ovlp
44	29.4	1.31 ovlp	29.2	1.30 ovlp	29.3	1.31 ovlp
45-53	28.4-30.5	1.28 ovlp	29.2-30.2	1.27 ovlp	28.7-30.7	1.28 ovlp
54	31.9	1.28 ovlp	32.0	1.27 ovlp	31.9	1.29 ovlp
55	22.7	1.29 ovlp	22.8	1.29 ovlp	22.7	1.29 ovlp
56	14.1	0.88 (t, 7.3)	14.2	0.89 (t, 7.1)	14.2	0.89 (t, 7.2)
57			55.1	3.61 s	55.7	3.60 s
19- OU		2.80 br				
21-		4.79 br		4.80 br		4.79 br
OH		4 40 1		4 40 1		4 46 1
23- OH		4.49 br		4.49 br		4.46 br
25-		3.69 br		3.64 br		3.59 br
OH						

Supplementary	Note Table 3:	NMR chemical	shifts of cuniculen	e 6A (14) in DMSO-d6
---------------	---------------	--------------	---------------------	----------------------

Compound 14					
No.	δc	δ _H , mult.			
1	172.1				
2	38.3	3.12 s			
3	139.3				
4	132.6	6.13 (d, 15.8)			
5	127.9	5.71 (dt, 6.8, 15.8)			
6	34.6	2.95 (d, 6.8)			
7	143.9				
8	131.3	6.12 (d, 15.8)			
9	132.1	5.64 (dd, 8.0, 15.8)			
10	42.4	2.23 m			
11	74.7	3.80 m			
12	35.5	1.14 m			
		1.79 brddd			
13	70.1	4.08 m			
14	43.5	2.15 m			
15	147.0				
16	28.2	2.01 (q, 7.4)			
17	11.9	0.97 (t, 7.4)			
18	117.3	5.00 brs			
		5.07 brs			
19	115.1	4.91 brs			
		4.98 brs			
20	15.6	1.02 (d, 6.7)			
21	110.2	4.76 brs			

Compound 15						
No.	δc	δ _H , mult.	No.	δc	$\delta_{\rm H}$, mult.	
1	196.2		1'	67.7	3.17 m	
2	47.2	3.52 s			3.28 ovlp.	
3	138.6		1'-OH		4.45 (dd, 5.6, 5.6)	
4	132.1	6.15 (d, 15.9)	2'	39.0		
5	128.5	5.72 (dt, 6.7, 15.9)	3'	74.7	3.69 (d, 5.6)	
6	34.3	2.93 (d, 6.7)	3'-OH		5.35 (d, 5.6)	
7	144.1		4'	172.6		
8	130.4	6.06 (d, 15.9)	5'-NH		7.67 brt	
9	133.7	5.69 (dd, 8.0, 15.9)	6'	34.4	3.27 ovlp.	
10	42.8	2.16 m	7'	34.8	2.24 m	
11	72.4	3.48 m	8'	170.4		
12		1.32 m	9'-NH		8.08 brt	
		1.48 m	10'	37.8	3.14 m	
13	67.6	3.78 m	11'	27.7	2.87 (t, 7.0)	
14	44.1	2.04 m	12'	20.0	0.77 s	
		2.09 m	13'	20.7	0.79 s	
15						
16	28.2	2.00 (q, 7.4)				
17	11.8	0.96 (t, 7.4)				
18	118.8	5.09 brs				
		5.17 brs				
19	114.2	4.83 brs				
		4.95 brs				
20	15.2	0.94 (d, 6.3)				
21	109.5	4.70 brd				
11-OH		4.65 (d, 4.7)				
13-OH		4.52 (d, 4.5)				

Supplementary Note Table 4: NMR chemical shifts of cuniculene 6B (15) in DMSO-d₆.