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Supplementary Materials 

 

A. Simplified Granule Cell Model Parameters 

 
TABLE I 

PARAMETERS FOR SIMPLIFIED GRANULE CELL MODEL 

Mechanism Soma GCL Inner Third Middle Third OuterThird 

Cm (µm/cm2) 9.8 17.0 39.96 65.07 44.79 

Ra (Ω-cm) 410 293.7 380.1 222.6 90.37 

Sodium (S/cm2) 0.84 0.2186 0.2319 0.2324 0.0 

Slow delayed rectifier K+ (S/cm2) 6.0e-3 1.041e-2 1.529e-2 2.490e-2 2.285e-2 

Fast delayed rectifier K+ (S/cm2) 3.6e-2 6.94e-3 1.019e-2 4.150e-3 2.856e-3 

A-type K+ (S/cm2) 9.0e-3 - - - - 

L-type Ca2+ (S/cm2) 2.5e-3 1.301e-2 1.911e-2 2.075e-3 0.0 

N-type Ca2+ (S/cm2) 7.35e-4 3.828e-3 1.874e-3 3.051e-3 2.100e-3 

T-type Ca2+ (S/cm2) 7.4e-5 1.301e-4 6.370e-4 2.075e-3 2.856e-3 

Ca-dependent K+ (S/cm2) 6.0e-3 6.940e-4 5.097e-4 0.0 0.0 

Ca- and V-dependent K+ (S/cm2) 7.0e-4 2.082e-4 5.097e-4 1.992e-3 1.371e-3 

Leak (S/cm2) 2.9e-4 5.034e-4 1.165e-3 1.896e-3 1.305e-3 

Tau for decay of intracell. Ca2+ (ms) 10.0 10.0 10.0 10.0 10.0 

Steady-state intracell. Ca2+ (mM) 5.0e-6 5.0e-6 5.0e-6 5.0e-6 5.0e-6 

 

 

B. Recursive Form for Legendre Polynomials to Represent Rate Maps 

 

Recursive formulas for computing the Legendre polynomials and their first and second derivatives were obtained by taking the 

derivative of the generating function with respect to t and then taking the derivatives with respect to x. The rate maps were 

represented by a two-dimensional Legendre polynomial of order 16. 

 

Generating function 

𝑔(𝑡, 𝑥) =
1

√1−2𝑥𝑡+𝑡2
= ∑ 𝑃𝑗(𝑥)𝑡

𝑗∞
𝑗=0 , 

 

where 𝑃𝑗(𝑥) denotes the Legendre polynomial of order j evaluated at x. 

 

Recursive form of the Legendre polynomial 

𝑃𝑗+1 =
(2𝑗 + 1)𝑥𝑃𝑗 − 𝑗𝑃𝑗−1

𝑗 + 1
 

 

Recursive form of the first derivative of the Legendre polynomial 

𝑃𝑗
′ =

𝑗𝑥𝑃𝑗 − 𝑗𝑃𝑗−1

𝑥2 − 1
 

 

Recursive form of the second derivative of the Legendre polynomial 

𝑃𝑗
′′ =

𝑗𝑃𝑗 + 𝑥(𝑗 − 2)𝑃𝑗
′ − 𝑗𝑃𝑗

′

𝑥2 − 1
 

 

 

C. Lower Bound of Mutual Information 

 

The derivation of the lower bound of mutual information is fully described in [1]. A summary can be found below. The derivation 

begins with the data processing inequality 
 

𝐼[𝑥; 𝑟] ≥ 𝐼[𝑥; 𝑥̂(𝑟)] = 𝐻[𝑥] − 𝐻[𝑥|𝑥̂] 
 

where 𝐻[𝑥] represents the entropy of the prior stimulus, e.g., rat position, and 𝐻[𝑥|𝑟] represents the noise entropy, or the average 

residual entropy in x conditioned on the spiking activity r. Mutual information is represented by 𝐼[𝑥; 𝑟], and 𝐼[𝑥; 𝑥̂(𝑟)] denotes the 

lower bound of the mutual information. Finally, 𝐻[𝑥|𝑥̂] is the average residual entropy in x conditioned on the estimate for x, 

denoted by 𝑥̂.  



2 

 

 

The entropy for the rat position was computed using the formula detailed by Barbieri et al., 2004 [37] as follows: 

 

𝐻[𝑥] =
1

2
log2[(2𝜋𝑒)

2|𝑊𝜀|] 

 

where 𝑊𝜀 is the covariance matrix from the autoregressive model of the rat trajectory. The residual entropy was calculated the 

formula described by Pillow et al., 2000 [39]:  

 

𝐻[𝑥|𝑥̂] =
1

2
log2|𝐸[𝑟 ∙ 𝑟

𝑇]| +
1

2
log2(2𝜋𝑒). 

 

In this formulation, r represents the residual of the estimator as 𝑟 = 𝑥 − 𝑥̂, and 𝐸[𝑟 ∙ 𝑟𝑇] represents the covariance of the residuals. 

The final lower bound for mutual information can then be expressed as 

 

𝐼[𝑥; 𝑟] ≥
1

2
[log2[(2𝜋𝑒)

2|𝑊𝜀|] − (log2|𝐸[𝑟 ∙ 𝑟
𝑇]| + log2(2𝜋𝑒))]. 
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