

1

B

D

128

192

- Cytoskeleton
- Defense mechanisms
- Signal transduction mechanisms
- General function prediction only
- Inorganic ion transport and metabolism
- Cell motility
- Replication, recombination and repair
- Translation, ribosomal structure and biogenesis
- Coenzyme transport and metabolism
- Nucleotide transport and metabolism
- Cell cycle control, cell division, chromosome partitioning
- Chromatin structure and dynamics

- Nuclear structure
- Intracellular trafficking, secretion, and vesicular transport
 Function unknown
- Secondary metabolites biosynthesis, transport and catabolism
- Posttranslational modification, protein turnover, chaperones
- Cell wall/membrane/envelope biogenesis
- Transcription
- Lipid transport and metabolism
- Carbohydrate transport and metabolism
- Amino acid transport and metabolism
- Energy production and conversion
- RNA processing and modification

256

263

267

296

_			
	K00925	K00625	K03388
	K01895	K03389	K00201
	K 00200	K00203	■K00672
	K00202	■K14127	K01499
	K00320	K11261	■K14126
	K 08264	K00401	K00399
	K00580	K00579	K 00578
	K 03390	K13788	K00319
	K 00584	K00197	K00194
	K00125	K00581	K14128
	■K00577	K00193	K00402
	K00205	■K08265	

100% Relative metagenomic CAZy abundance (%) 90% 80% 70% ■ PL ■ GT 60% GH 50% ■ CE 40%CBM 30% AA 20% 10% 0% 128 192 256 263 267 296

128

1

CBM9	CBM78	CBM77	■CBM76
CBM70	CBM67	■ CBM66	■ CBM62
CBM61	■CBM6	■ CBM57	CBM56
CBM54	CBM53	CBM52	CBM51
CBM50	CBM48	■ CBM47	CBM44
CBM41	■ CBM40	■ CBM4	CBM38
CBM37	CBM35	CBM34	CBM32
CBM30	CBM28	CBM25	CBM23
CBM22	CBM21	■ CBM20	CBM2
CBM17	■ CBM16	CBM13	■CBM12

Time (days)

263

256

192

-

_

267

296

Fig. S1: Metagenomics-assisted characterisation of the functional community potential throught the anaerobic digestion (AD) experiment.

(A) Relative metagenomic abundance of the different clusters of orthologous groups (COG) coloured according to the COG group. (B) Relative metagenomic abundance of the different Kyoto Encyclopedia of Genes and Genomes (KEGG) orthology (KO) involved in the acetogenesis pathway coloured according to the KO number. (C) Relative metagenomics abundance of the different KEGGs involved in the methanogenesis (including acetoclastic and hydrogenotrophic pathways) coloured according to the KO number. (D) Relative metagenomic abundance of the different CAZy families coloured according to the CAZy family. The differents CAZy families represented are; auxiliary enzyme (AA); Carbohydrate binding module (CBM); Carbohydrate esterase (CE); Glycoside hydrolase (GH); Glycosyltransferase (GT); Polysaccharide lyase (PL). (E) Relative metagenomic abundance of the different CBM families coloured according to the CBM family.

Note: Small variability of the functional profile of genes involved in methanogenesis was related to the overall decrease of genes encoding for the heterodisulfide reductase (hydrogenotrophic pathway) during acidosis.

B

GH2	GH43	GH28	GH3	GH109
GH78	GH105	GH31	GH29	GH13
GH127	GH23	GH106	GH51	GH92
GH20	GH97	GH10	■ GH73	GH137
GH16	GH138	GH77	GH53	GH42
■ GH33	GH15	GH88	GH95	GH57
■ GH125	■ GH55	GH27	GH133	GH115
GH130	GH67	GH5	GH128	■ GH63
■ GH35	GH26	GH76	GH9	GH18
■ GH65	■ GH30	GH94	GH84	GH36
GH38	GH144	GH142	GH8	GH32
GH25	GH89	GH39	■ GH98	GH74
■ GH54	GH145	GH117		
3.2.1. x	■ 3.2.1	1.37 🔳 3	3.2.1.23	3.2.1.55

GH diversity

EC diversity

3.Z.1.X	3.2.1.3	3.2.1.23	3.2.1.55
3.2.1.8	3.2.1.40	3.2.1.111	■ 3.2.1.99
■ 3.2.1.20	3.2.1.21	3.2.1.177	3.2.1.31
3.2.1.52	■ 3.2.1.22	3.2.1.63	3.2.1.18
3.2.1.25	3.2.1.1	3.2.1.15	■ 3.2.1.139
■ 4.2.2.x	3.2.1.173	3.2.1.73	■ 3.2.1.88
3.1.1.11	3.2.1.54	3.2.1.41	3.2.1.78
3.2.1.131	3.2.1.89	3.2.1.4	3.2.1.151
4.2.2.2	3.1.1.72	■ 3.2.1.49	■ 3.1.1.73
3.2.1.39	3.2.1.14	3.2.1.152	3.2.1.133
3.2.1.51	3.2.1.101	3.2.1.113	■ 3.1.1.x
3.2.1.3	3.2.1.38	3.2.1.35	■ 3.2.1.26
3.2.1.153	3.2.1.58	3.2.1.185	3.2.1.102

Fig. S2: Metagenomics-assisted characterisation of *Bacteroidetes* MAGs and their carbohydrate hydrolytic potential throughout the anaerobic digestion (AD) experiment. (A) Relative metagenomic abundance of the different GHs coloured according to the assigned GH family and throughout the digestion experiment. (B) Distribution of the annotated GH genes for the different *Bacteroidetes* MAGs, coloured according to the assigned GH family. The number of assigned GH families (i.e. GH diversity) is represented by a black solid line. (C) Relative metagenomic abundance of the different GHs additionally functionally assigned to an EC category and coloured according to the EC category. (D) Distribution of the assigned EC categories among the different *Bacteroidetes* MAGs, coloured according to the EC category and throughout the digestion experiment. The number of EC functional categories (i.e. EC diversity) is represented by a black solid line. (E) Percentage of genome completeness for the different *Bacteroidetes* MAGs.

Remark: Due to incompleteness of some *Bacteroidetes* MAGs, the diversity measurements for the different GH families (respectively EC categories) can be higher than shown on the respective graphs.

Fig. S3: Release of D-glucose and D-mannose after enzymatic hydrolysis of acetylated konjac glucomannan. Cascade reactions and cocktails were compared. Cascade reaction is defined as follow, first hydrolysis of the substrate (one hour at 37°C) by the enzymes specified in step 1, followed by a second hydrolysis (one hour at 37°C) by the enzyme(s) specified in step 2. Cocktail is defined as follow, enzymes were added and a single incubation step (one hour at 37°C) was performed in order to hydrolyse the substrate.

Fig. S4: Correlation between the average cumulative metagenomic abundance of MAGsrepresented at the phylum level and the cumulative number of their carbohydrate hydrolyticgenes, shown at the GH family level (A) and further supported by the assigned EC category(B). *Bacteroidetes* phylum is represented by a red dot.

Fig. S5: uBac-GH26a and uBac-GH26b sequence similarities including mannanases from NCBI database. Sequence alignment and phylogenetic tree was generated using the MAFFT server <u>https://mafft.cbrc.jp/alignment/software</u>. BoMan26A and BoMan26B refers to two mannanases isolated from a galactomannan-targeting PUL (1). uBac-GH26a and uBac-GH26b are highlighted in red.

 Bagenholm V, Reddy SK, Bouraoui H, Morrill J, Kulcinskaja E, Bahr CM, Aurelius O, Rogers T, Xiao Y, Logan DT, Martens EC, Koropatkin NM, Stalbrand H. 2017. Galactomannan catabolism conferred by a polysaccharide utilization locus of Bacteroides ovatus: Enzyme synergy and crystal structure of a $\beta\mbox{-mannanase}.$ J Biol

Chem 292:229–243

Table S1: Analysis of the different MAGs

		Proteins		CAZys	% CAZys		
	MAG	coding	sus-like	coding	in the		% Metagenomic
Phylophlan	number	genes	genes	genes	MAG	% Completeness	abundance
Bacteria; Bacteroidetes	2	2263	97	222	9.8	96.6	6.3
Bacteria; Bacteroidetes; Bacteroidia; Bacteroidales	8	1515	41	151	10.0	82.9	8.8
Bacteria; Bacteroidetes; Bacteroidia; Bacteroidales; Rikenellaceae; Alistipes	11	1881	29	151	8.0	85.9	1.2
Bacteria; Bacteroidetes; Bacteroidia; Bacteroidales	15	1461	23	135	9.1	81.6	12
Bacteria; Bacteroidetes; Bacteroidia; Bacteroidales; Rikenellaceae; Alistipes	17	1320	25	62	4.7	91.2	1.2
Bacteria; Bacteroidetes; Bacteroidia; Bacteroidales; Rikenellaceae; Alistipes	25	1276	32	104	8.2	59	0.5
Bacteria; Bacteroidetes; Bacteroidia; Bacteroidales	26	1237	34	107	8.7	51.3	0.3
Bacteria; Bacteroidetes; Bacteroidia; Bacteroidales	28	1726	60	160	9.3	54.5	0.6
Bacteria; Bacteroidetes; Bacteroidia; Bacteroidales; Rikenellaceae; Alistipes	30	1914	9	228	11.9	99.5	3.4
Bacteria; Firmicutes; Clostridia; Clostridiales	3	1784	0	73	4.1	95.3	1.6
Bacteria; Firmicutes; Clostridia	4	2099	1	89	4.2	94.9	2.6
Bacteria; Firmicutes; Clostridia	12	2064	0	74	3.6	89.8	2.4
Bacteria; Firmicutes; Clostridia	16	1615	0	74	4.6	63.9	0.7
Bacteria; Firmicutes; Clostridia	20	1307	1	45	3.4	60.4	0.5
Bacteria; Firmicutes; Clostridia; Clostridiales	22	1040	0	58	5.6	62.0	0.3
Bacteria; Firmicutes; Clostridia; Clostridiales	23	1034	0	43	4.2	51.8	0.6
Bacteria; Firmicutes; Clostridia	27	1216	0	27	2.2	49.5	0.3
Bacteria; Cloacimonetes	1	1250	3	40	3.2	98.9	22.3
Bacteria; Cloacimonetes	13	1404	2	62	4.4	87.3	1.1
Bacteria; Cloacimonetes	31	1443	2	60	4.2	95.6	1.7
Bacteria; Spirochaetes; Spirochaetes; Spirochaetales	7	1945	1	90	4.6	66.7	1.1
Bacteria; Spirochaetes; Spirochaetes; Spirochaetales	14	1889	0	62	3.3	83.8	0.8
Bacteria; Spirochaetes; Spirochaetes; Spirochaetales; Treponemaceae; Treponema	18	1621	0	47	2.9	76.3	0.6
Bacteria; Synergistetes; Synergistia; Synergistales; Synergistaceae	5	1790	1	68	3.8	94.8	1.5
Bacteria; Synergistetes; Synergistia; Synergistales; Synergistaceae	9	1708	2	44	2.6	92.8	0.7
Bacteria; Synergistetes; Synergistia; Synergistales; Synergistaceae	10	1368	2	29	2.1	92.2	1
Bacteria; Lentisphaerae; Lentisphaerae	19	1736	0	113	6.5	77.3	1.4
Bacteria; Planctomycetes; Planctomycetacia	21	1935	6	171	8.8	65.5	0.6
Bacteria; Thermotogae; Thermotogae; Thermotogales; Thermotogaceae	24	1273	0	78	6.1	66.8	0.4
Archaea; Euryarchaeota; Methanomicrobia; Methanomicrobiales	6	1447	0	28	1.9	92.2	1.5

Table S2: Results of the	enzymatic assays and	EC number prediction
--------------------------	----------------------	----------------------

		Activity $(10^{-3} \text{ U/mg} \pm \text{SD})$					
		uBac-GH26a	uBac-GH26b ⁺	uBac-GH130	uBac-GH5 ⁺⁺	uBac-CE6 ⁺	uBac-GH3
Substrate type	Substrate	EC.3.2.1.78*	EC.3.2.1.78*	EC. 2.4.1.281*	EC. 3.2.1.4*	NA	EC.3.2.1.37*
Polysaccharide	Xylan	-	-	-	-	-	-
	Galactomannan	94.86 ± 6.08	90.68 ± 5.28	-	-	-	-
	Arabinoxylan	-	-	-	-	-	-
	Carboxymethyl	-	-	-	19.05 ± 0.51	-	-
	cellulose						
	Glucomannan	102.84 ± 1.06	31.39 ± 1.52	-	-	-	-
4-Nitrophenyl	α-D-mannopyranoside	-	-	-	-	-	-
	β-D-glucopyranoside	-	-	-	-	-	177.00 ± 7.52
	β-D-xylopyranoside	-	-	-	-	-	-
	β-D-mannopyranoside	-	-	-	-	-	-
	α -L-arabinofuranoside	-	-	-	-	-	-
	β-D-cellobioside	-	-	-	9.94 ± 0.88	-	-
	α-D-galactopyranoside	-	-	-	-	-	-
	acetate	-	-	-	-	30215.70 ± 0.20	-
	α-D-glucopyranoside	-	-	-	-	-	-

Results are expressed in U/mg where one unit is defined as the amount of protein required to release one µmol of substrate per minute.

* EC number prediction based on Hotpep analysis

NA: Not assigned

⁺ Signal peptidase I and cleavage site predicted using LipoP v1.0 server

⁺⁺ Lipoprotein signal peptide II and cleavage site predicted using LipoP v1.0 server

Substrate	Stock concentration (mM)
4-nitrophenyl α-D-mannopyranoside	20
4-nitrophenyl β-D-glucopyranoside	40
4-nitrophenyl β -D-xylopyranoside	40
4-nitrophenyl β -D-mannopyranoside	20
4-nitrophenyl α-L-arabinofuranoside	20
4-nitrophenyl β-D-cellobioside	10
4-nitrophenyl α-D-galactopyranoside	40
4-nitrophenyl acetate	4
4-nitrophenyl α-D-glucopyranoside	20
Substrate	Stock concentration (g/L)
СМС	10
Arabinoxylan	12
Galactomannan	8
Glucomannan	8
Xylan	18

Table S3: Concentrations of the substrates used for the enzymatic assays

Text S1: Genes selection, isolation and cloning

Following the bioinformatics analyses, genes of interest were identified and amplified by polymerase chain reaction (PCR), using a Veriti[™] 96 wells Thermal cycler (Applied Biosystems, Foster City, USA). Amplicons were generated using the Q5 High-Fidelity Hot Start (New England Biolabs Inc., Ipswich, USA) and according to the thermal profile: initial denaturation was made at 98°C for 5 seconds, followed by annealing for 30 seconds with temperature depending on the melting temperature of the primers (Tm), and the final extension was carried out at 72°C for 30 seconds. Thirty six cycles of PCR were performed. PCR products were purified using the PCR purification kit (Qiagen, Hilden, Germany) and concentrations were determined by NanoDrop 1000 Spectrometer (Thermofisher, Waltham, USA).

Genes were then cloned into pGem-t-easy vector using the respective kit (Promega, Madison, USA) followed by transformation of JM109 High Efficiency Competent Cells, allowing blue/white screening of colonies. Positive colonies were confirmed by a colony PCR and the respective plasmids from over-night cultures were purified using GeneJET Plasmid Miniprep Kit (Thermofisher, Waltham, USA). Correctly inserted genes (determined by sequencing) were selected for further expression.

Text S2: Proteins identification

Recombinant proteins were identified after SDS-PAGE separation. The band at the expected molecular weight was cut from the gel and reduced with $100 \,\mu\text{L}$ of 0.15% (w/v) D-Dithiothreitol (DDT) in 100 mM Ammonium bicarbonate (AmBic). After incubation at 56°C for 30 minutes, DDT was removed and 100 µL of 1% (w/v) Iodoacetamide in 100 mM AmBic was added to the sample. Incubation was performed for 30 min at room temperature in the dark. Iodoacetamide was removed from the sample with two washes with $200 \,\mu\text{L}$ 50 mM AmBic in ethanol. The gel pieces were dehydrated with 200 µL of acetonitrile (ACN) and after removal of the liquid phase, the gel pieces were completely dried. The dried gel pieces were incubated at 37°C overnight in 8 µL of trypsin (5ng/µL) and 15 µL 50mM AmBic. The next day, the liquid phase containing the peptides was recovered in a clean vial and peptides were further extracted by two washes with 35 μ L 50% (v/v) ACN, 0.1% (v/v) Trifluoroacetic acid (TFA). The extracted peptides were dried under vacuum for 2 hours. Peptides were re-solubilized in 0.7 µL 50% (v/v) ACN, 0.1% (v/v) TFA and spotted on a stainless steel OptiTOF 384 well plate (AB Sciex, Framingham, USA). 0.7 µL of α-Cyano-4hydroxycinnamic acid (CHCA) matrix at 7mg/mL in 50% (v/v) ACN, 0.1% (v/v) TFA were added. Samples were analysed using the AB Sciex 5800 MALDI-TOF/TOF (Sciex, Framingham, USA), a MS spectrum was acquired and the ten most intense peaks, excluding known contaminants, were fragmented. Identification was performed using an in-house MASCOT server with a database containing the theoretical amino acid sequence of the recombinant proteins and standard settings (B. Printz, K. Sergeant, S. Lutts, C. Guignard, J. Renaut, and JF. Hausman, J Proteome Res 12:5160–5179, 2013, doi:10.1021/pr400590d). Additional *de novo* sequencing was done to confirm the presence of any signal peptides.