**Supplementary Materials** 

Supplementary Table 1. Barcode sequences.

Supplementary Table 2. Sequencing information for the samples.

- Supplementary Table 3. Spearman's correlation between microbial  $\alpha$ -diversity indices and environmental factors.
- Supplementary Table 4. Significance test of the similarity between the phycosphere microbial communities and null model simulations at different stages, and βNTI and RCBray values based on Weighted Bray–Curtis distances.
- Supplementary Figure 1. Samples collected according to the HAB phases, including pre-, during- and post-bloom stages (the red cycle).
- Supplementary Figure 2. Morphology of *S. trochoidea* under a light microscope. Scale bar is 20 μm.
- Supplementary Figure 3. Venn diagram showing the overlap of OTUs between sample types.
- Supplementary Figure 4. LEfSe diagram showing the difference of OTUs among the different bloom stages.

Supplementary Figure 5. Relative abundance of bacteria at phylum level.

- Supplementary Figure 6. Heat-map of microbial communities at family (A) and genus (B) levels. AT, attached bacteria; FL, free-living bacteria.
- Supplementary Figure 7. (A) Bray-Curtis similarity-based dendrogram at the OTU level illustrating groups in samples. (B) Correspondence canonical analysis (CCA) based on microbial communities (OTUs) and environmental parameters sampled during the bloom.
- Supplementary Figure 8. Correlation analysis between relative abundances of the 100 most abundant bacterial OTUs and environmental variables based on Pearson correlations. Correlation values depict r-values of Pearson correlations. Statistical significance: <sup>+</sup>, P<0.05; <sup>\*</sup>, P<0.01.</p>

## Supplemental Table 1: Barcode sequences.

| Sample names | Barcode sequences |
|--------------|-------------------|
| Pre-A-1      | CACGCTGT          |
| Pre-A-2      | CGCATGAA          |
| Pre-A-3      | TATCGCAA          |
| Pre-A-4      | AGTGCTTA          |
| Pre-A-5      | AGTGTGAA          |
| Pre-A-6      | CAGTATTA          |
| Pre-A-7      | TGCACATT          |
| Pre-A-8      | AGGCCAGT          |
| Pre-A-9      | TTCGACTA          |
| Pre-A-10     | AGTGACGA          |
| Pre-A-11     | TGCATACA          |
| Pre-A-12     | AGTCGAAC          |
| Pre-FL-1     | ACCAGTGA          |
| Pre-FL-2     | GAATACCA          |
| Pre-FL-3     | GTAGATCG          |
| Pre-FL-4     | TAACGTGT          |
| Pre-FL-5     | CATTATGG          |
| Pre-FL-6     | CCAATACG          |
| Pre-FL-7     | GATCTGCG          |
| Pre-FL-8     | GCAACACC          |
| Pre-FL-9     | GCGATATA          |
| Pre-FL-10    | CGAGCAAT          |
| Pre-FL-11    | CGAGGGAA          |
| Pre-FL-12    | CAAATTCG          |
| During-A-1   | TCGACATC          |
| During-A-2   | TTGGCTCT          |
| During-A-3   | GATCCCAC          |
| During-A-4   | TACCGCTT          |
| During-A-5   | TGTGCGAT          |
| During-A-6   | GATTATCG          |
| During-A-7   | GCCTAGCC          |
| During-A-8   | ACTCCTTG          |
| During-A-9   | GTCACGGA          |
| During-A-10  | GCGAGCGA          |
| During-A-11  | TCTTGGAG          |
| During-A-12  | TCACCTCC          |
| During-FL-1  | GCACACCT          |
| During-FL-2  | GCGACAAT          |
| During-FL-3  | TCATGCTC          |
| During-FL-4  | AGCTGTCA          |

| Sample names | Barcode sequences |
|--------------|-------------------|
| During-FL-5  | GAGAGCAA          |
| During-FL-6  | TACTCGGG          |
| During-FL-7  | CGTGCTTA          |
| During-FL-8  | GTATTTCG          |
| During-FL-9  | ТАТСТАТС          |
| During-FL-10 | TTGCCAAG          |
| During-FL-11 | AGTAGCGG          |
| During-FL-12 | GCAATTAG          |
| After-A-1    | CATACCGT          |
| After-A-2    | CCTGCGAA          |
| After-A-3    | TTCTCTCG          |
| After-A-4    | GCTCTCCG          |
| After-A-5    | TGCATACA          |
| After-A-6    | AGTCGAAC          |
| After-A-7    | ACCAGTGA          |
| After-A-8    | GAATACCA          |
| After-A-9    | GTAGATCG          |
| After-A-10   | TAACGTGT          |
| After-A-11   | CATTATGG          |
| After-A-12   | CCAATACG          |
| After-FL-1   | GATCTGCG          |
| After-FL-2   | GCAACACC          |
| After-FL-3   | GCGATATA          |
| After-FL-4   | CGAGCAAT          |
| After-FL-5   | CGAGGGAA          |
| After-FL-6   | CAAATTCG          |
| After-FL-7   | AGTTGAGG          |
| After-FL-8   | ACAATAGA          |
| After-FL-9   | AGTTACGA          |
| After-FL-10  | GCATATGC          |
| After-FL-11  | AGTCGTGC          |
| After-FL-12  | GTATCTGC          |

| Raw Reads Clean R |        | Clean Reads | Reads    | Clear Terr | MaxLen | MinLen | AvgLen | GC    | N. f.       | Nfotu-      | Effective/    |
|-------------------|--------|-------------|----------|------------|--------|--------|--------|-------|-------------|-------------|---------------|
| Sample ID         | (PE)   | (PE)        | Raw Tags | Clean Tags | (nt)   | (nt)   | (nt)   | (%)   | No. of seqs | NO. OF UTUS | Coverage (%)  |
| Pre.A.1           | 152066 | 144928      | 143909   | 97157      | 398    | 366    | 372.07 | 51.96 | 66801       | 1143        | 82.68 (95.32) |
| Pre.A.2           | 170871 | 163210      | 161740   | 151635     | 389    | 362    | 372.28 | 51.28 | 101078      | 1765        | 82.04 (97.13) |
| Pre.A.3           | 145990 | 139070      | 137949   | 118365     | 391    | 368    | 372.3  | 50.38 | 74461       | 1382        | 80.86 (97.66) |
| Pre.A.4           | 152282 | 145813      | 144535   | 101977     | 401    | 364    | 372.4  | 50.8  | 62864       | 1381        | 86.09 (95.43) |
| Pre.A.5           | 151895 | 144696      | 143381   | 99502      | 391    | 361    | 372.39 | 50.63 | 62101       | 1348        | 86.28 (96.89) |
| Pre.A.6           | 138048 | 132162      | 131156   | 113066     | 396    | 363    | 372.36 | 50.03 | 67335       | 1247        | 80.82 (96.93) |
| Pre.A.7           | 192582 | 184280      | 182739   | 174199     | 391    | 364    | 372.14 | 51.29 | 124666      | 1583        | 87.05 (97.04) |
| Pre.A.8           | 187035 | 178323      | 176626   | 163391     | 385    | 366    | 372.39 | 51.25 | 107997      | 2108        | 82.43 (96.12) |
| Pre.A.9           | 140224 | 134044      | 133132   | 85809      | 386    | 364    | 372.06 | 51.94 | 59237       | 1068        | 83.06 (96.22) |
| Pre.A.10          | 131911 | 125398      | 123879   | 113403     | 395    | 364    | 372.37 | 50.62 | 71485       | 1687        | 81.34 (96.99) |
| Pre.A.11          | 140913 | 134460      | 133440   | 126664     | 399    | 363    | 371.94 | 51.7  | 91990       | 1338        | 87.50 (97.11) |
| Pre.A.12          | 144024 | 137809      | 136716   | 117166     | 386    | 368    | 372.3  | 50.05 | 75518       | 1332        | 83.99 (96.88) |
| Pre.FL.1          | 194629 | 184610      | 182811   | 143433     | 397    | 361    | 372.05 | 52.36 | 84065       | 1563        | 93.33 (98.34) |
| Pre.FL.2          | 143542 | 136586      | 135270   | 120701     | 389    | 361    | 372.12 | 52.71 | 77310       | 1261        | 92.31 (98.21) |
| Pre.FL.3          | 152514 | 146049      | 144532   | 103571     | 397    | 363    | 372.38 | 51.2  | 67107       | 2522        | 86.95 (97.75) |
| Pre.FL.4          | 161819 | 154679      | 153212   | 117515     | 397    | 362    | 372.48 | 51.28 | 72759       | 2911        | 88.12 (97.78) |
| Pre.FL.5          | 150890 | 144395      | 142826   | 101771     | 402    | 363    | 372.53 | 50.87 | 63039       | 2709        | 89.40 (97.86) |
| Pre.FL.6          | 186933 | 177370      | 174290   | 126203     | 413    | 363    | 372.64 | 50.28 | 65688       | 2440        | 84.94 (98.02) |
| Pre.FL.7          | 157382 | 148915      | 147585   | 113735     | 395    | 361    | 372    | 52.48 | 65491       | 1309        | 89.66 (98.01) |
| Pre.FL.8          | 180833 | 172818      | 170872   | 115077     | 406    | 364    | 372.48 | 50.66 | 67014       | 2786        | 84.01 (96.47) |
| Pre.FL.9          | 148122 | 140331      | 138923   | 113474     | 398    | 365    | 372.09 | 52.42 | 65186       | 1369        | 94.85 (96.52) |
| Pre.FL.10         | 163449 | 155874      | 154120   | 119329     | 408    | 363    | 372.6  | 50.83 | 67290       | 2942        | 85.07 (97.77) |
| Pre.FL.11         | 176245 | 167402      | 164520   | 127302     | 393    | 361    | 372.74 | 50.22 | 59407       | 2539        | 79.85 (98.18) |
| Pre.FL.12         | 167155 | 159692      | 157036   | 123864     | 401    | 361    | 372.65 | 50.83 | 66715       | 3253        | 82.49 (97.99) |

**Table 2**. Sequencing information for the samples.

| During.A.1   | 177538 | 169853 | 168016 | 138870 | 395 | 363 | 372.59 | 50.45 | 78099  | 1628 | 85.15 (96.77) |
|--------------|--------|--------|--------|--------|-----|-----|--------|-------|--------|------|---------------|
| During.A.2   | 158268 | 151254 | 149650 | 119621 | 401 | 365 | 372.29 | 50.5  | 77802  | 1371 | 85.94 (96.45) |
| During.A.3   | 122271 | 116659 | 115188 | 94631  | 390 | 366 | 372.42 | 50.4  | 57399  | 1253 | 98.21 (96.65) |
| During.A.4   | 112874 | 107554 | 106361 | 83356  | 407 | 364 | 372.32 | 50.78 | 52907  | 1219 | 84.49 (97.31) |
| During.A.5   | 158313 | 150955 | 149268 | 120125 | 400 | 364 | 372.36 | 50.71 | 74574  | 1526 | 84.08 (96.32) |
| During.A.6   | 144230 | 138234 | 137313 | 91833  | 393 | 359 | 372.11 | 52.15 | 61000  | 1138 | 80.72 (96.32) |
| During.A.7   | 140347 | 133610 | 132630 | 84129  | 382 | 362 | 372.07 | 52.03 | 58202  | 1039 | 83.24 (97.59) |
| During.A.8   | 137902 | 130941 | 129108 | 105337 | 401 | 366 | 372.41 | 50.45 | 63160  | 1403 | 81.94 (96.92) |
| During.A.9   | 149205 | 142580 | 141124 | 109001 | 405 | 364 | 372.66 | 50.48 | 60969  | 1422 | 88.78 (96.75) |
| During.A.10  | 153063 | 145265 | 143685 | 115261 | 407 | 361 | 372.52 | 50.34 | 64251  | 1406 | 85.27 (96.66) |
| During.A.11  | 206123 | 196752 | 194569 | 152827 | 403 | 362 | 372.56 | 50.59 | 90003  | 1764 | 87.02 (96.94) |
| During.A.12  | 169853 | 162627 | 161253 | 128968 | 397 | 367 | 372.33 | 51.19 | 85695  | 1657 | 85.68 (96.87) |
| During.FL.1  | 154053 | 147251 | 146282 | 132205 | 382 | 366 | 371.92 | 53.27 | 112851 | 764  | 96.25 (97.03) |
| During.FL.2  | 142735 | 135230 | 132840 | 117182 | 397 | 361 | 372.67 | 51.75 | 60353  | 2518 | 95.47 (97.55) |
| During.FL.3  | 138501 | 130801 | 128129 | 109921 | 401 | 359 | 372.66 | 51.93 | 67917  | 2456 | 84.26 (97.82) |
| During.FL.4  | 161740 | 154550 | 153456 | 118784 | 385 | 367 | 372.12 | 52.12 | 71552  | 1414 | 86.53 (96.86) |
| During.FL.5  | 149047 | 140964 | 137749 | 117919 | 406 | 361 | 372.58 | 51.97 | 66946  | 2074 | 84.22 (97.37) |
| During.FL.6  | 170248 | 161819 | 159427 | 138826 | 409 | 361 | 372.27 | 51.52 | 88400  | 2521 | 83.65 (97.85) |
| During.FL.7  | 150389 | 143170 | 142075 | 105216 | 390 | 359 | 371.99 | 52.18 | 60753  | 1388 | 89.65 (97.32) |
| During.FL.8  | 160623 | 151460 | 149125 | 126418 | 403 | 361 | 372.39 | 51.25 | 72349  | 2384 | 80.74 (97.46) |
| During.FL.9  | 162647 | 153516 | 151892 | 129338 | 390 | 361 | 372.07 | 53.04 | 72802  | 1469 | 98.66 (96.87) |
| During.FL.10 | 159745 | 151727 | 149697 | 119807 | 397 | 361 | 372.24 | 50.88 | 74261  | 2236 | 83.89 (97.03) |
| During.FL.11 | 176216 | 167329 | 164013 | 141484 | 405 | 361 | 372.61 | 51.04 | 77746  | 2730 | 81.82 (97.58) |
| During.FL.12 | 167900 | 159791 | 157696 | 132179 | 408 | 361 | 372.22 | 50.97 | 80700  | 2451 | 83.16 (95.58) |
| After.A.1    | 145865 | 139175 | 138195 | 122417 | 397 | 359 | 372.35 | 50.64 | 78240  | 2082 | 84.13 (95.89) |
| After.A.2    | 168939 | 161308 | 160142 | 146536 | 386 | 363 | 372.42 | 50.28 | 93123  | 2173 | 84.76 (95.66) |
| After.A.3    | 161907 | 155191 | 153930 | 140398 | 404 | 363 | 372.53 | 49.81 | 81202  | 1952 | 83.11 (95.74) |
| After.A.4    | 168182 | 160254 | 159073 | 145209 | 406 | 362 | 372.39 | 50.72 | 97865  | 2182 | 86.48 (95.99) |
| After.A.5    | 171636 | 164491 | 162954 | 152202 | 387 | 363 | 371.96 | 50.55 | 105378 | 1711 | 85.18 (95.71) |

| After.A.6   | 161036 | 153378 | 152209 | 137996 | 388 | 362 | 372.45 | 50.38 | 85020  | 2137 | 82.21 (96.02) |
|-------------|--------|--------|--------|--------|-----|-----|--------|-------|--------|------|---------------|
| After.A.7   | 162239 | 154601 | 153425 | 138280 | 389 | 362 | 372.36 | 50.72 | 88910  | 2158 | 82.20 (96.84) |
| After.A.8   | 173429 | 165128 | 163238 | 151189 | 412 | 364 | 372.49 | 51.06 | 90880  | 1807 | 86.36 (96.09) |
| After.A.9   | 174458 | 166915 | 165702 | 148662 | 394 | 362 | 372.45 | 50.49 | 90220  | 2357 | 81.18 (98.64) |
| After.A.10  | 155924 | 148457 | 147194 | 136837 | 398 | 365 | 372.63 | 49.66 | 71413  | 1685 | 89.62 (98.39) |
| After.A.11  | 129938 | 122786 | 121612 | 112868 | 399 | 361 | 372.06 | 52.42 | 72146  | 1732 | 83.66 (97.76) |
| After.A.12  | 142437 | 135143 | 133546 | 123969 | 392 | 366 | 372.58 | 50.23 | 69403  | 1774 | 95.25 (98.72) |
| After.FL.1  | 176898 | 167462 | 164168 | 147686 | 402 | 359 | 372.58 | 52.66 | 89465  | 3395 | 93.21 (98.64) |
| After.FL.2  | 168993 | 160074 | 155446 | 144775 | 406 | 359 | 372.55 | 53.37 | 90401  | 2831 | 94.24 (98.09) |
| After.FL.3  | 169272 | 159606 | 156295 | 143730 | 397 | 360 | 372.77 | 53.2  | 97703  | 3851 | 82.97 (97.94) |
| After.FL.4  | 152181 | 143442 | 138540 | 131325 | 401 | 360 | 373.07 | 52.68 | 87756  | 2764 | 84.22 (98.03) |
| After.FL.5  | 130411 | 123195 | 120994 | 116116 | 404 | 359 | 372.97 | 52.91 | 92716  | 2331 | 97.86 (97.72) |
| After.FL.6  | 171451 | 162775 | 161080 | 143790 | 411 | 361 | 372.4  | 51.81 | 93500  | 3760 | 80.18 (96.69) |
| After.FL.7  | 155677 | 146794 | 141573 | 134805 | 401 | 359 | 373.35 | 52.13 | 94912  | 2461 | 88.43 (95.77) |
| After.FL.8  | 171355 | 162472 | 157779 | 145962 | 391 | 358 | 373.8  | 51.82 | 95237  | 2495 | 83.57 (98.38) |
| After.FL.9  | 161943 | 152883 | 150095 | 137961 | 406 | 358 | 372.8  | 52.61 | 89517  | 3903 | 82.40 (97.55) |
| After.FL.10 | 144380 | 136829 | 133315 | 127031 | 393 | 359 | 373.08 | 53.07 | 95507  | 2258 | 92.16 (98.53) |
| After.FL.11 | 150813 | 142649 | 140486 | 120098 | 407 | 359 | 372.55 | 51.13 | 63630  | 2763 | 87.59 (97.92) |
| After.FL.12 | 143375 | 136026 | 133813 | 121824 | 393 | 361 | 372.62 | 52.9  | 108863 | 1354 | 98.42 (97.08) |

|                   | Richness  | Chao 1    | Shannon  | Simpson  | Dominance |
|-------------------|-----------|-----------|----------|----------|-----------|
| ChLa              | r=-0.517, | r=-0.764, | r=0.712, | r=0.707, | r=0.529,  |
| Chi a             | p=0.047*  | p=0.027*  | p=0.054  | p=0.059  | p=0.066   |
| Tomporatura       | r=0.711,  | r=0.273,  | r=0.665, | r=0.628, | r=0.417,  |
| Temperature       | p=0.028*  | p=0.048*  | p=0.061  | p=0.069  | p=0.058   |
| Solinity          | r=-0.763, | R=-0.498, | r=0.803, | r=0.295, | r=0.516,  |
| Samily            | p=0.048*  | p=0.041*  | p=0.069  | p=0.054  | p=0.052   |
| nU voluo          | r=0.432,  | r=0.347,  | r=0.412, | r=0.447, | r=0.365,  |
| pH value          | p=0.057   | p=0.067   | p=0.056  | p=0.067  | p=0.051   |
|                   | r=-0.238, | r=0.567,  | r=0.198, | r=0.453, | r=0.657,  |
| NO <sub>3</sub>   | p=0.068   | p=0.078   | p=0.064  | p=0.067  | p=0.071   |
| NO -              | r=0.451,  | r=0.199,  | r=0.659, | r=0.452, | r=0.366,  |
| $NO_2$            | p=0.076   | p=0.087   | p=0.057  | p=0.051  | p=0.069   |
| NILL +            | r=0.117,  | r=0.332,  | r=0.557, | r=0.409, | r=0.523,  |
| INIT <sub>4</sub> | p=0.082   | p=0.052   | p=0.079  | p=0.062  | p=0.072   |
| <b>DO</b> 3-      | r=0.166,  | r=0.441,  | r=0.663, | r=0.472, | r=0.631,  |
| $PO_4^{\circ}$    | p=0.013*  | p=0.037*  | p=0.061  | p=0.077  | p=0.063   |
| INI/ID volue      | r=0.402,  | r=0.339,  | r=0.507  | r=0.481, | r=0.664,  |
| IN/IP value       | p=0.025*  | p=0.046*  | p=0.091  | p=0.083  | p=0.075   |
|                   |           |           |          |          |           |

 Table 3. Spearman's correlation between microbial alpha-diversity indices and environmental factors.

| Bray-Curtis | Mean of observed | of observed Mean of null |       | Dualua  | RNTI voluo | PC value     |  |
|-------------|------------------|--------------------------|-------|---------|------------|--------------|--|
|             | similarity       | expected similarity      | 1     | I value |            | Rebary value |  |
| Pre-AT      | 0.681            | 0.624                    | 10.56 | 0.025   | -2.52      | -0.885       |  |
| During-AT   | 0.524            | 0.236                    | 9.67  | 0.012   | +3.22      | -0.263       |  |
| Post-AT     | 0.329            | 0.151                    | 12.85 | 0.019   | +0.57      | -0.969       |  |
| Pre-FL      | 0.442            | 0.209                    | 13.67 | 0.008   | +0.86      | -0.997       |  |
| During-FL   | 0.546            | 0.138                    | 29.33 | 0.027   | -4.25      | -0.558       |  |
| Post-FL     | 0.621            | 0.448                    | 27.11 | 0.036   | -3.11      | -0.281       |  |

**Table 4**. Significance test of the similarity between the phycosphere microbial communities and null modelsimulations at different stages, and  $\beta$ NTI and RCBray values based on Weighted Bray–Curtis distances.

**Supplementary Figure 1.** Samples collected according to the HAB phases, including pre-, during- and post-bloom stages (the red cycle).



**Supplementary Figure 2.** Morphology of *S. trochoidea* under a light microscope. Scale bar is 20 μm.



**Supplementary Figure 3.** Venn diagram showing the overlap of OTUs between sample types.



## **Supplementary Figure 4.** LEfSe diagram showing the difference of OTUs among the different bloom stages.



Cladogram



Supplementary Figure 5. Relative abundance of bacteria at phylum level.

Phycosphere microorganisms



**Supplementary Figure 6.** Heat-map of microbial communities at family (A) and genus (B) levels. AT, attached bacteria; FL, free-living bacteria.

**Supplementary Figure 7.** (A) Bray-Curtis similarity-based dendrogram at the OTU level illustrating groups in samples. (B) Correspondence canonical analysis (CCA) based on microbial communities (OTUs) and environmental parameters sampled during the bloom.



Supplementary Figure 8. Correlation analysis between relative abundances of the 100 most abundant bacterial OTUs and environmental variables based on Pearson correlations. Correlation values depict r-values of Pearson correlations. Statistical significance:  $^+$ , P<0.05;  $^*$ , P<0.01.

