Supporting Information

Controlling T cell activation with synthetic Dendritic Cells using the multivalency effect

Roel Hammink,‡^a Subhra Mandal,‡^b Loek J. Eggermont,^b Marco Nooteboom,^c Peter H. G. M. Willems,^c Jurjen Tel,^b Alan E. Rowan,*^a Carl G. Figdor,*^b Kerstin G. Blank*^a

^aDepartment of Molecular Materials, Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands

^bDepartment of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University, Geert Grooteplein 26, 6525 GA Nijmegen, The Netherlands

^cDepartment of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University, Geert Grooteplein 26, 6525 GA Nijmegen, The Netherlands

‡ Both authors contributed equally.

Email: a.rowan@science.ru.nl; C.Figdor@radboudumc.nl; kerstin.blank@mpikg.mpg.de

TABLE OF CONTENTS

Table S1. Characteristics of the polymers 3
Figure S1. Representative AFM images of the polymer-SAv conjugates
Figure S2. Length distribution of the different polymer-SAv conjugates
Figure S3. Average distance between SAv molecules
Table S2. Characteristics of the SAv-functionalized polymers
Table S3. Treatment conditions for the single-cell Ca ²⁺ -signaling experiments
Table S4. Number of cells analyzed for the single-cell Ca ²⁺ -signaling experiments
Figure S4. Representative time traces of a single-cell Ca ²⁺ -signaling experiment
Figure S5. IFNγ secretion of PBLs normalized to polymer concentration
Figure S6. Timeline of the post-stimulation single-cell Ca ²⁺ -signaling experiments
Figure S7. Results of the post-stimulation Ca ²⁺ -signaling experiments9
Table S5. Number of cells analyzed for the post-stimulation Ca ²⁺ -signaling experiments10
Figure S8. Post-stimulation analysis of CD69 expression
Figure S9. FACS analysis of sDC-treated (P3c) and untreated PBLs

Table S1. Characteristics of the polymers.

Polymer	Catalyst ratio	N ₃ ratio	M _v (kg/mol) ^a
P1'	1:200	1:100	200
P2'	1:10,000	1:100	628
Р3'	1:10,000	1:70	577

^aDetermined from viscosity measurements.

Figure S1. Representative AFM images of the polymer-SAv conjugates (**P1-P3c**) drop-casted on polylysine treated mica. Scale bar: 200 nm for (a)-(e).

Figure S2. Length distribution of the different polymer-SAv conjugates as determined from AFM images. Each histogram contains at least 41 polymers: (a) **P1-SAv**, n = 48; (b) **P2-SAv**, n = 74; (c) **P3a-SAv**, n = 72; (d) **P3b-SAv**, n = 68; (e) **P3c-SAv**, n = 41.

Figure S3. Average distance between SAv molecules determined from the AFM images. Each histogram contains at least 41 polymers: (a) **P1-SAv**, n = 48; (b) **P2-SAv**, n = 74; (c) **P3a-SAv**, n = 72; (d) **P3b-SAv**, n = 68; (e) **P3c-SAv**, n = 41.

Polymer	SAv equivalents	Mean length (nm) ^a	Mean SAv distance (nm) ^a
P1	1	175	110
P2	1	350	120
P3a	0.5	400	134
P3b	1	442	85
P3c	5	438	43

Table S2. Characteristics of the polymer-SAv conjugates.

^aDetermined with AFM imaging.

Table S3. Treatment conditions for the single-cell Ca²⁺-signaling experiments.

Experiment	Stimula	ant	Imaging time	αCD3 concentration ^a
1. sDC length	i. P :	1		
	ii. P 2	2	5 min baseline Ca ²⁺	0.005, 0.5, 5, 25 ng/ml
	iii. fr	ree αCD3	1 h treatment	
	iv. ur	ntreated	5 min ionomycin	
2. αCD3 density	i. P .	'3a		
	ii. P .	3b		
	iii. P .	3c	5 min baseline Ca ²⁺	0.005, 0.5, 5, 25 ng/ml
	iv. fr	ree αCD3	1 h treatment	
	v. ur	ntreated	5 min ionomycin	
3. dose-response curves	i. P .	'3c	5 min baseline Ca ²⁺	0.001, 0.01, 0.1, 5, 10, 25,
	ii. fr	ee αCD3	1 h treatment	50, 100 ng/ml
	iii. ur	ntreated	5 min ionomycin	

^aThe concentration always refers to the amount of α CD3 bound to the α CD3-sDCs or present in freely soluble form (free α CD3).

Experiment	Stimulant	c(aCD3)	Number of cells analyzed		yzed
			Donor 1	Donor 2	Donor 3
1. sDC length	i. P1	0.005 ng/ml 0.5 ng/ml 5 ng/ml 25 ng/ml	12 12 11 6	7 5 5 7	5 6 6 6
	ii. P2	0.005 ng/ml 0.5 ng/ml 5 ng/ml 25 ng/ml	12 12 12 7	6 5 7 8	6 6 5
	iii. αCD3	0.005 ng/ml 0.5 ng/ml 5 ng/ml 25 ng/ml	7 6 5 7	5 3 8 7	4 6 5 6
2. αCD3 density	i. P3a	0.005 ng/ml 0.5 ng/ml 5 ng/ml 25 ng/ml	4 2 4 12	4 4 6	4 6 4 5
	ii. P3b	0.005 ng/ml 0.5 ng/ml 5 ng/ml 25 ng/ml	6 5 8 6	6 5 5 5	5 8 7 6
	iii. P3c	0.005 ng/ml 0.5 ng/ml 5 ng/ml 25 ng/ml	6 10 8 14	6 10 8 10	6 6 5 5
	iv. αCD3	0.005 ng/ml 0.5 ng/ml 5 ng/ml 25 ng/ml	6 7 5 7	5 4 8 7	4 6 5 6
3. dose-response curves	i. P3c	0.001 ng/ml 0.01 ng/ml 0.1 ng/ml 5 ng/ml 10 ng/ml 25 ng/ml 50 ng/ml 100 ng/ml	44 17 22 22 23 13 14 21	31 39 21 17 14 12 24 26	33 19 22 18 22 25 24 31
	ii. αCD3	0.001 ng/ml 0.01 ng/ml 0.1 ng/ml 5 ng/ml 10 ng/ml 25 ng/ml 50 ng/ml 100 ng/ml	10 24 14 17 13 8 12 11	30 26 33 16 42 21 20 25	23 26 33 15 26 15 31 21

Table S4. Number of cells analyzed for the single-cell Ca²⁺-signaling experiments.

Figure S4. Single-cell Ca²⁺-signaling experiments. Representative time traces (340 nm/380 nm ratio) for PBLs treated with free α CD3 (a) or **P3c** (b).

Figure S5. IFN γ secretion of PBLs treated with P3a, P3b or P3c normalized to polymer concentration.

Figure S6. Timeline of the post-stimulation single-cell Ca^{2+} -signaling experiments. To obtain the '0 h' time point, the Fura-2 loaded cells were treated with the stimulant directly under the microscope and imaged for 1 h. For the '16 h' and '24 h' time points the cells were first treated with the respective stimulant for 1 h, washed to remove the stimulant and then incubated without stimulant for 15 h or 23 h, respectively. During the last 20 min of this incubation period, the cells were loaded with Fura-2. Imaging was started at the indicated time point. At the end of the 1 h imaging period, the cells were treated with ionomycin to determine cell viability. In this post-stimulation experiment, the '5 min' baseline was only determined for the '0 h' time point.

Figure S7. Results of the post-stimulation single-cell Ca²⁺-signaling experiments. PBLs were treated with 12.5 ng/ml P3c or free aCD3 for 1 h. The stimulant was removed and the cells were incubated in fresh medium. Ca²⁺-imaging was performed 16 h or 24 h after starting the treatment (15 h or 23 h after removal of the stimulant). As a reference, PBLs were also imaged under the microscope while the stimulant was added (0 h). The graph further shows data obtained for PBLs treated with the following controls: **P3**-SAv, **P3**-mIg G_{2a} (isotype control) or medium (untreated). For all experiments the data represents the mean \pm SEM of 3 independent experiments performed with PBLs from different donors. The number of cells analyzed is summarized in Table S5. The asterisks represent the statistical significance at 'p' values of 0.001 (***). A clear difference is observed between the post-stimulation signaling of α CD3-sDC treated cells and the cells treated with the free α CD3 antibody or any of the controls. Of note, the untreated control shows a small fraction of PBLs (~30 %) that display spontaneous increases in the cytosolic Ca²⁺-concentration (white bars). A similar percentage of PBLs (~26%) showing spontaneous Ca²⁺ oscillations (Ca²⁺ oscillations that occur in the absence of added stimulant) has been reported before (Donnadieu, E; Bismuth, G; Trautmann, A. The intracellular Ca²⁺ concentration optimal for T cell activation is quite different after ionomycin or CD3 stimulation. Pfluegers Arch. - Eur. J. Physiol. 1995, 429 (4), 546-554).

Stimulant	Incubation time	Number of cells analyzed			
		Donor 1	Donor 2	Donor 3	
i. P3c	0 h	15	14	11	
	16 h	7	8	6	
	24 h	10	7	7	
ii. αCD3	0 h	14	9	8	
	16 h	9	9	7	
	24 h	10	9	7	
iii. P3 -mIgG _{2a}	0 h	10	9	6	
	16 h	10	8	6	
	24 h	10	9	5	
iv. P3 -SAv	0 h	10	14	7	
	16 h	11	11	5	
	24 h	9	9	6	
v. untreated	0 h	9	7	8	
	16 h	9	7	5	
	24 h	9	9	7	

Table S5. Number of cells analyzed for the post-stimulation Ca²⁺-signaling experiments.

Figure S8. Post-stimulation analysis of CD69 expression. Percentage of CD69 expressing T cells after treatment with different concentrations of **P3c** or α CD3.

Figure S9. FACS analysis of sDC-treated (**P3c**) and untreated PBLs. After identification of CD4/8+ T cells, the percentage of CD69+ cells was determined.