Ionic Liquids Based Catanionic Coacervates: The Novel Microreactors for Membrane Free Sequestration of Dyes and Curcumin

Ankit Shah^a, Muzammil Kuddushi^a, Sargam Rajput^a, Omar A. El Seoud^b, Naved I. Malek^a*

^aApplied Chemistry Department, S. V. National Institute of Technology, Surat-395007, Gujarat, India

^bInstitute of Chemistry, The University of Sao Paulo, 748 Prof. Lineu Prestes Av., Sao Paulo, SP 05508-000, Brazil.

Sr	Surfactant	R =[NaSal]/	Transition*	Ref
no		[Surfactant]		
1	Cetyltrimethylammonium Chloride	1.0	STT	1
2	Cetyltrimethylammonium Bromide	1.0	STT	2,3
		1.2	STW	4
		0.96	STR	5,6
3	N-cetyl-N-(2-hydroxyethyl)	0.4 to 1.0	STW	7
	dimethylammonium bromide			
4	N-cetyl-N,N-di(2-hydroxyethyl)	0.4 to 1.0	STW	7
	methylammonium bromide			
5	Star-typetrimeric surfactants	0.24 to 0.30	STR	8
		$0.45 \leq R \leq 0.66$	STW	
		R> 0.79	STV	
6	Ethanediyl-α,ω-bis(dimethyldodecyl	R> 0.96	STV	8
	ammonium bromide) (12-2-12)			
8	N-tetradecyl-N-(2-hydroxyethyl)	0.70	STW	9
	dimethylammonium bromide			
9	1,2-bis[N-ethyl-N-(sodium 2-hydroxyl-	≤0.3	STW	10
	3-sulfopropyl)-dodecyl-ammonium]	0.8	STLW	
	ethane betaine			
10	Didecyldimethylammoniumformate	0.25	WTV	11
		0.43	STW	

Table SI-1:
Sodium
Salicylate
induced
Structural
Transition
in
various

surfactants.

<

11	N-methyl-N-cetylpyrrolidinium	0.4	STG	12
	bromide	(40 mM/100 mM)		
12	hexanediyl-α,ω-bis(dimethylcetyl ammonium bromide) (16-6-16)	1.8	STW	13

*STT = Spherical micelle to Threadlike Micelle, STR = Spherical micelle to Rodlike Micelle, STW = Spherical micelle to Wormlike Micelle, STLW = Spherical micelle to Long Wormlike Micelle, STV = Spherical micelle to Vesicles, STG = Spherical micelle to Hydrogel, WTV= Wormlike micelle to vesicle.

Figure SI-1. Visual Images of Complex coacervates before and after addition of 100 mM of CaCl₂. (Photograph courtesy of 'Ankit Shah')

Figure SI-2. Visual and Optical microscopy images of the complex coacervates with C_8 EMeImBr (112.5mM) and NaSal (100 mM) in the presence of 0.15 % w/v of NaAlg (Scale bar = 500 µm). (Photograph courtesy of 'Ankit Shah')

References

- Wang, Z.; Larson, R.G. Molecular Dynamics Simulations of Threadlike Cetyltrimethylammonium Chloride Micelles: Effects of Sodium Chloride and Sodium Salicylate Salts. J. Phys. Chem. B 2009, 113, 13697–13710.
- Mohanty, S.; Davis, H. T.; McCormick, A. V. Stratification in Drying Films Containing Bidisperse Mixtures of Nanoparticles. *Langmuir*, 2001, 17, 7160-7171.

- Shikata, T.; Hirata, H.; Kotaka, T. Micelle formation of detergent molecules inaqueous media. 2. Role of free salicylate ions on viscoelastic properties ofaqueous cetyltrimethylammonium bromide-sodium salicylate solutions. *Langmuir*, 1988, 4, 354–359.
- Peia, X.; Zhaoa, J.; Wei, X. Comparative study of the viscoelastic wormlike micellar solutions of hexanediyl-α,ω-bis(dimethylcetylammonium bromide) and cetyltrimethylammonium bromide in the presence of sodium salicylate, *Colloids and Surfaces A: Physicochem. Eng. Aspects*, **2010**, *366*, 203–207.
- Aswal, V.K.; Goyal, P.S.; Thiyagarajan, P. Small-Angle neutron-scattering and viscosity studies of CTAB/NaSal viscoelastic micellar solutions. *J Phys Chem B*, 1998, *102*, 2469–2473.
- Lin, C.; Zhao, J. Nile red probing for sphere-to-rod-to-wormlike micelle transition in aqueous surfactant solution. *Dyes and Pigments*, 2010, 84, 223–228.
- Dai, C.; Wu, X.; Li, W.; You, Q.; Zhao, M.; Du, M.; Liu, Y.; Li, Y. The role of hydroxyethyl groups in the construction of wormlike micelles in the system of quaternary ammonium surfactant and sodium salicylate. *Soft Matter*, 2015, *11*, 7817-7820.
- Kusano, T.; Akutsu, K.; Iwase, H.; Yoshimura, T.; Shibayama, M. Structural study on aggregation behavior of star-type trimericsurfactant in the presence of sodium salicylate. *Colloids and Surfaces A: Physicochem. Eng. Aspects,* 2016, 497, 109–116.
- Dai, C.; Lia, W.; Cui, Y.; Sun,Y.; Wu, W.; Xu, Z.; Liu, Y.; Yang, Z.; Wu, X. The effect of functional groups on the sphere-to-wormlike micellar transition in quaternary ammonium surfactant solutions. *Colloids and Surfaces A: Physicochem. Eng. Aspects*, 2016, 500, 32–39.
- Xiang, F.; Geng Q.; Xing Q.; Hu C.; Xue C.; Jia J.L.; Li J. L. Effects of sodium salicylate on the microstructure of a novel zwitterionic gemini surfactant and its rheological responses. *Colloid Polym Sci*, **2014**, *292*, 915–921.
- Zhao, L.; Zhang, H.; Wang, W.; Wang, G. Effects of sodium salicylate on didecyldimethylammonium formate properties and aggregation behaviors, *J Mol. Liq.* 2017, 225, 897–902.

- Yana, H.; Zhaoa, M.; Zheng, L. A hydrogel formed by cetylpyrrolidinium bromide and sodium salicylate. *Colloids and Surfaces A: Physicochem. Eng. Aspects*, 2011, 392, 205–212.
- Manohar, C.; Rao, U.R.K.; Valaulikar, B.S.; Lyer, R.M. On the origin of viscoelasticity in micellar solutions of cetyltrimethylammonium bromide and sodium salicylate. *J. Chem. Soc. Chem. Commun.***1986**, *5*, 379–381.